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Introduction

Gauge theory accurately describes the physics of elementary particles on a
wide energy scale. The perturbative expansion is adequate for non-abelian
gauge theories at high energies. For low energy physics the effective gauge
coupling grows strong, in the absence of the gauge symmetry breaking. As
a consequence, non-perturbative effects become important. In particular,
low energy physics is affected by the gauge theory instantons, whose careful
treatment is necessary to get non-singular low energy effective theory. In
the realistic gauge theories, like SU(3) gauge theory, the instanton effects
are mixed with those of anti-instantons, and also are dressed by various per-
turbative corrections. In the supersymmetric gauge theories the situation is
simpler, as the perturbation expansion about instanton background is essen-
tially trivial, and there are interesting correlation functions where instantons
and anti-instantons do not mix.

In these lectures we shall explain the recent solution of the N' = 2 gauge
theory by means of direct instanton counting. We shall also discuss the
possible applications to the less symmetric N' =1 case.

We shall also discuss gauge theory/string theory duality in the context
of the theories above. It turns out that many of the exactly calculable on
the gauge theory side quantities have a topological string interpretation.

We shall conclude with quantum gravitational foam picture which
emerges out of the gauge theory considerations.
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1. Supersymmetric gauge theories

In the first lecure we shall briefly remind the necessity of gauge theories,
motivate introduction of the supersymmetry, discuss extended susy, and also
remind a few advanced topics, like twisting.

1.1. Why gauge theory

We shall not give an extensive apology to gaueg theories. Suffice it to say that
gauge theories are the most up-to-date accurate descriptions of all the known
fundamental interactions except for gravity. For more details, including
renormalizability, asymptotic freedom and other important aspects we refer
the reader to [27,31,65].

1.2. Perturbative expansion vs. non-perturbative effects

In quantum field theory with coupling constant g, where the Lagrangian can
be written as:

L= Lfree + 9Lint (1)

with quadratic non-degenerate term Ly... the correlation functions can be
expanded in g:

(Ol (1'1) N On(xn» = <Ol (xl) cee On(xn)>free+
g /ddy(Ol (1) ... On(z0n) Lint(y)) free+

2
%//ddylddy2<ol(xl)---On(xn)Lint(yl)Lint(y2)>free+--- (2)

However, this expansion is formal, and in fact does not make sense, as gen-
erally the free theory correlation functions have divergencies as y — z;,
1=1,...,n, and also as y; — yo etc. These divergencies are taken care of
by allowing the operators O; and the interaction Lagrangian L;,; to depend
on g in a non-trivial way. The dependence on g involves the ultra-violet cut-
off, which also enters the proper definition of the integrals in the Eq. (2).
The procedure is known as regularization and renormalization.

If the theory is regularized and renormalized the terms of the fixed order
in the coupling constant, e.g. ~ ¢" are finite. They depend, however, on the
details of the renormalization, i.e. on the normalization point .

In addition to these, perturbative, contributions to the correlation func-
tion, one has various non-perturbative effects. They come from the fact that
the action S = L ¢, + gLiys may have several critical points, and in general
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all of these contribute to the path integral. The contribution of a non-trivial
critical point ¢, goes like:

7 efg%s(@*) Pfaff (6% Sr)
- V/Detd?Sy

where 9%Sr is the fermionic quadratic part of the action expanded about
©«, and 0%Sp is the bosonic one.
In the case of pure gauge theory, with the action

1

(1+ As(p)g® +-.-) (3)

by rescaling the gauge field A — ¢- A one brings the Lagrangian to the form
L = ||[dA||* + gTrdA A x[A, A] + g°Tr[A, A] A «[A, A] (5)

which can be used (after gauge fixing) to write the perturbative amplitudes.
However, the action (4) posesses non-trivial solutions of equations of motion
with finite action, and these solutions (instantons and anti-instantons) lead
to extra terms in the low-energy effective action. To the standard Yang-Mills
action (4) one can add a topological term, which does not affect equations of
motion, nor the perturbation theory, which measures the instanton charge:

)

This term depends on the extra parameter, ©, also known as theta, or
instanton, angle. The physics is periodic with respect to the shifts ® —
© + 27, as (6) enters gauge theory amplitudes only in the exponentiated
form, while # J TeF A F is quantized®.

As was shown by Callan, Dashen and Gross, [13] and also by 't Hooft [32],
the effects of the instantons can be systematically taken into account, at
least for the single instanton. The correction to the effective action, which
comes from the single instanton has the form of the integral over the moduli
space of centered instantons. The remaining integral over the position of the
instanton is the integral which converts the Lagrangian into the action.

So, on the general grounds, one can write®:

Leff =Ly + 92L17loop + g4L2,loop + ...

82

+e 97 cos © Li_inst(9) (7)

a&We use the standard notation for simple Lie groups:Tr = glle“adj
Pcos © Li_inss should really read 1 (eleLl,inst + e_leLl,anti,inst)
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1.3. Wilsonian effective action

There are several ways of packaging the information in quantum field theory.
One is the so-called effective action, the generating function I'(p, ) of all
1PI diagrams, which is the Legendre transform of the free energy W/J, u]
as a functional of sources J. Both depend on the normalization point u
which is used to define the renormalized vertices. The momenta in the loop
integrals defining W[J, u| are integrated over from zero to the ultra-violet
cut-off Ayvy, which is then taken to infinity, while at the same time adjusting
the bare coupling constants.

This object is almost impossible to calculate, and it contains too much
information. Another object is the Wilsonian effective action. It is defined,
roughly, by integrating out all the fields of momenta of magnitude higher
then a given value (and less the ultraviolet cut-off). This value, p, is the
parameter of the Wilsonian action. The Wilsonian action Seg[¢™°", 1] is the
functional of the remaining, unintegrated fields. By construction, they are
slowly varying. For the theories with massive particles only the Wilsonian
action and the 1PI effective actions are quite similar, for g much less then the
mass scale. However in the presence of the massless particles the Wilsonian
action is much better defined, it does not suffer from the infrared divergencies
present in I'[p, u]. These divergencies lead to various unwanted effects.

Wilsonian action can be exanded in %82, i.e. in the derivatives of the
fields.

1.4. Supersymmetry

Conventional gauge theory is defined on flat Minkowski space. Lorentz in-
variance allows to define it on general curved manifold. However, one can
define it on more exotic manifolds, namely on noncommutative spaces. The
simplest non-trivial example of such a manifold is the superspace.

Gauge theory on the superspace is the supersymmetric (susy) gauge the-
ory. The fields of the theory are functions of the ordinary, bosonic, four
space-time coordinates z*, and the odd, fermionic, coordinates ¥%, a = 1,2
(for minimal susy), and their conjugates 9%. The minimal supersymmetry
in four dimensions is generated by two complex supercharges (., a = 1,2,
which form the usual Poincare superalgebra:

{Qa,Qa} = —2ic" .0,
{Q1,Q2} =0 (8)

The superspace meaning of the supercharges (8) is the superanalogue of the
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ordinary translations 0, = 81-
_ 0 . uga 0
Qa = 599 ioh 9 oy
~ 0 b oof o
Qs = gga ~ 176" 5m ©)

To write down supersymmetric Lagrangians one makes use of the superspace
covariant derivatives:

0 i oaa O
Dy = 990 + o0, 19 Fn
_ 0 0
D: — B_=_ 1
&= 554 + 1oy, 19 b (10)

The remarkable property of the supersymmetric theories is the cancelation of
various quantum corrections thanks to the competition between the bosonic
and fermionic loops. In particular, vacuum energy (if the susy is not unbro-
ken) is exactly zero.

The more supersymmetry has the theory, the softer are its ultraviolet
properties. The maximal rigid supersymmetry in four dimensions, N' = 4,
is so constrained that the theory has no parameters except for the choice of
the gauge group G, and the (complexified) gauge coupling for each simple
factorof G. Moreover, these couplings do not get renormalized.

Less constrained is the NV = 2 supersymmetry. In this case one has
two sets of NV = 1 supercharges. The superalgebra is generated by Qi,
i=1,2, and de, j = 1,2. The indices i,j label the two components of the
two dimensional representation of the global symmerty group SU(2); which
rotates two N = 1 subalgebras of N' = 2 superalgebra among themselves:

{QL, Qu} = 225} Tt O
{Q%, Qj,g} = eVep5Z (11)

where Z is the central element.

1.4.1. Representations of the supersymmetry algebra

It is straightforward to work out the low spin representations of the algebras
(11, 8). In the minimal susy case the representations crucially depend on
whether the particle it describes is massive or massless.

In the massive case we can choose the Lorentz frame where Py = M, P, =
Py = Py = 0. Writing Qo = V2Mba, Q4 = V2Mb), we get: {by,bh} = Saa,
{b1,b2} = 0. In other words, we have two fermionic oscillators. The minimal
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representation has four helicity states: the vacuum | |), which has space-time
helicity —1, two zero helicity states bl| |) and b}| |), and one 41 helicity
state bJ{b£| 1).

In the massless case we can choose the Lorentz frame with Py = P3 =
E, P, = P, = 0. In this case we should introduce the oscillators as follows:
Q1 = V2Eb,Q; = V2Eb', with {b,b'} = 1 and Q2, Q5 anticommuting with
everything. The minimal representation would be two dimensional, with the
states | [) and b'| |). CPT invariant multiplet will have two such conjugate
representations in it. Depending on the lowest helicity of the state | |) in
each of them we would get the chiral multiplet, with helicities: —1,0,0,+31,
or the vector multiplet, with helicities: —1,—1,4+1,+1.

1.4.2. Superfields

Chiral superfield is a compact way of packaging the chiral multiplet repre-
sentation. Introducing the chiral coordinates: y* = z# + io* we write:

®(y,0) = dly) + V204 (y) — 99 f (12)
In the physical space coordinates the components of the chiral superfield are:

B(y,9) = ¢p(x) + V209 + i9" 90, () — 99 f—
i
V2

Vector superfield is longer. In the so-called Wess-Zumino gauge it can be
expanded as:

990, () — iﬁ21§282¢(x) (13)

V =9t IA,(z) + i92IN(z) — id*IN(z) + %7921921)(3;) (14)

The vector superfield is real: VT = V. This field transforms non-trivially
under gauge transformations:V + V + ¢ + ¢f, which preserve Wess-Zumino
gauge: @ = ﬂo“ﬁ@ua, for real . Its nonabelian generalization has all
components in the Lie algebra g of the gauge group G. The gauge transfor-
mations look as follows:

. -i- s o . o s 1—
e?V s 9 eV e, eV s ete Ve (15)

To write the gauge invariant Lagrangian one uses the chiral-looking gauge-
covariant superfield:

W Z—ifﬂ (e Dae®) ,  Wa= EDZ (¢ Dae™®) . (16)
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which expands as follows:

Wa = —2idq + 204D (y) + 2i (0"6) , Fpuy + 9% (0" DyA(y)) (17)

1.4.3. Susy Lagrangians

The simplest supersymmetric theory is the N/ = 1 susy sigma model. It
describes maps of R** into some Kahler manifold X. The Lagrangian is
written in terms of the following geometric data: the Kahler metric on X,
which locally can be described using Kahler potential K (z, ), where z! are
local holomorphic coordinates on X, and the holomorphic function W (z) on

X, called superpotential. Here is the Lagrangian:
LA'—1 g—model = /dZﬂdZﬂ K(®,d") +/d219W(<I>) +/d279W(<1>T) (18)

The simplest supersymmetric gauge theory Lagrangian has the following

structure:
La—1 ym = Im (/ d%o TTrWaWC“> (19)
where:
_ 6, dmi
T o g°

is the complexified gauge coupling, g being the ordinary Yang-Mills gauge
coupling, and © the instanton angle.

One can also add some charged matter, with the coupling to Yang-Mills
multiplet. The setup is the following: the Lie group G acts on X by isome-
tries. Its complexification G¢ acts by holomorphic transformations:

Zrg-z (20)

The compact subgroup G preserves Kahler metric and, in particular, the
Kahler form w = 00K. In this context one has the so-called moment map:

p:X —gt (21)

which plays important role in symplectic geometry.
The gauge invariant o-model Lagrangian:

Lunattor = / 420420 K (qﬂ, (e2V . <1>)) + ( / 20w (@) + c.c.> (22)



December 7, 2004 1:15 WSPC/Trim Size: 9.75in x 6.5in for Proceedings barcelona

Non-perturbative susy effects 11

where Kahler potential is analytically continued to the holomorphic function
on X x X (actually, to the formal neihbourghood of the diagonal). Super-
potential W should be G ¢-invariant.

Renormalizable field theories are obtained for X being a vector space,
which is some representation of GG. This representation has to be real, X* ~
X, to avoid gauge anomaly.

Effective field theories for supersymmetric theories are described by su-
persymmetric Lagrangians. The sigma model part of such a Lagrangian may
very well correspond to non-linear X, which would nevertheless have to be
Kahler (for N' = 1), hyper-Kahler or special Kahler (for N' = 2) or flat
manifold (or orbifold) (for N = 4).

1.4.4. Extended susy

Extended supersymmetry multiplets behave in an interesting way.

The representations of N/ = 2 superalgebra are obtained by combining
the representations of N' =1 algebra.

In the absence of central extension (Z = 0) they contain sixteen helicity
states. If the central charge of the representation is non-zero, then one can
get shorter multiplets for massive particles. This happens precisely when
the so-called BPS bound is saturated:

1
M==|Z
517]

The short multiplets have four helicity states. There are two such multiplets:
vector and hypermultiplet.

N = 2 vector multiplet consists of N' = 1 vector and chiral multiplet
in the adjoint representation, i.e. X = gc. N = 2 hypermultiplet consists
of two N/ = 1 chiral multiplets, transforming in dual representations of the
gauge group.

The vector multiplet can be written compactly in terms of the N' = 2
superfield ¥ = ®(y,91)+93W4u+. ... In the section 2 we describe the special
geometry [21,71] of the space of scalars in the N' = 2 vector multiplets.

1.4.5. Twisted susy

The SU(2); R-symmetry of the N' = 2 gauge theory allows to twist the
susy algebra. One declares the Lorentz group SU(2)r, x SU(2)r to be the
subgroup SU(2);, x SU(2)a of the original Lorentz xSU(2)r global sym-
metry group, where SU(2)a is the diagonal subgroup in SU(2)r x SU(2);.
Practically this means that the i index of the R-symmetry doublet becomes
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the & index of SU(2)g. Consequently, the supercharges of the N = 2 susy

become:
b Qag — Qu, Q, QM (23)
i.e. one-form, a scalar, and self-dual bi-vector, which anticommute as:
Q* =2,
{C?, Qu} = Op,
{Q,Q"} =0,

{Qua Qu} = g;u/Z
{Q/Lll, Qﬁ)\} _ <gu[ng)\]u + EuunA) 7

{QH,QVA} — (52/9)\}& _i_guagaw\n) 8n (24)

1.4.6. Topological gauge theory

Twisted theory can be formulated on any four-manifold X, while preserving
at least one fermionic symmetry, namely (. In this way the observables,
annihilated by @ become distinguished. For one thing, their correlation
functions are independent of the metric on X and provide the smooth struc-
ture invariants of X. For G = SO(3), and the observables constructed
out of Tr®? these are the celebrated Donaldson invariants. For G = U(1)
with a single hypermultiplet the corresponding correlators are the so-called
Seiberg-Witten monopole invariants.

If X has extra structure the twisted gauge theory might have more fermi-
onic symmetries. If X is Kahler, then one gets one more supercharge:
Q. = wWQ‘“’ . If X has isometries, say generated by the vector fields
Vo = Vi',, then one gets extra supercharges: Q, = V£'Q,,.
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2. Prepotential of N' = 2 gauge theory

In this section we discuss the convenient way of parameterising the effective
action of the four dimensional A" = 2 gauge theory.

2.1. N = 2 rigid special geometry

The four dimensional N/ = 2 supersymmetric action can be written as an
integral over the superspace:

L=y = / d*9 F(T) + / d'9 F(T) (25)

The classical action has the form Eq. (25) with 7(¥) = 22 Tr¥?, where ¥ is
the superfield taking values in the adjoint representation of the Lie algebra
g. The effective Wilsonian action is an infinite expansion in derivatives.
However, the leading term, with two-derivatives and four fermions at most
has the form Eq. (25) with another F, and with ¥ = (A%, i = 1,...,r,
in the Cartan subalgebra t C g, » = dimt = rkg. The superfield A can be
expanded, in this case, as:

Al =a® + 9Pt +I9IF 4 .. (26)
and the Lagrangian becomes:

L35, =7ij()F ' AF™ 4 F5(a)FH' A F 4 Tmryda’ A xda?
0> F

i = aial 27

The effective abelian theory has a very special target space M, which is the
moduli space of vacua of the effective theory. In fact, its geometry is special
Kahler. Geometrically, M = (t ® C) /W, where W is the Weyl group of G.
The metric on M can be read off the Lagrangian (27):

gij = Im;;

The special feature of M is the integral affine structure it carries. What it
means is that a’ are special coordinates, defined up to some discrete trans-
formations. On an ordinary manifold, with no special structure on it, the
local coordinates are defined up to arbitrary smooth changes of coordinates.
On the complex manifold we only allow holomorphic changes of coordinates.
Our friend M has coordinates defined up to Sp(2r,Z) transformations. It
is convenient to add to @’ extra r “dual” coordinates a D,i» which are related
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to a' via
_ oF
api = i

(28)
Then Sp(2r, Z) acts linearly on the vector:

(ai aD,i)t

2.2. Higher dimensional point of view

Theories with extended supersymmetry can be viewed as reductions of higher
dimensional minimally supersymmetric field theories. This point of view can
be useful, especially if one considers compactification instead of reduction.
One should take care of the regularization of the higher dimensional theory.
As we shall discuss later in these lectures all the constructions we employ
have string theory realization, which makes them well-defined in the ultra-
violet.

2.2.1. Lift to five dimensions

The N' = 2 gauge theory in four dimensions is a dimensional reduction of
the N' = 1 five dimensional theory. The latter theory needs an ultraviolet
completion to be well-defined. However, some features of its low-energy
behavior are robust [67].

In particular, the effective gauge coupling runs because of the vacuum
polarization by the charged particles. These particles are W-bosons (for
nonabelian theory), four dimensional instantons, viewed as solitons in five
dimensional theory, and the bound states thereof.

We see from (27) that the effective gauge couplings are determined by the
prepotential. We conclude, therefore, that the prepotential can be viewed
as some sort of generating function of the beta function contributions of the
charged particles in the theory spectrum. Moreover, one can show that only
BPS particles make a nonvanishing contribution to the prepotential, the long
multplets giving total contribution zero [52].

To calculate the effective couplings we need to know the multiplicities,
the masses, the charges, and the spins of the BPS particles present in the
spectrum of the theory [24,52]. This can be done, in principle, by care-
ful quantization of the moduli space of collective coordinates of the soliton
solutions (which are four dimensional gauge instantons). Now suppose the
theory is compactified on a circle. Then the one-loop effect of a given par-
ticle consists of a bulk term, present in the five dimensional theory, and
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a new finite-size effect, having to do with the loops wrapping the circle in
space-time [52].

If in addition the noncompact part of the space-time in going around the
circle is rotated, as we shall arrange below, then the loops wrapping the circle
would have to be localized near the origin in the space-time. Physically, the
multiplicities of the BPS states are accounted for by the supersymmetric
character-valued index [24]:

Z FI\I.H(_)F€7TP56TQ-M6TA-I (29)

solitons

where P35 is the momentum in the fifth direction, M is the generator of the
Lorentz rotations, I is the generator of the R-symmetry rotations, and r
is the circumference of the fifth circle. Under certain conditions on €2 and
A this trace has some supersymmetry which allows to evaluate it. In the
process one gets some integrals over the instanton collective coordinates, as
in Refs. [11,48,69,70]. As in Ref. [48], these integrals are exactly calculable,
thanks to the equivariant localization.

2.2.2. Lift to siz dimensions and twisted compactification

Consider lifting the N' = 2 four dimensional theory to N' = (1,0) six di-
mensional theory. This is done in a unique fashion. Vector multiplets lift to
vector multiplets, hypers lift to hypers.

Now compactify N = (1,0) theory on a two-torus with the twisted
boundary conditions (along both A and B cycles). As we go around a non-
contractible loop £ ~ nA+mB, the space-time and the fields of the gauge the-
ory charged under the R-symmetry group SU(2); are rotated by the element
(ei(na1+mb1)03,ei(na2+mb2)03’ei(na2+mb2)03) c SU(2)L % SU(Q)R % SU(2)[ —
Spin(4) x SU(2)7. In other words, we compactify the six dimensional N' = 1
susy gauge theory on the manifold with the topology T? x R* with the metric
and the R-symmetry gauge field Wilson line:

ds® = r’dzdz + (dz" + QFx"dz + Qkz"dz)?, (30)

A’ = (Wdz + Q" dz)n),, p=1,2,3,4, a=1,2,3

where 7 is the anti-self-dual 't Hooft symbol. It is convenient to combine
a1,2 and by 2 into two complex parameters €1 o:

€1 — €9 = 2(@1 + ibl), €1+ €2 = 2(&2 + ibg) (31)
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The antisymmetric matrices €, () are given by:

o a=122gk

(2:—61;”52(]3%L

E1 — &9
2

€1 — €9
2

JE 0 (32)

where we have used the decomposition SU(2)r, x SU(2)g of the rotation
group Spin(4). Clearly, [Q,Q] = 0. In the limit » — 0 we get four dimen-
sional gauge theory. We could also take the limit to the five dimensional
theory, by considering the degenerate torus T2. We note in passing that the
complex structure of the torus T? could be kept finite. The resulting four
dimensional theory (for gauge group SU(2)) is related to the theory of the
so-called E-strings [22,46]. The instanton contributions to the correlation
functions of the chiral operators in this theory are related to the elliptic
genera of the instanton moduli space [7] and could be summed up, giving
rise to the Seiberg-Witten curves for these theories. We do not discuss nei-
ther elliptic, nor trigonometric limits, even though they lead to interesting
integrable systems [44].

2.2.3. Q-background

Prepotential of the low-energy effective action can be made observable. To
this end one should consider the theory in the so-called (2-background. It
is obtained in the r — 0 limit of the compactification on the torus with the
metric (30).

The action of the four dimensional theory in the limit » — 0 is not
that of the pure supersymmetric Yang-Mills theory on R*. Rather, it is a
deformation of the latter by the Q, Q-dependent terms. We shall write down
here only the terms with bosonic fields (for simplicity, we have set the bare
theta angle to zero):

bos 1 2 v, T O A 2
SO = =g 5T (LF2 + (Du® — e ) (D& — % Fy) + D?)
D = [®,9] + Q5z*D,® — Q5z*D,®
(33)

We call the theory (33) an N' = 2 theory in the -background. By
construction it is the deformation of the ordinary N' = 2 super-Yang-Mills
theory. This deformation violates Poincare invariance. It also violates super-
symmetry. However, one can construct certain fermionic symmetries of the
theory, which will commute to the space-time rotation, instead of translation.
In this way the Q-background supersymmetry is similar to the anti-de-Sitter
supersymmetry.
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It will prove useful that Q2-deformation can be described as a superspace-
dependent bare coupling 7y:

70(7,0; Agy) = 7o (Agy) + Q0905 + L Qnz”z? (34)

It is worth mentioning at this point that the (super)space-time dependent
bare coupling is similar, in spirit, to the space-time dependent regulator
mass, which was found by 't Hooft to be quite useful in analysing the one-
loop corrections to the effective action in the instanton background [32].

2.3. Chiral observables and higher times

We are going to study the correlation functions of chiral observables. These
observables are gauge invariant holomorphic functions of the superfield W.
Viewed as a function on the superspace, every such observable O can be
decomposed:

O[¥(z,0)] = 00 + 0y + ...+ OWYI93 (35)

The component @™ can be used to deform the action of the theory, this
deformation is equivalent to the addition of O to the bare prepotential. Thus
ultimately the prepotential of the effective theory will depend on the infinite
set of couplings ¢, called higher times, which are in one-to-one correspondence
with the gauge invariant polynomials on the Lie algebra of the gauge group:

-

‘7:0(6:7 ta A)

We shall discuss them more thoroughly in the next lecture.

2.4. Prepotential comes out of the closet

The low energy effective action depends on the bare gauge coupling, via
dimensional transmutation. Moreover, the axial anomaly makes it also the
bare theta angle dependent. N = 2 susy relates these two dependencies, by
making prepotential a holomorphic function of the complex combination 7
of the bare gauge coupling and the theta angle.

So the low energy effective action has the form (f; is the one-loop beta
function coefficient):

Slowfenergy = /d4$d4"9 ‘7:0(/1’, A) + c.c.

27iTo(Ayy)

A= AUVe P1 (36)
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where the difference with (25) is that we made the A dependence explicit.
The significance of that is the expression (36) also makes sense when A is
promoted to the superfield. In fact, from the string theory perspective logA
should be viewed as the scalar component of yet another vector multiplet.

For our immediate purposes it suffices to make A superspace dependent,
by substituting (34) into (36).

In this background one can completely integrate out the remaining in the
Wilsonian action vector multiplets, the only parameter left being the value
of the Higgs vev @. Indeed, for constant A the Wilsonian action contains
the vector multiplets because they are massless, and integrating them out
produces the usual infrared divergencies. But in the Q-background (34) there
aren’t any infrared divergencies left, and the non-trivial finite value of the
integral

Sees (@) = / d*zd" Fo (@, A (z,9))

is the good indication for that (in the ordinary, A = const, background this
integral would give oo x 0):

. Fol(a, A

Suee(@, A) = 20BN (37)
£1€2

where A = A(0,0), and ... stand for less singular, as ¢ — 0, terms, which

come from the higher derivative couplings in the effective action. Similarly,
the partition function of the theory in the Q2-background would behave as:

Z(ﬁa A,€1,52) =

1 2
exp (—Fg(d',A) LT @A)+ (G A) + Erte) e
E£1€9 E€1€9 2 €1€2

2.5. Instanton moduli space integration

The nice property of the chiral observables is the independence of their cor-
relation functions of the anti-chiral deformations of the theory, in particular
of 7. We can, therefore, consider the limit 79 — oo. In this limit the term:

7ol

¢However, beware of the holomorphic anomaly.
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in the action localizes the path integral onto the instanton configurations.
In the fixed instanton sector the index (29) can be, therefore, represented by
the finite dimensional integral over the moduli space of instantons.

2.5.1. Localization

The vev of the Higgs field shrinks these instantons to the point-like ones.
This phenomenon is of course well-known [32].

In addition, the -background further localizes the measure on the in-
stantons, invariant under rotations. This is a relatively new idea. As a
result, all integrations are eliminated, reducing them to the single sum over
the point-like invariant instantons. One then has to desingularize and par-
tially compactify the instanton moduli spaces to make these invariant con-
figurations non-degenerate. This can be done explicitly for G = U(N) and
implicitly for all classical gauge groups, using ADHM construction [6], and
for all Lie groups using Atiyah’s construction.

2.5.2. Fuactorization

Finally, the instanton moduli space has the following factorization property.
The instantons A; and As of charges k1 and &y respectively, which are widely
separated, can be superposed, in a sense that by a small perturbation A +
Az can be made to solve the instanton equations, thus giving rise to the
gauge field of the instanton charge ki + k2. In this sense the moduli spaces
of instantons allow some sort of multiplication (which gives a semi-group
structure at the level of homotopy) [73]:

My X Mg, = M1 1k, (39)

In the sense of this multiplication the universal moduli space of instantons
is an exponent

M = H]ZOZOMIC DI exp [R4 % H?):[]Mzentre] (40)

where M is the quotient of the ordinary instanton moduli space by
the action of the group of translations. This exponentiation is nothing but
the physically well-known phenomenon of the cluster decomposition. When
applied to the partition function Z(d@,e1,e2,A) the cluster property (40)
implies (38).

To recapitulate: by appropriately deforming the theory (in a controllable
way) we achieve that the path integral has isolated saddle points, and thanks
to the supersymmetry is exactly given by the WKB approximation. The final
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answer is then the sum over these critical points of the ratio of bosonic and
fermionic determinants. This sum is shown to be equal to the partition
function of an auxilliary statistical model, desribing the random growth of
the Young diagrams (for the gauge groups which are the products of unitary
groups?). We describe this model in detail in the next lecture.

d1t seems that one gets the sums over Young diagrams for all classical gauge groups, but as we
are wrtiting these lectures notes this has not been shown to a complete satisfaction, see [58,60]
for the current state of affairs
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3. Random partitions and limit shapes

The partition function of the four dimensional N' = 2 gauge theory in the Q-
background can be reduced to the sum of equivariant integrals over instanton
moduli spaces:

o0

Z(@,Aer,e0) = Y A Z (a1, 60) (41)

k=0
For G = SU(N) these integrals can be evaluated explicitly [56]. In the limit
€1,e9 — 0 where Q-background approaches flat space the partition function
Z has the essential singularity:

1
Z(d,A) = exp——Fp(a@, A) + less singular terms (42)
€1€2

where Fy is the sought-for prepotential of the effective theory.

3.1. Instanton integrals

The trace (29) is given by the integral over the moduli space of instantons
My, which calculates the trace of the element of the symmetry group of
M. on the space of holomorphic functions on M. The moduli space M
is acted upon by the group G of constant gauge transformations, and by
the group of isometries of R*. Actually the group SO(4,1) of conformal
transformations of S* acts there. However the trace is only non-trivial when
restricted onto the compact subgroup of the global symmetry group. There,
it is sufficient to consider only the elements of the maximal torus, which is
product of the maximal torus T of G and U(1) x U(1) which comes from
the group SO(4) of rotations:

230,169 B) = Trm, (77 x (74, ¢7)) (43)

where @ € t = LieT. To get the four dimensional theory we should take the
limit # — 0. In this limit the trace (43) scales as:

- 1 ~
Zl?d(a,€1,€2;5) ~ BoRR Zﬁd(a,€1,€2) (44)

For the classical gauge groups the moduli space My is the quotient of an
affine algebraic variety Ny by an algebraic group G,’? , where G stands for
Corrigan-Goddard dual group (U (k) for G = SU(N), SO for Sp and Sp for
SO), [14]. This allows us to represent the trace in (43) as the integral over
the maximal compact subgroup of the trace on the space of holomorphic
functions on the affine algebraic variety, see [58] for details.
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3.2. Statistical mechanics of the instanton gaz: random
partitions

In the case of G = SU(N) the integrals can be evaluated using residues.
The poles are in one-to-one correspondence with N-tuples of partitions, X =
(A1,... ,An). The instanton charge k is equal to the sum of the sizes of all
partitions:

. N
= [X| EZ Al (45)

The partition A; can be identified with the set of pairs of positive integers
(i,7), 1 < j < Xi;- Where the non-negative integers \;; > A2 > Ni3...
represent the partition A; of the number

|Ai| = Z A

To describe the residue corresponding to A we need a few more notations.

Let:
N N
W:ZG‘”, V)\ Zeal 265114»52] 1)
=1 (7'7])6)‘1

=W =Vi(1—e)(1—e?)

a, = 0 BRI (46)
A (T—e ) (1 —e=2)

where we use the notation: for X =% e%, X* =3%" e % Then:

Zi™%(a,e1,82) = Y pald,e1,62)

XM=k
R 1
pa(d,er,e2) = (47)
« mx,a

where

My =Y " (48)
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The full partition function is obtained by summing (47) and then multiplying
it by

ZPT* (a,e1,69;\) = exp | — Z’y (a; — anse1,€2) (49)
I

which can be viewed as the regularized contribution of WW* /(1 —e™*1)(1 —
e~°2) piece in (46):

o
Z(a,e1,60; A) = ZP (a,e1,60;A) x Y AN Z]" a6, 60) (50)
k=0

3.3. Limit shape and Seiberg- Witten curves

For small 1,5 the sum over X in Eq. (50) has a saddle point [54]. The
partitions which contribute most to the partition function are of large size,

1
M| ~ ——
£1€2

for which the profiles of their Young diagrams can be approximated by
smooth curves. These curves can be glued together to a single real ana-
lytic curve. Here are the formulae:

flz) =) |z —al+
!

Y lz—ar—ei(i —1) —ead| — o — ay — e1 (i — 1)|—

L

—lz —q _517:_52>‘l,i| + |z —a; — eqi] (51)

The maximizing configuration f.(x) obeys certain equation, [54]:

[ w2 s () = (o) (52

where: e = 2.71828..., and o(y) is a concave, piecewise-linear function on
[—N, N] such that

o) =¢, yel[-N+2(1-1),-N+2]],
and

o(~N) = —o(N) = - Y&
l
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Finally, the numbers & > --- > &y are the Lagrange multipliers, which
should be arranged so that the profile f,(z) corresponds to the eigenvalues
a; of the Higgs field.

The equation (52) should be satisfied for any point z, for which f!(z) is
a point of continuity of o’. When

filx)e{-N~+2l|l=1,...,N—1}

then considering the left and right derivatives separately one obtains the
inequalities

Xfu(z) € (0'(fi(=) = 0),0' (fu(z) +0)) , (53)

where, by definition,

[Xf](z) = ][y# dy (y — z) <log

The transform X f is closely related to the standard Hilbert transform

1 (y)
Hdl (z) == dy 222 55
Hyg] (z) 7{,# Yy (55)

T y—x

y—r
A

- 1) f"(y) (54)

Indeed,
Xf]" = 7H(f").

3.3.1. Turning on the higher times

As we discussed before, the N = 2 gauge theories have a rich set of exactly
calculable correlation functions. Namely, the correlators of the observables
(35) are saturated by instantons, and are given exactly by the one-loop
approximation around instanton solutions.

In what follows v, A\; denote partitions, [ = 1,... , N, X = (A1, ee y AN).
To each partition v one associates gauge theory operator, O, which is simply
the Schur function s, evaluated on the Higgs field ¢ eigenvalues.

Z(@ter,e0) = pg(d,e1,22)expO[hy; 1] (56)
X

where O[X;1] is a symmetric function of the eigenvalues of the matrix X
of indefinite size, and # are some coordinates on the space of all symmetric
functions. For example, one could take: & = (t,),

OLX;t] =D tys,(X)
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with s, being Schur functions. Or, large N gauge theory suggests expansion
in multi-trace operators: £ = ({5 tpr; tiims - - - ),

OIX; 8] =Y 6T XF + ) "t TeX X! + ) gy TEX P I X e X
k k,l k,lm

Finally, the matrix ¢, is characterised by the Chern character:

Tref%s = Z ePau 4 Zeﬂ(al-i-al(i—l)) (6682/\1,1‘ _ 1) (1 _ eﬁﬂ) (57)
! 1i

- 1
Z(d;t,e1,€2) = exp <£fo(d’,f) + .. ) (58)

The limit shape changes as a function of times ¢. In fact, the limit shape
should be viewed not as a curve, but rather as a (non-compact) cali-
brated Calabi-Yau manifold, i.e. a pair: (curve, meromorphic differential).
I. Krichever has associated the so-called Whitham integrable hierachy to
this data, and the natural expectation is that ¢ prove to be the times of this
hierarchy [19,26,42,47,54]. However, this hasn’t been established so far.

3.4. FEzxtended symmetry point

It turns out that the partition function Z(d,t,e1,es) has some magnificent
properties when ¢; = —e9 = h. We therefore introduce a special notation:

Z(a,,h) = Z(@,T,h,~h) (59)

3.4.1. Dual partition function

The first special property is the relation to free fermions and integrable
hierarchies of Toda type: define

2P (T h) = 3y CTMEZ(W(M +p);Th) (60)
MezZN, 3 My=pmodN

— the “quantum” electro-magnetic dual partition function. The dual parti-
tion function Zp can be rewritten in terms of the N-tuples of partitions, as
the original Z. statistical sum could. However, and this is quite remark-
able, one can also repackage these IN-tuples of partitions into a single one,
and then use the fermion representation of the Plancherel measure on the
partitions to write Zp as a free fermion correlator [54]:

Z0(EDR) = (ple Vel Toe T |p) (61)
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where j6 stands for the zero modes of the 4y (NN) current algebra, J_1 rep-
resent the 4y (1) current modes, and W stand for the W generators, corre-
sponding to the symmetric functions.

3.4.2. Relation to topological strings

The second miracle that happens at the point €; 4+ €2 = 0 is the stringy
nature of the e-expansion. We shall of course discuss it in more detail in the
next lectures, but here we simply mention that in the expansion

o
Z(@,6h) =exp | Y H9TPF, (@, 1) (62)
g=0

the terms F, turn out to be the genus g topological string amplitudes. More-
over, there are several topological string theories which are behind (62).
There are topological strings on local Calabi-Yau threefolds, [37], which en-
gineer the ' = 2 gauge theory on R*. These show up most naturally in
the considerations of Z°¢ - the five dimensional analogue of Z. The role of
higher times £ is not understood in this case.

There are also topological strings on non-Calabi-Yau mnaifolds, like P!,
where the higher times are mapped to the gravitational descendents [41],
thanks to the free fermion representation found in [62]

3.5. More general N' = 2 theories: hypermultiplets and
higher dimensions

3.5.1. Theories with matter

The N' = 2 theory with hypermultiplets in some representation R of the
gauge group can be treated similarly to the pure theory case. Consider the
decomposition of R into the sum of irreducible representations:

R=Pr; e M; (63)
/

where My is the multiplicity space®. In the representation ring of U(N)
the representation R can be expressed as a polynomial in the fundamental
representation N and its conjugate N:

R = @l,f’nl[ ® N®l ® N®Z (64)

®Note that from the N' = 1 susy point of view the matter chiral multiplets transform in the
representation R @ R*
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where m; are the multiplicity spaces (they can be relalted to M, of course).
The partition function of the N' = 2 U(N) gauge theory with the matter
hypermultiplet in the representation (64) is given by:

Z(@m, A B) = AP us(@ h)vg(@ m, h)
X

)=HM,

E E*
0@z,
Z_Trmu’em W= e h)( 1 e Ze whm) (65)
L

and everything is understood with the regularization as in the case of pure

gauge theory (i.e. with the functions v in place of the infinite products and
o on).

The formula (65) is a straightforward consequence of the fact that the
matter contribution to the instanton integral is the equivariant Euler class
of the bundle over the moduli space of instantons, whose sections are the
solutions of Dirac equation in the instanton background, where the spinor
transforms in the matter representation.

3.5.2. Quiver theories

One can similarly treat quiver theories. We consider the simplest case: the
U(N) x U(N) theory with bi-fundamental matter: (N,N). The general-
ization to other cases is straightforward. The partition function is given

by:
Z(dy,dg; A1, Ao h) = Z A|1X1‘A|2X2‘“X1(51vh)ﬂxz(@ah)”xl,x2(51,52,ﬁ)
X1,%0
VXI,X2(&'1,&'2,7i) = HE(X13X2;61,62,R)
¢
%P, Z U5 Koty o )
(1—e h

(66)
Note that the Zy “orbifold” of N = 4 theory [36,40], which corresponds
to the theory on the regular D3-branes at the C2/Zy singularity, has the
gauge group U(N) x U(N) and the matter in the representations (N, N) x
(N,N). For that theory in (66) one should use EX1E§’2 + EX2E§1 instead
of EXl E§2. The perturbative part of the partition function of this theory is
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independent of the regulator mass if @; = @s. This is in agreement with the
well-known fact that the perturbative beta function in this theory vanishes
for the coupling which is the descendent of the N' = 4 one. But we see that
even for @7 = dy instantons produce non-trivial non-perturbative corrections
to the effective couplings.

3.5.3. Higher dimensional theories

Five dimensional N' = 1 supersymmetric theory compactified on a circle, and
six dimensional A/ = 1 theory compactified on a torus can be regularized by
embedding in string theory, as we describe below. The low-energy physics
is four dimensional, but the prepotential will depend on the radii of the
compactification. See [54] for the five dimensional partition function, [52]
for the original integrable system description of the prepotentials, and [35]
for the six dimensional theory description.

3.6. Breaking susy down to N' = 1: Dijkgraaf-Vafa proposal

N = 2 supersymmetry can be softly broken down to N/ = 1 by adding a
superpotential Wy(®) to the action:

La=1=Ln—2+ / d%9 Wy(®) + c.c. (67)

The choice of two out of four chiral theta’s corresponds to the choice of
N =1 subalgebra within A" = 2 superalgebra.

In the series of papers, originated in the paper [ [17]], R. Dijkgraaf and
C. Vafa made a proposal for the superpotential of the effective low-energy
N =1 theory. It basically consists of the following: take the original super-
potential Wy and consider the matrix model with the single N x N matrix
® with the action:

1 N 1 ~
Ij=—= /D(I) e s TTWo(®) (68)
Vol U(N)
The effective superpotential is a function of glueball superfields S1,... , Sy,

which correspond to the gauge symmetry breaking pattern: U(N) —
U(Ny) x ... x U(Np), according to the minima of the tree level superpo-
tential Wy.
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4. String theory

In this lecture we discuss the following string theory-related issues: real-
izations of N/ = 2 four dimensional theories as low energy sectors of string
theory compactifications or D-brane arrangements; -background realiza-
tions; topological strings and their relation to the gauge theory F-terms. In
the next lecture we shall discuss the topological string calculations on RS
in more detail, relate them to the quantum spacetime foam picture and also
present its six dimensional gauge theory realization.

4.1. String theory realizations of N' = 2 theories

The A = 2 theory can arise as a low energy limit of the theory on a stack of
D-branes in type II string theory. A stack of N parallel D3 branes in IIB
theory in flat R carries N’ = 4 supersymmetric Yang-Mills theory [78]. A
stack of parallel D4 branes in ITA theory in flat R carries N' = 2 super-
symmetric Yang-Mills theory in five dimensions. Upon compactification on
a circle the latter theory reduces to the former in the limit of zero radius.

Now consider the stack of N D4 branes in the geometry S' x R"® with
the metric:

ds? = dztda" + r2dp® + dv? + |dZy + mrZyde|* + |dZy — mr Zadp|?  (69)

Here z# denote the coordinates on the Minkowski space R'3, ¢ is the pe-
riodic coordinate on the circle of circumference r, v is a real transverse
direction, Z; and Zy are the holomorphic coordinates on the remaining C?2.
The worldvolume of the branes is S x R?, which is located at Z; = Z» = 0,
and v = v, [ = 1,...,N. Together with the Wilson loop eigenvalues
et ..., €N around S' v’s form N complex moduli wy,...,wy, para-
meterizing the moduli space of vacua. In the limit »r — 0 the N complex
moduli loose periodicity.

It is easy to check that the worldvolume theory has N' = 2 susy, with
the massive hypermultiplet in the adjoint representation (of mass m). This
realization is T-dual to the standard realization with the NS5 branes, as
in Ref. [79]. Note that the background (30) is similar to (69). However,
the D-branes are differently located, the fact which leads to very interest-
ing geometries upon T-dualities and lifts to M-theory, providing (hopefully)
another useful insight.

However, in our story we want to analyze the pure N’ = 2 supersymmetric
Yang-Mills theory. This can be achieved by taking m — oo limit, at the same
time taking the weak string coupling limit. The resulting brane configuration
can be described using two parallel NS5 branes and N D4 brane suspended
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between them, as in Ref. [79], or, alternatively, as a stack of N D3 (fractional)
branes stuck at the C2/Zs singularity, as in Ref. [15]. In fact the precise form
of the singularity is irrelevant, as long as it corresponds to a discrete subgroup
of SU(2), and all the fractional branes are of the same type. The relation
between these two pictures is through the T-duality of the resolved C?/Z,
singularity. The fractional D3 branes blow up into D5 branes wrapping a
non-contractible two-sphere. The resolved space T*CP! has a U (1) isometry,
with two fixed points (the North and South poles of the non-contractible two-
sphere). Upon T-duality these turn into two NS5 branes. The D5 branes
dualize to D4 branes suspended between NS5’s.

The instanton effects in this theory are due to the fractional D(-1) instan-
tons, which bind to the fractional D3 branes, in the ITB description. The
“worldvolume” theory on these D(-1) instantons is the supersymmetric ma-
trix integral, which we describe with the help of ADHM construction below.
In the ITA picture the instanton effects are due to Euclidean DO branes,
which “propagate” between two NS5 branes.

The IIB picture with the fractional branes corresponds to the metric
(before € is turned on):

ds® = dadz" + dwdw + dsg g, (70)

The singularity C2/Zs has five moduli in IIB string theory: three para-
meters of the geometric resolution of the singularity, and the fluxes of the
NSNS and RR 2-forms through the two-cycle which becomes visible upon
the blowup, otherwise all of these show up as the twisted sector massless
field. The NSNS and RR fluxes are responsible for the gauge couplings on
the fractional D3 branes, as in Ref. [40]:

TOZ/ BRR+TIIB/ Bnsns (71)
s? S?

Our conjecture is that turning on the higher Casimirs, (and gravitational
descendants on the dual closed string side) corresponds to a “holomorphic
wave”, where 7y holomorphically depend on w. From Ref. [38] this is known
to be a solution of IIB supergravity.

We shall return to the fractional brane picture later on. Right now let
us mention another stringy effect. By turning on the constant NSNS B-field
along the worldvolume of the D3-branes we deform the super-Yang-Mills on
R? to the super-Yang-Mills on the noncommutative R}, see Refs. [12,13,68].
On the worldvolume of the D(-1) instantons the noncommutativity acts as a
Fayet-Illiopoulos term, deforming the ADHM equations, as in Refs. [1,2,57],
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and resolving the singularities of the instanton moduli space, as in Ref. [50].
This deformation is a technical tool, so we shall not describe it in much
detail. The necessary references can be found in Ref. [68].

At this point we remark that even for N = 1 the instantons are present
in the D-brane picture. They become visible in the gauge theory when
noncommutativity is turned on. Remarkably, the actual value of the non-
commutativity parameter { does not affect the expectation values of the
chiral observables, thus simplifying our life enormously.

So far we presented the D-brane realization of N/ = 2 theory. There
exists another useful realization, via local Calabi-Yau manifolds, introduced
in Ref. [37]. This realization is useful in relating the prepotential to the
topological string amplitudes. If the theory is embedded in the ITA string
on local Calabi-Yau, then the interesting physics comes from the worldsheet
instantons, wrapping some 2-cycles in the Calabi-Yau. In the mirror ITB de-
scription one gets a string without worldsheet instantons contributing to the
prepotential, and effectively reducing to some field theory. This field theory
is known in the case of global Calabi-Yau. But it is not known explicitly
in the case of local Calabi-Yau. As we shall show, it can be sometimes
identified with the free fermion theory on auxiliary Riemann surface (cf.
Ref. [16,54,56]).

Relation to the geometrical engineering of Ref. [37] is also useful in mak-
ing contact between our ()-deformation and the sugra backgrounds with
graviphoton field strength. Indeed, our construction involved a lift to five
or six dimensions. The first case embeds easily to ITA string theory where
this corresponds to the lift to M-theory. To see the whole six dimensional
picture (30) one should use IIB language and the lift to F-theory (one has
to set Q = 0, though).

Let us consider the five dimensional lift. We have M-theory on the 11-fold
with the metric:

ds® = (dzt + QlzVdp)? + r’de® + dsty (72)

Here we assume, for simplicity, that e; = —eo, so that {2 = Q™ generates an
SU(2) rotation, thus preserving half of susy. Now let us reduce on the circle
S! and interpret the background (72) in the type ITA string. Using Ref. [77]
we arrive at the following ITA background:

go = (2 + Q- 2)?)7 (73)
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1
Agrav _ Q,,, zhds” 4
o ToR PRl i (74)

1

V24| z|?

ds%o = (7“de2 + QﬁQﬁ (xde25”“6u,\ — x”x“dm”dx/\)) +

r2 4+ |- :1cH2ds2CY

where the graviphoton U(1) field is turned on. The ITA string coupling
becomes strong at z — oo. However, the effective coupling in the calculations
of Fgy is

_1
h~ gsy/||dA9Ta?||2 ~ (7“2 + 12 (II“2) 1 =0, T — 00 (75)

4.2. Topological strings

In this section we recall the appearence of the topological strings in the
physical string calculations. We consider type II superstring compactified
on Calabi-Yau threefold. The effective four dimensional supergravity action
contains the terms which are calculable by the topological string.

4.2.1. Calabi-Yau compactifications

Critical superstring lives in ten dimensions. We live in four macroscopic
dimensions, so the remaining six dimensions should be unobservably small.
One option is to have them compactified on a manifold M, which is severely
constrained by various symmetry requirements. For example, if we want to
have four dimensional supersymmetry, the manifold M has to be Calabi-
Yau (if we want N/ = 1 susy we must also turn on some fluxes). In what
follows we assume it is Calabi-Yau. It means that M is a complex manifold,
of complex dimension three, which can be endowed with Ricci-flat Kahler
metric. Yau’s theorem states that for given complex structure, and the
cohomology class of the Kahler form k, the Ricci-flat metric which has the
corresponding Kahler form, exists and is unique. Existence of the Ricci-
flat metric implies that ¢;(M) = 0, which, in turn, implies the existence
of nowhere vanishing holomorphic three-form (2, which is unique up to a
multiplication by a complex number.

4.2.2. Effective supergravity in four dimensions

In these circumstances the low energy physics in four dimensions is described
by N = 2 supergravity (sugra) theory. Such a theory contains gravity
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supermultiplet, whose bosonic fields are the metric gp,,, m,n = 1,2,3,4,
and the vector field b,,, called graviphoton. In addition there are matter
multiplets, vectors and hypers. Vector multiplets contain complex scalars
¢* a=1,...,r, and U(1) vector fields A% . The hypermultiplets contain
two complex scalars Q%,Q;, i = 1,...,s. In IIA string r = hi1(M), and
s = h1(M). Mirror symmetry would exchange ITA with IIB and M with
M — the mirror Calabi-Yau.

4.2.3. Vector multiplet moduli space

Let us work, for definiteness, with ITA string. Then the vector fields in
four dimensions come by reduction of the U(1) RR gauge field C; in ten
dimensions and by reduction of the RR three form C5 along two-cycles in CY
M. The vector field C; becomes b and falls into the gravity multiplet. The
graviphoton field strength 7" = db plays a special réle in what follows. The
scalars of the vector multiplets come from the complexified Kahler moduli of
Calabi-Yau M — the real part parameterizes the Kahler class k, which fixes
some of the metric moduli, while the imaginary part comes from the periods
of the NSNS B-field: ¢% = fﬁa w,w=k+iB.

The geometry of the vector multiplet moduli space M, is governed by
the holomorphic function, the prepotential Fy(¢®). The effective Lagrangian
for the vector multiplets looks as follows:

Tm7,pd¢® A *d@® + T Fy AFy — T Fy- Ay
0> Fy

Tab = W (76)

The geometry in (76) is projective special Kahler. It differs from the special
Kahler geometry (27) in the following respect: the special coordinates ¢® in
supergravity are defined up to rescaling, and the prepotential is the homoge-
neous degree two function of these homogeneous coordinates. Globally the
special coordinates are defined up to the Sp(2r+2,Z) x C* transformations.
In the rigid supersymmetry case the special coordinates are defined up to
Sp(2r,Z) transformations.

In addition, there are couplings between the vector multiplets and the
gravity multiplet:

i Fy(p)T¥2RAR (77)

g=1

where T2 = T~ T . Note that the string dilaton does not show up among

mn-mn-*
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the vector multiplets.

4.2.4. Hypermultiplet moduli space

The moduli space M, of hypermultiplets has quaternionic-Kahler geometry.
The hypermultiplet scalars come from: dilaton, axion (dual to the By, in
four dimensions), and the Calabi-Yau C3 period, corresponding to the (3,0)-
form Q: [,, C3AQ, and [,, C3 A (this gives rise to the so-called universal
hypermultiplet); and then hj 2(M) multiplets where @ corresponds to the
complex structure deformations of M, and Q; to the remaining periods of
Cs.

4.2.5. Topological strings and vector multiplets

The vector multiplet couplings F4(¢), g > 0, can be calculated using a
simplified version of string theory. In ITA superstring context it would be the
A type topological string, in the IIB context it would be, not surprisingly,
the B type topological string. The topological strings were introduced by
E. Witten [80], and their importance for the superstring effective theory
calculations was understood in the papers [3,8]. The type A string calculates
Fy’s by summing over the holomorphic maps of the genus g Riemann surfaces
into M:

Fo= Y ke[ (78)

BEH(M,Z) My (M,B)

where M, (M, ) is the moduli space of stable maps, introduced by M. Kont-
sevich [39]. The integral of 1 counts these maps, if the moduli space of stable
maps consists of isolated points. Its expected dimension is zero, so this is
indeed the answer in the generic situation. However, it could happen that
the actual dimension is positive. Then one has to integrate the Euler class
of the obstruction sheaf over the real moduli space. In this way, say, every
isolated rational curve in the primitive homology class S would contribute to
Fo not just a single exponential e~ J5“ but the whole series of the multicover
contributions:

Fo= > nglig(efs¥) (79)
ﬂengimitive(M’z)
The B model definition of the 7, amplitudes is rather tricky, except for the

genus zero part. Suffice it to say that it can be computed by the purely
classical means, by calculating the periods of the (3,0) form .
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The amplitudes F,(¢) are naturally combined into a generating function:

Z(¢;h) =exp Y h972Fy(¢) (80)

9=0

where 7 is the topological string coupling constant. In terms of original su-
perstring problem, 72 ~ g2 F2, where g; is the ITA string coupling constant,
and F? is the Lorentz-invariant of the graviphoton field strength.

The partition function Z(¢;h) is expected to obey various remarkable
equations [8], and also to have some modular properties.

4.2.6. Kodaira-Spencer theory of gravity

The great simplification of the topological string compared to the physical
string is the reduction, for the B type topological string, of the integrals over
the moduli space of Riemann surfaces to the locus of maximally degenerate
surfaces [8]. The combinatorics of such surfaces is that of trivalent graphs.
Thus the generating function of the B type topological string amplitudes
can be written as the sum over Feynman diagrams of some field theory.
This theory seems to be the so-called Kodaira-Spencer theory of gravity,
introduced in [8]:

b= g [ 2+

where A € Q LY (M), AY =140 € Q2L(M), (ANA)Y = 14040 € QL2(M).

(ANA)YAAY (81)

4.2.7. Kahler gravity

The mirror version of the theory (81) is much less understood. The problem
is that the worldsheet instantons contribute to the effective action. However,
in the large radius limit the theory looks very much like (81) modulo the
standard mirror replacements: AY < w, 9 < d, 9 > d° [9]:

1 1 1
LK(;:@ wﬁduH—gw/\w/\w (82)

4.3. Topological string amplitudes and N' = 2 theories in
Q-background

Now let us return to the discussion of N' = 2 gauge theories and their
F-terms, i.e. the terms in the effective action, which are obtained by the
integration over the half of the superspace. The F-terms have two faces. On
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the one hand, they are calculable within gauge theory, by doing the instanton
moduli space integration, the way we discussed in the first two lectures. On
the other hand, in the string theory realization of the gauge theory they are
given by the topological string amplitudes.

There is one non-trivial point in this identification. As we argued before,
using the lift to M-theory, it is the partition function in the Q-background
that captures the spin-charge particle content of the gauge theory, and con-
tains all the information about the effective couplings. On the other hand,
the simplest way to related the physical and topological strings proceeds via
consideration of the constant graviphoton field strength background [3, 8].

Note that the general (2-background depends on two parameters €1, €9,
since generic SO(4) rotation is characterized by two angles. As we discussed
in (30), one has to turn on the R-symmetry Wilson lines in order to pre-
serve fermionic symmetry, if €1 + €2 # 0. For generic Type II string theory
compactifications R-symmetry does not exist as a global symmetry. So we
may hope to relate simply the [3,8] calculations in string theory to our cal-
culations in gauge theory only for the special 2-backgrounds, which do not
touch R-symmetry. To understand general case, with two parameters €1, €2
one has to work harderf. Now, for the special case of the Q-background,
€1 = —e9 = h, using its M-theory realization and the resulting Type II
sugra background (74) we can observe that one has the nontrivial gravipho-
ton field strength. Even though it is not constant, one may hope that since

the effective string coupling goes to zero at the distances much larger then
r

Ea
tively confined near the origin, where the graviphoton field strength is almost

the higher genus string does not probe these regions of R?, it is effec-

constant, and the twisting arguments of [8] apply.

4.3.1. Localization

The most powerful method of exact calculations in the supersymmetric theo-
ries is the localization on the Q-fixed points, where @ is the conserved global
supercharge.

The localization can be applied to the calculations of Z(¢;h) for toric
varieties X, using the worldsheet definition [39].

Imagine calculating Kahler gravity partition function in some back-
ground. Assuming the background has isometries, one can setup an equivari-
ant supercharge, whose fixed points would correspond to the geometries with

fQ. Vafa points out that such parameters are present, if at all, only for the compactifications on
rigid CYs
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the same asymptotics as the background, and in addition invariant under the
isometry group action. This is in complete parallel with the N’ = 2 super-
symmetric gauge theory partition function calculation [54,56].

Going back to our gravity problem, we consider toric Calabi-Yau Xy as
our background. The toric CY has T3 as a group of isometries. The Kahler
gravity partition function Z ¢ (Xy), evaluated by localization with respect to
T3 would be expressed as a sum over all toric X, with the same asymptotics
as Xjg.

As we shall explain in the next lecture, this way of evaluating the partition
function leads to the quantum spacetime foam picture in the topological
string theory.

5. Quantum gravitational foam
5.1. Spacetime geometry in string theory

Since the remarkable realization by J. Scherk and J. Schwarz [66] that string
spectrum contains gravitons one is looking for the stringy approach to the
quantum gravity. One feature of quantum gravity — strong fluctuations of
space-time topology at Planck scales, advocated by S. Hawking [29], was
very elusive. The reason is that the conventional approach to string quan-
tization produces S-matrix in the form of the expansion in string coupling
constant. The S-matrix describes, at best, the scattering of the gravita-
tional waves in some stringy background, most commonly the Minkowski
background (however recent advances in AdS/CFT duality allow to hope
for other homogeneous spaces as well). At finite order of string perturbation
theory one has a finite number of gravitons, so it is unlikely that the strong
fluctuation of the space-time topology would be seen. The only hope is to
resum the string perturbation theory, perhaps analytically continuing in the
string coupling:

exp i g9 2 Fy(a) + O (e,é> =
g=0

/ DgwD(...) exp — Ser(8uv,---) (83)
bndry cndts~a

where g, denotes string coupling, and ... stand for superpartners and mas-
sive string modes. But to do that one needs an example of all-loop string
calculation. For conventional graviton scattering on R!'® noone was able to
go beyond two loops so far [30]. However, recently, using the advances in
the topological string theory, where all-loop exact string amplitudes are not
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uncommon, the quantum foam picture has indeed emerged. It is the purpose
of this lecture to explain how it came about.

5.2. Type A string on R®

The simplest, but already inspirational example comes from the Gromov-
Witten theory on C? — the simplest Calabi-Yau manifold. This theory needs
regularization because of the noncompactness of C3, but this can be cured
by using the torus T2 action. Then the explicit calculation [20] gives:

BogBoy 2

F1= [, 00 = gt oy &

The all-genus partition function is then:

o0
_ 1
Ziop(8s) = expzfggzg 2~ M2 (9)
9=0

M) =] s

S (=g
g=—c'® (85)

To pass from Zi,,(gs) to M(q) requires adding some unstable, e.g. Fy =
¢(3), as well as non-perturbative terms, which are fixed in [24,64].

5.3. Crystal interpretation
5.3.1. MacMahon function

The function M (g) which enters (85) is well-known in combinatorics [43,63].
It counts three dimensional partitions:

M@= > 4" (86)

7m—3d partitions

5.3.2. Donaldson-Thomas theory

The reason three dimensional partitions pop up in our calculation is ex-
plained in [45,55] — they are T3-invariant ideal sheaves: the partition 7 cor-
responds to the ideal I in Clz,y, 2]: (i,,k) € Z3\7 < =1y~ 12¢"1 € I,
The summation over the partitions is actually the fixed point formula for

the integral of 1 over the moduli space of ideal sheaves, weighted by ¢°"s(/=).
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For more general toric Xy the DT theory produces the partition function
which is:

Zpr(Xo) = / D) g woncha() .
Migea1 (Xo)

where Migea (Xo) is the moduli space of ideal sheaves I, chy(I) = 0, on Xj.

5.3.3. From two to three dimensional partitions: gauge theory in
higher dimensions

Ideal sheaves showed up in physics in some other problems already. In some
sense they are singular limits of U(1) instantons. In this same sense the ch,,

1 (F
of a sheaf corresponds to il (2—m
field.

In the previous sections we saw that the instanton calculus in four dimen-

)Ap where F' is the curvature of the gauge

sional gauge theories with N’ = 2 supersymmetry reduces (for gauge group
SU(N)) to the statistical model on N-tuples of partitions. In two lines the
idea of the correspondence is the following: instantons correspond to holo-
morphic bundles, moduli of bundles are compactified by torsion free sheaves,
the latter differ from bundles by ideals of zero-dimensional schemes. When
working equivariantly with respect to the torus action on the moduli space
the integrals of interest reduce to the summation over the torus invariant
schemes. These are labelled by two dimensional partitions.

For three complex dimensional manifolds the analogous considerations
suggest that three dimensional partitions should come into play as labeling
the fixed points of the torus action on the compactified moduli space of
holomorphic bundles.

The corresponding field theory problem looks as follows. One studies
connections A on a bundle £ over Kahler three complex dimensional manifold
X. In addition, one takes ¢ € Q%3 ® ad€, and its complex conjugate. The
BPS equations are:

F%2 4 éTgo =0
F*° 4+ 9’6 =0
FU'AEAE+ [0, =0
(88)
where k is a Kahler form.

When we work on RS we can again turn on the 2-background, which this
time will depend on three parameters £1,e9,e3. Instead of the summation
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over two dimensional partitions, as in (47), we would get the sum over three
dimensional ones (for U(1) theory):

Z(q3€1362363) = Zq‘ﬂﬂ'ﬂ(glag?ag:’)) (89)
™

where the three-dimensional measure on partitions, the so-called equivariant
vertex [53] measure is defined as follows:

For the partition 7 define the following functions of three variables
(q1,92,93):

-1

03??‘

1
Velg,a2.q3) = Y. af 'q)
(i,j,k)em

1
(1—q)(1—q2)(1 —g3)

Mr(q1,q2,93) = —(1 — q1) (1 — @2)(1 — q3) Hr (q1, 92, 33) Hr(qy a5 Hy a5 )
(90)

He(q1,92,q3) = -V

which describe the content of the partition, its complement, and the defor-
mation complex of the corresponding ideal sheaf. The equivariant vertex
measure is given by:

H[+ €+(€1, €2, 63)

€1,€2,€3 91
Him ( ) H[ (61362363) ( )
where the linear functions of three variables /1 are found from:
419293 04 (1,62,€ (e1,e25E
M:(q1,92,q3) = +(evezes) 4 1,E2:83)
= ) (1—q)(1 =) —gs3) Z Z
q =€, q=¢7,q3=e"
(92)
The partition function (89) is shown in Ref. [45] to be equal to
_ (e1+e9)(egteg)(eatey)
Z(qa €1,£€2, 83) = M(Q) f1e2€3 (93)

In particular, if Q-background is special, in a sense that the SO(6) rota-
tion generated by (£1, £2,3) belongs to SU(3), i.e. preserves the Calabi-Yau
structure on R®, then the partition function reduces to the MacMahon func-
tion (86) which we saw already counts the type A topological string ampli-
tudes on RS (up to an important issue of squaring the partition functions).

€To get it fair: square
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The fully equivariant partition function (93), not very surprisingly, agrees
with the equivariant Gromov-Witten partition function (the calculation on
the GW side is almost identical to (84) thanks to Mumford’s relations).

5.4. Kahler gravity interpretation

The three dimensional partition point of view allows to relate the topological
string to the would-be Kahler gravity calculation. The idea is to interpret
wo — igsF' as the Kahler form wx on the manifold X, which is obtained
from C32 by the blowup along the ideal I,. The weight e~ Ixo wonehz pchy
corresponds to

1
exp <—@/Xw/\w/\w> (94)
S

which is the value of the Kahler gravity action (82).

5.5. Summary of the last two lectures

We have shown that the all-genus topological string partition function can
be interpreted as a Kahler gravity partition function [33], which contains
the sum over various space-time topologies, in accordance with the quantum
foam expectations [29]. It has been shown in [55] that the non-perturbative
completion of the type A string on Calabi-Yau manifold M must include
the D-brane contributions which in turn can be expressed using the topo-
logical B string. This is the manifestation of S-duality in the context of
the topological string. The existence of such duality suggests a more funda-
mental theory, perhaps higher dimensional, which would explain this duality
geometrically. Indeed, in the physical superstring context the S-duality is a
geometric symmetry of M-theory.

The full topological string partition function would therefore depend on
both the Kahler and complex moduli of Calabi-Yau, in other terms, on all the
metric moduli. The natural way to combine these moduli is in the G5 moduli
of the seven dimensional manifold B = S' x M. Recently, N. Hitchin has
proposed a functional on the space of closed three-forms on B whose critical
points are the metrics of G5 holonomy. Its quantization is currently being
investigated, see Refs. [18,59], and also [23].



Figure 1. Z Theory
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