Гравитация в теории гладких гомотопических типов

Parent category

В этом курсе мы погрузимся в важный аспект фундаментальной физики - теории гравитации и в связанные с ней проблемы. Почему гравитация была и остается проблемой на протяжении уже нескольких веков.

-Быстро сформулируем сеттинг теории бесконечность-топоcов, в котором записывается физика, сцепления (или когезии, cohesion), инфинитезимальность в терминах дифференциально-когезивных топосов.
-Дальше обсудим базу - классическую теорию поля в современной формулировке: предквантовые локальные теории поля, геометрии Картана и определение теорий гравитации. Примеры теории поля: Heterotic, type II, DualHeterotic, Chern-Simons 3d, 7d и др.
-Что такое процедура квантования. Примеры квантования простых механических систем, сигма-моделей и калибровочных теорий поля.
-Рассмотрим башню Уайтхеда ортогональной группы и поймем как из нее получается весь так называемый спектр М-теории.
Узнаем, что такое общековариантный контекст и как Эйнштейн пришел к своей общей теории относительности.
-Поймем, что гравитация и включение взаимодействия теорией поля с ней имеет место в старших геометриях Картана, за счет чего мы опишем множество других теорий гравитаций: супергравитация гетеротической теории струн в 11d, (Анти-) де Ситтеровская гравитация, гравитация Эйнштейна и др.
-Обсудим известный вопрос о «квантовании гравитации», и почему уже 100 проблема не дошла до завершения, несмотря на многие прорывы в виде М-теории и теории струн. Что произошло в последние пару лет в этом направлении, и почему наоборот имеет смысл смотреть на гравитацию как на что-то в себе, к чему не нужно применять известные процедуры квантования для согласования с квантовой теорией.
-В курсе лекций сделаем вклад в это направление.
Поставим и решим непростую задачу о поиске формализма для гравитации внутренне в дифференциальных сцепленных топосах. Это приведет к тому, что например уравнения Эйнштейна станут условием на равенство коциклов в дифференциальных когомологиях в слайс топосе над инфинитезимальной окрестностью многообразия (или стэка).
И на таком уровне абстракции станет лучше видно, что теории гравитации действительно особенны и требуют особого подхода.

In this course, we will dive into an important aspect of fundamental physics - the theory of gravity and the problems associated with it. Why gravity has been and continues to be a problem for several centuries now.

-We will quickly formulate the setting of infinity-topos theory, in which the fundamental physics internalises, cohesion, and infinitesimality in terms of differentially-cohesive topos.
-Further we will discuss the base, classical field theory in its modern formulation: pre-quantum local field theories, Cartan geometries, and the definition of gravitational theories. Examples of field theory: Heterotic, type II, DualHeterotic, Chern-Simons 3d, 7d, etc.
-What is a quantization procedure. Examples of quantization on simple mechanical systems, sigma-models and gauge field theories.
-We will examine the Whitehead tower of the orthogonal group and understand how the whole so-called spectrum of M-theory is derived from it.
We will learn what a general covariant context is and how Einstein arrived at his general theory of relativity.
-We will understand gravity and the inclusion of field theory interactions with it in Cartan's higher geometries, at the expense of which we will describe many other gravity theories: supergravity of heterotic string theory in 11d, (Anti)-de Sitter gravity, Einstein gravity, etc.

-We will discuss the well-known question about "quantization of gravitation", and why even after 100 years since foundation of General Relativity this problem has not yet come to completion, in spite of many breakthroughs in the form of M-theory and string theory. What has happened in the last couple of years in this direction, and why on the contrary it makes sense to look at gravity as something unique, to which it is not necessary to apply known quantization procedures to agree with quantum theory.
-In the course of lectures we will make a contribution to this direction.
We will put and solve a difficult problem about a search of a formalism for gravitation internally in differential coupled toposes. This will lead to the fact that, for example, Einstein's equations become a condition for equality of cocycles in differential cohomology in a slice topos over an infinitesimal neighborhood of a manifold (or stack).
And at such level of abstraction it will be better seen that theories of gravitation are really special and require a special approach.

Short list of references:

[Ach02] B. Acharya, M Theory, G2-manifolds and Four Dimensional Physics, Classical and Quantum Gravity Volume 19 Number 22, 2002 http://users.ictp.it/~pub_off/lectures/lns013/Acharya/Acharya_Final.pdf
[AKSZ97] M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Modern Phys. A 12(7):14051429, (1997)
[And89] I. M. Anderson, The variational bicomplex, (unpublished book draft, 1989) http://math.uni.lu/~jubin/seminar/bicomplex.pdf
[AnDu80] I. M. Anderson, T. Duchamp On the existence of global variational principles, American Journal of Mathematics 102 (1980), 781–868 10.2307/2374195
[ABGHR13] M. Ando, A. Blumberg, D.Gepner, M. Hopkins, C. Rezk, An ∞-categorical approach to R- line bundles, R-module Thom spectra, and twisted R-homology, Journal of Topology (2013) jtt035 arXiv:1403.4325
[Arn89] V. I. Arnold Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathe- matics, Springer (1989), 2nd edn., Apdx. 5 doi:10.1007/978-1-4757-2063-1
[AtWi01] M. Atiyah, E. Witten, M-theory dynamics on a manifold of G2 -holonomy, Adv.Theor.Math.Phys.6:1-106,2003, arXiv:hep-th/0107177
[BCSS07] J. Baez, A. Crans, U. Schreiber, D. Stevenson, From loop groups to 2-groups, Homology, Homotopy Appl., 9(2):101–135, 2007 arXiv:0504123
[BaHe96] G. Barnich, M. Henneaux, Isomorphisms between the Batalin-Vilkovisky antibracket and the Pois- son bracket, Journal of Mathematical Physics 37, 5273–5296 (1996) arXiv:hep-th/9601124
62
[BaWe97] S. Bates, A. Weinstein, Lectures on the geometry of quantization, American Mathematical Society 1997, http://www.math.berkeley.edu/~alanw/GofQ.pdf
[Ber10] J. Bergner, Models for (∞,n)-Categories and the Cobordism Hypothesis, in H. Sati, U. Schreiber (eds.) Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proceedings of Symposia in Pure Mathematics, volume 83 AMS (2011), arXiv:1011.0110
[Bon14] Geometric quantization of symplectic and Poisson manifolds, MSc thesis, Utrecht, January 2014, ncatlab.org/schreiber/show/master+thesis+Bongers
[BoTo82] R. Bott, L. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer 1982
[Bro73] K. Brown, Abstract Homotopy Theory and Generalized Sheaf Cohomol- ogy, Transactions of the American Mathematical Society, Vol. 186 (1973), 419-458 ncatlab.org/nlab/files/BrownAbstractHomotopyTheory.pdf
[Bun12] U. Bunke, Differential cohomology arXiv:1208.3961
[BNV13] U. Bunke, T. Nikolaus, M. Vo ̈lkl, Differential cohomology as sheaves of spectra, Journal of Homo-
topy and Related Structures, October 2014, arxiv:1311.3188
[CMR12] A. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, Com- munications in Mathematical Physics December 2014, Volume 332, Issue 2, pp 535-603 arXiv:1201.0290
[CaLe94] A. Candiello, K. Lechner, Duality in Supergravity Theories, Nucl.Phys. B412 (1994) 479-501 arXiv:hep-th/9309143
[CAF91] L. Castellani, R. D’Auria, P. Fr ́e, Supergravity and Superstrings – A geometric perspective, World Scientific (1991)
[CaFe99] A. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212, 591611 (2000), arXiv:math/9902090 and Poisson sigma models and deformation quantization, Mod. Phys. Lett. A 16, 179190 (2001), arXiv:hep-th/0102208
[CGLW11] X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87, 155114 (2013) arXiv:1106.4772
[Cor04] L. Corry, David Hilbert and the axiomatization of physics: From Grundlagen der Geometrie to Grundlagen der Physik, Archimedes: New Studies in the History and Philosophy of Science and Tech- nology 10, Kluwer Academic Publishers, Dordrecht 2004
[Cor06] L. Corry, On the origins of Hilbert’s sixth problem: physics and the empiricist approach to axioma- tization, Proceedings of the International Congress of Mathematics in Madrid 2006
[Dir31] P.A.M. Dirac Quantized Singularities in the Electromagnetic Field, Proceedings of the Royal Society, A133 (1931) pp 6072.
[DiSh07] J. Distler, E. Sharpe, Heterotic compactifications with principal bundles for general groups and general levels, Adv. Theor. Math. Phys. 14:335-398, 2010, arXiv:hep-th/0701244
[Dub79]E. Dubuc, Sur les mod`eles de la g ́eom ́etrie diff ́erentielle synth ́etique, Cahiers de Topologie et G ́eom ́etrie Diff ́erentielle Cat ́egoriques, 20 no. 3 (1979), p. 231-279 http://www.numdam.org/item?id=CTGDC_197920_3_231_0
[Duf99] M. Duff, The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, IoP 1999
63
[FPW11] M. Ferraris, M. Palese, E. Winterroth Local variational problems and conservation laws, Differen- tial Geometry and its Applications 29 (2011), S80-S85 doi:10.1016/j.difgeo.2011.04.011
[FRS11] D. Fiorenza, C. L. Rogers, U. Schreiber, A higher Chern-Weil derivation of AKSZ sigma-models, International Journal of Geometric Methods in Modern Physics, Vol. 10, No. 1 (2013), arXiv:1108.4378
[FRS13a] D. Fiorenza, C. L. Rogers, U. Schreiber, Higher U(1)-gerbe connections in geometric prequantiza- tion, arXiv:1304.0236v2
[FRS13b] D. Fiorenza, C. L. Rogers, U. Schreiber, L∞-algebras of local observables from higher prequantum bundles, Homology, Homotopy & Applications, Vol 16 (2014) No 2, p. 107–142 arXiv:1304.6292
[SaSc15] H. Sati, U. Schreiber, Lie n-Algebras of BPS charges, arXiv:1507.08692
[FSS12a] D. Fiorenza, H. Sati, U. Schreiber, Multiple M5-branes, String 2-connections, and 7d nonabelian Chern-Simons theory, Advances in Theoretical and Mathematical Physics Volume 18, Number 2 (2014) p. 229321 arXiv:1201.5277
[FSS12b] D. Fiorenza, H. Sati, U. Schreiber, Higher extended cup-product Chern-Simons theories, Journal of Geometry and Physics, Volume 74, pages 130–163 (2013) arXiv:1207.5449
[FSS13a] D. Fiorenza, H. Sati, U. Schreiber, A higher stacky perspective on Chern-Simons theory, in Damien Calaque et al. (eds.) Mathematical Aspects of Quantum Field Theories Springer 2014 arXiv:1301.2580
[FSS13b] D. Fiorenza, H. Sati, U. Schreiber, Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields, International Journal of Geometric Methods in Modern Physics Volume 12, Issue 02 (2015) 1550018 arXiv:1308.5264
[FSS15] D. Fiorenza, H. Sati, U. Schreiber, The WZW term of the M5-brane and differential cohomotopy, J. Math. Phys. 56, 102301 (2015) arXiv:1506.07557
[FSS10] D. Fiorenza, U. Schreiber, J. Stasheff. Cˇech-cocycles for differential characteristic classes, Advances in Theoretical and Mathematical Physics, Volume 16 Issue 1 (2012) arXiv:1011.4735
[Fra97] T. Frankel, The Geometry of Physics - An introduction, Cambridge University Press, 1997, 2012
[Fre95] D. Freed, Classical Chern-Simons theory Part I, Adv. Math., 113 (1995), 237–303 and
Classical Chern-Simons theory, part II, Houston J. Math., 28 (2002), pp. 293–310
and
Remarks on Chern-Simons theory, Bulletin (New Series) of the AMS, Volume 46, Number 2, (2009)
[Fre00] D. Freed, Dirac charge quantization and generalized differential cohomology Surveys in Differential Geometry, Int. Press, Somerville, MA, 2000, pp. 129194 arXiv:hep-th/0011220
[Gaw88] K. Gawedzki, Topological actions in two-dimensional quantum field theories, Nonperturbative quantum field theory (Cargese, 1987), 101141, NATO Adv. Sci. Inst. Ser. B Phys., 185, Plenum, New York, 1988.
[Gaw00] K. Gawedzki, Conformal field theory: a case study, in Y. Nutku, C. Saclioglu, T. Turgut (eds.) Frontier in Physics 102, Perseus Publishing (2000) arXiv:hep-th/9904145
[GMS09] G. Giachetta, L. Mangiarotti, G. Sardanashvily, Advanced classical field theory, World Scientific, 2009
[Gro81] A. Grothendieck Pursuing stacks, 1983, thescrivener.github.io/PursuingStacks/
64
[Gru13] F. Gruber, Topology in dynamical Lattice QCD simulations, PhD thesis 2013, epub.uni-regensburg.de/27631/
[’tHo76] G. ’t Hooft, Symmetry Breaking through Bell-Jackiw Anomalies Phys. Rev. Lett. 37 (1976) http://www.staff.science.uu.nl/~hooft101/gthpub/symm_br_bell_jackiw.pdf
[HeTe94] M. Henneaux, C. Teitelboim Quantization of Gauge Systems, Princeton University Press (1994) [Hil00] D. Hilbert, Mathematical Problems, Bulletin of the American Mathematical Society, vol. 8, no. 10
(1902), pp. 437-479.
[HoSi05] M. Hopkins, I. Singer. Quadratic functions in geometry, topology, and M-theory, J. Differential Geom., 70(3):329–452, (2005) arXiv:math/0211216
[Ig-Z13] P. Iglesias-Zemmour, Diffeology, Mathematical Surveys and Monographs, AMS (2013) http://www.umpa.ens-lyon.fr/~iglesias/Site/The+Book.html
[Joh02] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, Oxford Logic Guides, volume 43,44, Clarendon Press, 2002.
[Joy08] A. Joyal, Notes on Logoi, 2008 http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf [KLV 12] C. Kapulkin, P. LeFanu Lumsdaine, V. Voevodsky, The Simplicial Model of Univalent Foundations,
arXiv:1211.2851
[Kha14] I. Khavkine, Covariant phase space, constraints, gauge and the Peierls formula, International Journal of Modern Physics A 29 (2014), 1430009 arXiv:1402.1282
[KhSc16] I. Khavkine, U. Schreiber, Prequantum covariant field theory ncatlab.org/schreiber/show/Prequantum+covariant+field+theory
[Koc80] A. Kock, Formal manifolds and synthetic theory of jet bundles, Cahiers de Topologie et G ́eom ́etrie Diff ́erentielle Cat ́egoriques (1980) Volume: 21, Issue: 3 http://www.numdam.org/item?id=CTGDC_1980
21_3_227_0
[Koc81/06] A. Kock, Synthetic Differential Geometry Cambridge University Press, LMS Lecture Notes Series No. 333 (1981, 2006) home.imf.au.dk/kock/sdg99.pdf
[Koc10] A. Kock, Synthetic Geometry of Manifolds, Cambridge Tracts in Mathematics, 180 (2010) home.imf.au.dk/kock/SGM-final.pdf
[Kos75] B. Kostant, On the definition of quantization, in G ́eom ́etrie Symplectique et Physique Math ́ematique, Colloques Intern. CNRS, vol. 237, Paris (1975) 187210
[Law65] W. Lawvere, An elementary theory of the category of sets, Proceedings of the National Academy of Science of the U.S.A 52, 1506-1511 (1965), reprinted in Reprints in Theory and Applications of Categories, No. 11 (2005) pp. 1-35,
[Law67] W. Lawvere, Categorical dynamics, lecture in Chicago, 1967, http://www.mat.uc.pt/~ct2011/abstracts/lawvere_w.pdf
[Law97] W. Lawvere, Toposes of laws of motion, talk in Montreal, 1997 http://www.acsu.buffalo.edu/~wlawvere/ToposMotion.pdf
[Law98] W. Lawvere, Outline of synthetic differential geometry, lecture in Buffalo, 1998, ncatlab.org/nlab/files/LawvereSDGOutline.pdf
65
[LiSh15] D. Licata, M.Shulman, Adjoint logic with a 2-category of modes, in Logical Foundations of Com- puter Science, 2016
dlicata.web.wesleyan.edu/pubs/ls15adjoint/ls15adjoint.pdf dlicata.web.wesleyan.edu/pubs/ls15adjoint/ls15adjoint-lfcs-slides.pdf
[Lur06] J. Lurie, Higher topos theory, Annals of Mathematics Studies, volume 170, Princeton University Press, Princeton, NJ, (2009), arXiv:0608040
[Lur09] J. Lurie, On the classification of topological field theories, Current Developments in Mathematics, Volume 2008 (2009), 129-280 arXiv:0905.0465
[Mar86] M. Marvan, A note on the category of partial differential equations, in Differential geometry and its applications, Proceedings of the Conference in Brno August 24-30, 1986 ncatlab.org/nlab/files/MarvanJetComonad.pdf
[Mar93] M. Marvan, On Zero-Curvature Representations of Partial Differential Equations, (1993) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5631
[Nui13] J. Nuiten Cohomological quantization of local prequantum boundary field theory MSc thesis, Utrecht, August 2013, ncatlab.org/schreiber/show/master+thesis+Nuiten
[Olv93] P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer (1993)
[RSS15] E. Rijke, M. Shulman, B. Spitters, Modalities in homotopy type theory
[RiTr99] A. Riotto, M. Trodden, Recent Progress in Baryogenesis, Ann.Rev.Nucl.Part.Sci.49:35-75,1999
arXiv:hep-ph/9901362
[Rog10] C. Rogers, L∞-algebras from multisymplectic geometry, Lett. Math. Phys. 100 (2012), 29–50.
arXiv:1005.2230.
[Roy02] D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Quantization, Poisson Brackets and Beyond, Theodore Voronov (ed.), Contemp. Math., Vol. 315, Amer. Math. Soc., Providence, RI, 2002
[Sak67] A. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Journal of Experimental and Theoretical Physics 5: 2427. 1967,
[SaSc15] H. Sati, U. Schreiber, Lie n-algebras of BPS charges, arXiv:1507.08692
[SSS09] H. Sati, U. Schreiber, J. Stasheff, Twisted differential string- and fivebrane structures, Commun.
Math. Phys. 315 (2012), 169-213, arXiv:0910.4001
[Sch] U. Schreiber Differential cohomology in a cohesive topos, v1: arXiv:1310.7930
v2: dl.dropboxusercontent.com/u/12630719/dcct.pdf
[Sch14a] U. Schreiber, Quantization via linear homotopy-types, Proceedings of Philosophy of Mechanics: Mathematical Foundations, Workshop Feb 12-14, 2014 arXiv:1402.7041
[Sch14b] U. Schreiber, Differential generalized cohomology in Cohesive homotopy-type theory, talk at “IHP trimester on Semantics of proofs and Certified mathematics”, Workshop 1: Formalization of Mathe- matics, Institut Henri Poincar, Paris, 5-9 May 2014, ncatlab.org/schreiber/show/IHP14
[Sch14c] U. Schreiber, Differential cohomology is cohesive homotopy theory, talk at “Higher structures along the Lower Rhine”, June 2014 ncatlab.org/schreiber/show/Differential+cohomology+is+Cohesive+homotopy+theory
66
[Sch14d] U. Schreiber, What, and for what is Higher geometric quantization?,
talk at “Workshop on Higher Gauge Theory and Higher Quantization”, Edinburgh, 25-26 June 2014
and at
“Symmetries and correspondences in number theory, geometry, algebra, physics: intra-disciplinary trends”, Oxford, July 5-8, 2014, ncatlab.org/schreiber/show/What,+and+for+what+is+Higher+geometric+quantization
[Sch14e] U. Schreiber, Higher field bundles for gauge fields, talk at “Operator and geometric analysis on quantum theory”, Levico Terme (Trento), Italy 15-19 September 2014 ncatlab.org/schreiber/show/Higher+field+bundles+for+gauge+fields
[Sch15a] U. Schreiber, Modern Physics formalized in Modal Homotopy Type Theory, talk at J. Ladyman, S. Presnell (org.) “Applying Homotopy Type Theory to physics”, Bristol, 7-8 April 2015, ncatlab.org/schreiber/show/Modern+Physics+formalized+in+Modal+Homotopy+Type+Theory
[Sch15b] U. Schreiber, Structure theory for higher WZW terms, lecture at “Higher Structures in String Theory and Quantum Field Theory”, ESI Vienna, Nov 30- Dec 4, 2015 ncatlab.org/schreiber/show/Structure+Theory+for+Higher+WZW+Terms
[Sch15/16] U. Schreiber, Generalized cohomology of M2/M5-branes,
talk at “Higher Structures in String Theory and Quantum Field Theory”, ESI Vienna, Dec 7 - 11, 2015 ncatlab.org/schreiber/show/Generalized+cohomology+of+M2/M5-branes
talk at “Higher Structures in Geometry and Physics”, MPI Bonn, Jan 15,2016 ncatlab.org/schreiber/show/Equivariant+cohomology+of+M2/M5-branes
[Sch15b] U. Schreiber, Some thoughts on the future of modal homotopy type theory, talk at “German Math- ematical Society Meeting”, Hamburg 2015 ncatlab.org/schreiber/show/Some+thoughts+on+the+future+of+modal+homotopy+type+theory
[Sch15c] U. Schreiber, Prequantum field theories from Shifted symplectic structures talk at “Higher Differ- ential Geometry Seminar”, MPI Bonn, Nov 11, 2015 ncatlab.org/schreiber/show/Prequantum+field+theories+from+Shifted+symplectic+structures
[ScSh98] T. Schaefer, E. Shuryak, Instantons in QCD, Rev. Mod. Phys.70:323-426,1998 arXiv:hep-ph/9610451
[Shu12] M. Shulman Univalence for inverse diagrams and homotopy canonicity, to appear in Mathematical Structures in Computer Science, arXiv.1203.3253
[Shu13] M. Shulman, The univalence axiom for elegant Reedy presheaves, to appear in Homology, Homotopy and Applications, arXiv:1307.6248
[Shu14] M. Shulman, Model of type theory in an (∞, 1)-topos ncatlab.org/homotopytypetheory/revision/model+of+type+theory+in+an+(infinity,1)-topos/3
[Shu15a] M. Shulman. Univalence for inverse EI diagrams, arXiv:1508.02410
[Shu15b] M. Shulman Brouwer’s fixed-point theorem in real-cohesive homotopy type theory,
arXiv:1509.07584
[Shu16] M. Shulman, Homotopy Type Theory: A synthetic approach to higher equalities, arXiv:1601.05035
[Shu01] E. Shuryak, Nonperturbative QCD and Quark-Gluon Plasma, Trieste 2001 http://users.ictp.it/~pub_off/lectures/lns010/Shuryak/Shuryak.pdf
[SiSu08] J. Simons, D. Sullivan, Axiomatic Characterization of Ordinary Differential Cohomology, Journal of Topology 1.1 (2008): 45-56 arXiv:math/0701077
67
[Sou70] J.-M. Souriau, Structure des systemes dynamiques Dunod, Paris (1970)
[Sou74] J.-M. Souriau, Mod ́ele de particule ́a spin dans le champ ́electromagn ́etique et gravitationnel, Annales de lI.H.P. Physique th ́eorique, 20 no. 4 (1974), p. 315-364 http://www.numdam.org/item?id=AIHPA_1974__20_4_315_0
[SvWi06] P. Svrcek, E. Witten, Axions In String Theory, JHEP 0606:051,2006 arXiv:hep-th/0605206 [UFP13] Univalent Foundations Project, Homotopy Type Theory Univalent Foundations of Mathematics,
Institute for Advaced Study, Princeton 2013, homotopytypetheory.org/book
[Ven79] G. Veneziano, Nucl. Phys. B 159 (1979) 213
[Zuc87] G. J. Zuckerman, Action Principles and Global Geometry, in S. T. Yau (ed.), Mathematical Aspects of String Theory, World Scientific, Singapore, 1987, pp. 259-284 ncatlab.org/nlab/files/ZuckermanVariation.pdf
[Wei05] S. Weinberg, The Quantum Theory of Fields, Volumes I, II & III, Cambridge University Press (2005)
[Wei71] A. Weinstein, Symplectic manifolds and their lagrangian submanifolds, Advances in Math. 6 (1971) [Wei83] A. Weinstein, Lectures on Symplectic Manifolds, volume 29 of CBMS Regional Conf. Series in Math.
Amer. Math. Soc., 1983. third printing.
[Wit79] E. Witten Nucl. Phys. B 156 (1979) 269
[Wit96] E. Witten, Five-brane effective action in M-Theory, J. Geom. Phys. 22 (1997), no. 2, arXiv:hep-th/9610234

This category is empty.