
Course on Lattice models in St. Petersburg, 2021:
Exercises

Alexander Glazman (University of Vienna)

Please fill in the doodle by 12pm on Wednesday, Nov 10. I will then choose
randomly the presenters. These presenters then should (rather quickly) send me their so-
lutions, so that I can check them. Preferably, the solutions should be written in English.
If you have difficulties with this, I could help you with translation.

For the presentation: the best option is to share your solution over zoom. It’s easier
to understand if the presenter has their camera switched on.

The questions marked with a start ∗ are not mandatory. It is also ok not to solve all
other questions, but over all you should solve 50-60% of the mandatory questions.

Hints are marked as footnotes and appear at the end of the file.

Graph: the hypercubic lattice in dimension d is denoted by Ld = (Zd,Ed).
A box of size n is denoted by Λn and is defined as a subgraph of Ld spanned by the
vertex-set [−n,n]d.

Percolation: configuration space is {0,1}E
d . The σ-algebra F is generated by all

cylinder events: these are events that depend on finitely many edges. Let p ∈ [0,1]. To
each edge we assign a Bernoulli random variable ωe:

P(ωe = 1) = p, and P(ωe = 0) = 1 − p.

The percolation measure Pp is defined on all events in F as the product measure of
these Bernoulli random variables. In particular, for any two disjoint finite sets of edges
E,F ⊂ Ed,

Pp(all edges in E are open, all edges in F are closed) = p∣E∣(1 − p)∣F ∣.

Exercise 1. a) Show that pc(Z) = 1 (no phase transition in dimension one).
b) Show that pc(Z × {0, . . . , n}) = 1 (no phase transition in a strip).

Exercise 2. Show that pc(Zd) ≤ 3/4, for every d ≥ 2.

For every k ∈ N ∪ {0}, fix some pk ≥ 0 such that ∑∞
k=0 pk = 0. Consider the following

process:
• start by one individual;

• this individual has a random number of offsprings:

P(k offsprings) = pk.
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• then every individual of this first generation gives birth to a random number of
offsprings with the same distribution.

• etc.
The obtained tree is called the Galton–Watson tree (or a branching process).

Exercise 3. ∗ Consider the infinite tree of degree d+1. Connect the cluster of the origin
to a Galton–Watson tree. Use this connection to compute the critical point.1

Exercise 4. ∗ Recall that by SAWn we denote the number of self-avoiding walks (or
simple paths) starting at the origin. Denote by cn the number of walks in SAWn. Show
that (the logarithm of) cn is sub-additive:

cn+m ≤ cn ⋅ cm.

Deduce that c1/n
n converges as n tends to infinity to µc ∈ (0,∞). 2

Exercise 5. Show that any event in F can be approximated by events depending on
finitely many edges. That is, show that for any event A ∈ F , there exists a sequence of
events Bn ∈ F , such that Bn depends only on the edges in the box of size n and

Pp(A∆Bn) ÐÐ→
n→∞

0.

where A∆Bn ∶= (A ∖Bn) ∪ (Bn ∖A) (it is called the symmetric difference).3

Exercise 6. Show that the percolation measure Pp is ergodic.4

Exercise 7. a) When p < pc, show that θ(p) = ψ(p) = 0.
b) When p > pc, show that θ(p) > 0 and ψ(p) = 1.5

Exercise 8. ∗ a) What site percolation on the square (hexagonal and triangular) lattice
(in dimension two) could mean? Show that 0 < pc < 1.

b) Show that bond percolation on a graph corresponds to site percolation on a modified
graph.

c) Consider site and bond percolations on Zd. Show that6

pc(bond) ≤ pc(site) ≤ 1 − (1 − pc(bond))
d.

Exercise 9. Consider a graph G for which every vertex has degree smaller than or equal
to d. We call a finite set S of vertices of G a lattice animal if the subgraph of G induced
on S is connected. For x ∈ G and n ∈ N let a(n,x) be the number of lattice animals with
n vertices that contain x. Show that,7

∞

∑
n=0

[p(1 − p)]dna(n,x) ≤ 1.

Deduce that a(n,x) ≤ 4dn, for every x ∈ G and n ∈ N. Show one can replace the term
[p(1 − p)]dn in the sum by pn(1 − p)dn.

A graph G is called transitive if, for every two vertices u and v, there exists an
automorphism of G that is mapping u to v. A graph G is called ameanable if the
following holds:

inf
H⊂G

∣∂H ∣

H
= 0,

where the infimum is taken over all subgraphs of G and ∂H denotes the set of vertices
in H that are adjacent to vertices outside of H.
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Exercise 10. a) Check that the number of trifurcation points T in ΛK is smaller or
equal that the number of vertices in ∂ΛK . b) Check that the same proof works for any
transitive amenable graph to show that the infinite cluster is unique.

Let S be a set of vertices in Zd. Given a percolation configuration, we say that vertices
u and v are connected in S if there exists a path of open edges starting at u, ending at v,
and such that all vertices in the path belong to S. We denote this event by {u

S
←→ v}.

Exercise 11. Let S ⊂ Zd be a finite set of vertices containing the origin 0. For any x /∈ S,
show the following inequality 8:

Pp(0↔ x) ≤ ∑
y∈∂S

Pp(0
S
←→ y)Pp(y↔ x).

Exercise 12. Show that θ(p) is strictly increasing when p > pc.9

Exercise 13. ∗ The aim of this exercise is to show that θ(p) is continuous on [0,1] ∖ pc
and right-continuous at pc.

a) Define θn(p) ∶= Pp(0 ↔ ∂Λn. Show that θn(p) is a continuous function of p,
increasing in p and decreasing in n, and that limn→∞ θn(p) = θ(p), for any p ∈ [0,1].

b) Show that a decreasing limit of continuous increasing functions is right continuous.
Derive that θ(p) is right-continuous on [0,1].

c) Consider a coupling of percolation measures: to all edges e ∈ Ed assign independent
uniform random variables Ue on [0,1]. Let U denote the joint distribution of (Ue)e∈Ed .
For any p ∈ [0,1], define a random percolation configuration ωp: for e ∈ Ed, we set ωpe = 1
if Ue ≤ p and ωpe = 0 if Ue > p.

As we have seen in the class, the distribution of ωp is given by Pp.
Show that, for any p > q > pc

θ(p) − θ(q) = U(0
ωp

←→∞, 0 /
ωq

←→∞).

d) Take any p > q > pc. Denote by C q the unique infinite cluster in ωq. Show that
either θ(p) is not left-continuous at some p or, for some constant c > 0 and for any p′ < p,

U(0
ωp

←→ C q, 0 /
ωp

′
←→ C q) ≥ c.

e) Show that the above implies that P(∃e ∈ Ed ∶ Ue = p) ≥ c.
f) Get a contradiction and deduce that θ(p) is left-continuous on [0,1] ∖ {pc}.

Exercise 14. a) Show that the intersection and the union of two increasing events is an
increasing event.

b) Show that the set of all increasing events generate the product σ-algebra on {0,1}E(Zd).10

Exercise 15. Show the formula of Margulis–Russo directly using the increasing coupling
between Pp and Pp+ε, as ε→ 0.

Definition. Define θn(p) as the probability to connect to distance n:

θn(p) ∶= Pp(0↔ ∂Λn),

where Λn = [−n,n]d. For any S ⊂ Zd subset of vertices define its edge boundary by

∆S ∶= {xy ∈ E(Zd) ∶ x ∈ S, y /∈ S}.
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Exercise 16. a) Let S ⊂ Zd be a finite a subset of vertices containing 0 and let z ∈ Zd∖S.
Show that the following estimate holds:11

Pp(0←→ z) ≤ ∑
xy∈∆S

Pp(0
S
←→ x) ⋅ Pp(xy is open) ⋅ Pp(y ←→ z).

b) Let L > 1 be integer and S ⊂ ΛL−1 be a subset of vertices containing 0. Deduce from
the above that, for every N > L,12

θN(p) ≤ θN−L(p) ⋅ p ⋅ ∑
xy∈∆S

Pp(0
S
←→ x).

Exercise 17. Introduce a random variable Sn ∶= {z ∈ Λn ∶ z /←→ ∂Λn}. Show that 13

θ′n(p) =
1

(1−p) ⋅Ep
⎡
⎢
⎢
⎢
⎣
∑

xy∈∆Sn

Pp(0
Sn
←→ x)

⎤
⎥
⎥
⎥
⎦
.

Exercise 18. Number all edges in E(Zd) as {ei}i≥1. For n ∈ N, define a σ-algebra
Fn ∶= σ(e1, . . . , en). Let f be a bounded function on {0,1}E(Zd) measurable with respect
to Pp. Show that

Ep(f ∣Fn)
n→∞
ÐÐ→ f a.s.

Exercise 19. a) Call an event decreasing if its complement is increasing. Show that two
decreasing events are positively correlated. What happens if one event is increasing and
the other decreasing?

b) Square-root trick: for any increasing events A,B, show that

max{Pp(A),Pp(B)} ≥ 1 −
√

1 − Pp(A ∪B).

Extend the statement to n ≥ 2 increasing events A1, . . . ,An:

max
1≤1≤n

{Pp(Ai)} ≥ 1 − (1 − Pp(∪ni=1Ai))
1/n.

Consider a domain Qn ∶= [−n,n] × [−n,n − 1]. Define Hn to be the event that there
exists a horizontal crossing in Qn:

Hn ∶= {ω ∈ {0,1}E(Z2) ∶ {−n} × [−n,n − 1]
Qn
←→ {n + 1} × [−n,n − 1].

The crucial property of Hn is that we can compute its probability exactly when p = 1
2

(see Exercise 21).

Exercise 20. Let 0 < p < 1 be such that θ(p) > 0.
a) Fix any ε > 0. Show that for k large enough,

Pp(Λk /←→∞) ≤ ε.

b) Take any k as above. Show that, for any n > k,14

Pp({Λk
Λn
←→ {−n} × [−n,n]}) ≥ 1 − ε

1
4 .

c) Take any k as above. Show that, for any n > k,

Pp({(−1,0)Λk
Qn
←→ {−n} × [−n,n]} ∩ {(1,0) +Λk

Qn
←→ {n} × [−n,n]}) ≥ 1 − 2ε

1
4 .

d) Deduce that 15

Pp(Hn) ÐÐ→
n→∞

1.
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Exercise 21. a) Let d = 2 and p = 1
2 . Show that16

P(Hn) =
1

2
.

b) Deduce from this and Exercise 20 that pc(Z2) ≥ 1
2 .

c) Use sharpness and item a) to prove that pc(Z2) ≥ 1
2 .

In conclusion, pc(Z2) = 1
2 . This is a famous theorem of Kesten from 1980.

Exercise 22. (Zhang’s argument) This is a seminal argument that gives alternative
derivation of the fact that pc(Z2) ≥ 1

2 by establishing directly non-coexistence of primal
and dual infinite clusters.

a) Bound from the below the probability that the top of Λn is connected to infinity:

P1
2
([−n,n] × {n}

Z2∖Λn
←ÐÐ→∞) ≥ 1 − P1

2
(Λn /←→∞)

1
4

b) Consider the event An that both top and bottom sides of Λn are connected to
infinity by primal (open) edges in Z2 ∖ Λn, and that both left and right sides of Λn are
connected to infinity by dual edges in Z2 ∖Λn. Show that

P1
2
(An) ≥ 1 − 4P1

2
(Λn /←→∞)

1
4

c) Show that P1
2
(An) = 0.

d) Deduce that θ(1
2) = 0, whence pc ≥ 1

2 .

We say that a graph G has exponential growth if there exists cvg > 0 such that

∣Λn∣ ≥ e
cvgn, for any n.

Exercise 23. ∗ The goal of this exercise is to show that θ(pc) = 0 for amenable tran-
sitive graphs of exponential growth. An example of such a graph is the Cayley of the
Lamplighter group.

a) Assume that θ(pc) > 0. Show that, for some c > 0,

∀x, y ∈ G Ppc(x↔ y) ≥ c.

b) Consider un(p) ∶= minx∈∂Λn{Pp(0←→ x)}. Show that17

um+n(p) ≥ um(p) ⋅ un(p).

c) Let p < pc. Show that ∑x∈G Pp(0←→ x) < ∞.18

d) Use Items b) and c) to show that, for all p < pc,

un(p) ≤ e
−cvgn.

e) Deduce that θ(pc) = 0.

Exercise 24. Consider a planar lattice G embedded in a such a way that all its vertices
have integer coordinates. Assume that Z2 acts transitively on G, that Bernoulli percola-
tions on G and on G∗ exhibit a sharp phase transition at some pc(G), pc(G∗) ∈ (0,1), and
that the infinite clusters are unique. Consider rectangles Rn,k ∶= [0, n] × [0, k] and denote
there sides by Bottomn,k, Leftn,k, Topn,k, and Rightn,k (we will often omit the indices). Let
Hn,k (resp. V n, k) be an event of existence of a horizontal (resp. vertical) open crossing
in Rn,k.
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a) Show that pc(G) + pc(G∗) ≤ 1.19

Below we assume that p > pc(G) and p∗ = 1 − p > pc(G∗). We will obtain a contradic-
tion, thus implying pc(G) + pc(G∗) ≥ 1. Together with item a), this would prove that in
fact pc(G) + pc(G∗) = 1.

For s ∈ N and x ∈ Z2, consider Sx(s) ∶= x + [−s, s]2. We will often omit s from the
notation (view it as a large nubmer that will be chosen at the end).

b) Consider the right half-plane H ∶= [0,∞) × R, the parts of its boundary `+ ∶=

{0} × [1,∞) and `− ∶= {0} × (−∞,−1] and ` ∶= `+ ∪ `−. Show that, for any m ∈ N, there
exists a vertex x = x(m) of G such that the first coordinate of x equals m and20

Pp(Sx
H
←→ `−) ≥ Pp(Sx

H
←→ `+) and Pp(Sx+(0,1)

H
←→ `−) ≤ Pp(Sx+(0,1)

H
←→ `+)

c) For this choice of x, show that21

Pp(Sx
H
←→ `−) ≥ 1 −

√
Pp(Sx /

H
←→ `) and Pp(Sx+(0,1)

H
←→ `+) ≥ 1 −

√

Pp(Sx+(0,1) /
H
←→ `).

d)∗ Deduce that Pp(0
∗,H
←Ð→∞) = 0. Similarly, Pp(0

H
←→∞) = 0. 22

e) Let R ∶= Rn,k. Show that there exists x = x(n, k) ∈ Z2 and x′, x′′ adjacent to x
(in Z2!), such that, up to reflections of the rectangle, the following holds 23

Pp(Sx
R
←→ Bottom) ≥ Pp(Sx

R
←→ Top) and Pp(Sx′

R
←→ Bottom) ≤ Pp(Sx′

R
←→ Top)

Pp(Sx
R
←→ Left) ≥ Pp(Sx

R
←→ Right) and Pp(Sx′′

R
←→ Left) ≤ Pp(Sx′′

R
←→ Right)

f) Show that the distance of x(n, k) to the boundary of R(n, k) tends to infinity, as n
and k tend to infinity.24

g)∗ Show that25

max{Pp(Vn,k),Pp(Hn,k)} ÐÐÐ→
n,k→∞

1

min{Pp(Vn,k),Pp(Hn,k)} ÐÐÐ→
n,k→∞

0.

h) Reach a contradiction and derive that pc(G) + pc(G∗) = 1.26

Exercise 25. a) Consider the site percolation on the triangular lattice: each vertex is
open with probability p independently of the others. Show that the proof of Kesten’s
theorem applies to this setting and implies that the critical point equals 1/2. What
should change in definition of ϕp(s)? How should we define the ‘almost-square’ Qn so
that Pp(Qn is crossed horizontally) = 1/2?

b) How can we formulate this percolation in terms of colorings of faces on the hexag-
onal lattice? Check that there is a two-to-one correspondence between site percolation
configurations on the triangular lattice and even subgraphs of the hexagonal lattice. Show
that these subgraphs can be split into non-intersecting simple cycles (that we will call
loops).

Exercise 26. Let p be the unique positive root of the equation t3 + 1 = 3t and let pc be
the critical value of the bond percolation on the triangular lattice.

a) (Star-triangle transformation) Let u, v,w be three vertices of some graph G
that are all connected by edges. Define G′ as a graph obtained from G by removing
the edges uv, vw,wu, adding a vertex x and edges xu,xv, xw. Let Pt be the Bernoulli
percolation with parameter p on the edges of G. Define P′t as the percolation on of G′,
such that the parameter equals 1−t on edges xu,xv, xw and it equals p on all other edges.
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Show that Pt and P′p can be coupled in such a way that connections between different
vertices of G are the same.

b) Relate the hexagonal and the triangular lattice via the star-triangle transformation.
Show the Bernoulli percolation on the edges of the triangular lattice with parameter t
exhibits an infinite cluster with a positive probability if and only if the Bernoulli per-
colation on the edges of the hexagonal lattice with parameter 1 − t exhibits an infinite
cluster.

c) Deduce that pc = t.27

d) Find a degree three polynomial for the critical parameter of the Bernoulli percola-
tion on the edges of the hexagonal lattice.

Exercise 27. Consider a simply connected domain Ω with a smooth boundary. Fix for
distinct points a, b, c, d ∈ ∂Ω. For any δ > 0, define (Ωδ, aδ, bδ, cδ, dδ) to be a finite graph
with four marked points: Ωδ equals δZ2 ∩ Ω, and aδ, bδ, cδ, dδ are four distinct points
on ∂Ωδ that are closest to a, b, c, d (we assume here that Ωδ is connected and ∂Ωδ is a
simple path). Prove that there exists c = c(Ω, a, b, c, d) such that, for any δ > 0,

P1/2 ((aδbδ
Ωδ
←→ (cδdδ)) ≥ c,

where (aδbδ) and (cδdδ) are the portions of ∂Ωδ from aδ to δ, and from cδ to δ, going
counter-clockwise.28

Exercise 28. Let Ω be a domain on C. For δ > 0, let Ωδ equal Ω ∩ δH and F δ be
the parafermionic observable for percolation (defined in Lecture 7). Show that there
exist K,α > 0 such that, for any u, v ∈ Ω and any δ > 0,29

∣F δ(uδ) − F (vδ)∣ ≤K ∣uδ − vδ ∣α.

Deduce that F δ can be extended to Ω continuously, so that it is a Hölder map. Conclude
that this family of Hölder maps has a convergent subsequence.30

Exercise 29. a) Show that there exists c > 0 such that, for any n ∈ N,31

P1/2(0↔ ∂Λn) ≤ c ⋅ P1/2(0↔ ∂Λ2n).

b) Show that there exist c,C > 0 such that, for any n ∈ N and any x ∈ ∂Λn,

c ⋅ P1/2(0↔ ∂Λn)
2 ≤ P1/2(0↔ x) ≤ C ⋅ P1/2(0↔ ∂Λn)

2.

c) (Quasi-multiplicativity) Show that, for any α ∈ (0,1), there exists c = c(α) > 0 such
that, for any N ∈ N and any 1 ≤ n ≤ αN ,

P1/2(0↔ ∂ΛN)

P1/2(0↔ ∂Λn)
≤ P1/2(Λn↔ ∂ΛN) ≤ c ⋅

P1/2(0↔ ∂ΛN)

P1/2(0↔ ∂Λn)
.

Exercise 30. Let G = (V,E) be a finite graph. Pick any edge e ∈ E and any configura-
tion τ ∈ {0,1}E∖{e}. Fix any q > 0 and p ∈ [0,1] and consider ϕ0

G,p,q (the FK percolation
measure on G with free boundary conditions). Show that the probability that the edge e
is open conditioned on the state of the other edges can be computed in the following way:

ϕ0
G,p,q(ωe = 1 ∣ω∣E∖{e} = τ) = {

p, if x τ
←→ y,

p
p+(1−p)q , if x /

τ
←→ y.

What is the answer in case of general boundary conditions?
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Exercise 31. Consider the product σ-algebra F on {0,1}E(Zd), a finite set E ⊂ E(Zd)
and some configuration τ ∈ {0,1}E Define the event Aτ ∈ F by

Aτ = {ω ∈ {0,1}E(Zd) ∶ ω = τ on E}.

Show that there exists two increasnig events Bτ ,Cτ such that Bτ ⊃ Cτ and Aτ = Bτ ∖Cτ .
Deduce that any event depending on finitely many edges can be written as a disjoint
union of Bτ ∖Cτ , for some τ .

Exercise 32. (Monotonicity properties of the FK percolation.) Let q ≥ 1 and G =

(V,E) be a finite subgraph of Zd. Take any increasing event A in {0,1}E.
a) Let p ≤ p′ and q ≥ q′ ≥ 1. Show that32

ϕξG,p,q(A) ≤ ϕξG,p′,q′(A).

b) Let ξ, ξ′ be two partitions of ∂G such that ξ ≤ ξ′. By the latter we mean that ξ′ is
a coarser partition than ξ: each element of the partition ξ is entirely contained in some
element of the partition ξ′. Show that

ϕξG,p,q(A) ≤ ϕξ
′
G,p,q(A).

c) Deduce that, for any boundary conditions ξ,

ϕ0
G,p,q(A) ≤ ϕξG,p,q(A) ≤ ϕ1

G,p,q(A).

d) Consider any subgraph H ⊂ G. Show that

ϕ0
H,p,q(A) ≤ ϕ0

G,p,q(A) and ϕ1
H,p,q(A) ≥ ϕ1

G,p,q(A).

e) Let Gn be a sequence of finite subgraphs increasing to Zd. Deduce from the previous
points that the following weak limits exist: 33

ϕ0
p,q ∶= lim

n→∞
ϕ0
Gn,p,q and ϕ1

p,q ∶= lim
n→∞

ϕ1
Gn,p,q.

Moreover, they are independent of the sequence Gn and invariant to translations.

Exercise 33. Let q ≥ 1 and G = (V,E) be a finite subgraph of Zd. Take any subgraphH ⊂

G with the edge-set F . Consider any increasing events A,B such that A depends only
on edges in F and B depends only on edges in E ∖ F .

a) Show that, for any boundary conditions ξ,

ϕ0
H,p,q(A) ≤ ϕξG,p,q(A ∣B) ≤ ϕ1

H,p,q(A).

b) Consider dimension two. Assume that B is the event that there exists a circuit of
open edges that separates H from ∂G. Show that

ϕ1
G,p,q(A) ≤ ϕξG,p,q(A ∣B).

Exercise 34. a) (Holley criterion.) Show that, for strictly positive measures µ, ν, the
condition we had in the domination Lemma is equivalent to that the following is satisfied
for any two configurations ω,ω′:

µ(ω ∧ ω′)ν(ω ∨ ω′) ≥ µ(ω)ν(ω′).

By ω ∧ ω′ we denote the configuration in which an edge is open if and only if it is open
in both ω and ω′; by ω ∨ ω′ we denote the configuration in which an edge is open if and
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only if it is open in at least one of ω and ω′.

b) (FKG lattice condition.) Let µ be a strictly positive probability measure
on {0,1}E. For distinct edges e, f ∈ E and any configuration ω ∈ {0,1}E, denote by ωef ,
ωef , ωef , ω

f
e the four configurations that agree with ω on E ∖ {e, f} and such that: e is

open in ωef and ωef , while f is open in ωef and ωfe . Assume the following condition is
satisfied for any e, f ∈ E and ω ∈ {0,1}E:

µ(ωef)µ(ωef) ≥ µ(ω
f
e )µ(ω

e
f).

Show that then µ is positively associated (satisfies the FKG inequality)34. Use this to
check that the FK percolation satisfies the FKG inequality when q ≥ 1.

Exercise 35. a) Show the claim from the proof of erogdicity of ϕ1
p,q. More precisely,

let q ≥ 1 and assume that for any n ∈ N and any increasing events A,B ∈ {0.1}Λn we have
mixing:

lim
∣∣x∣∣→∞

ϕ1
p,q(A ∩ τxB) = ϕ1

p,q(A)ϕ1
p,q(B).

Derive that the same property holds for any events that depend on finitely many edges.
b) What should be changed in the proof to show mixing for ϕ0

p,q?

Exercise 36. Derive ergodicity from mixing for ϕ1
p,q.

Exercise 37. This exercise gives a different proof to the statement that the set of p on
which ϕ1

p,q ≠ ϕ
1
p,q is at most countable number of p.

a) Show that Z1
Λ2n,p,q

≥ (Z1
Λ2n,p,q

)
2d

.35

b) For every n, define the function

f 1
n(p, q) ∶=

1

∣E(Λn)∣
log (Z1

Λn,p,q
) .

Deduce from a) that, for every q > 0, p ∈ [0,1], the sequence f 1
2k
(p, q) has a limit. Denote

the limiting function by f(p, q). It is called the free energy of the model.

c) Define the function

f 0
n(p, q) ∶=

1

∣E(Λn)∣
log (Z0

Λn,p,q
) .

Show that
f 1
n(p, q)

f 0
n(p, q)

ÐÐ→
n→∞

1.

Deduce that f 0
2k
(p, q) ÐÐ→

k→∞
f(p, q).

d) Show that the left and right derivatives of

t↦ f (
et

1 + et
, q) + log(1 + et)

are respectively ϕ1
p,q(ωe) and ϕ0

p,q(ωe), where p = et

1+et .
36

e) Show that p↦ f(p, q) is convex and therefore is not differentiable in at most count-
ably many points. Conclude.37
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Let q ≥ 1. As in percolation, define the critical edge density in the FK percolation by

pc(q) ∶= inf{p ∈ [0,1] ∶ ϕ1
p,q(0←→∞) > 0}.

Exercise 38. a) Show that the value of pc(q) remains the same if it is defined via free
boundary conditions.

b) Show that in dimension one, pc(q) = 1.

In the points below, we fix dimension d ≥ 2 and q ≥ 1. The aim is to show that in this
case the phase transition is non-trivial.

c) Let q ≥ 1 and d ≥ 2. Show that pc(q) > 0.38

d) Let q ≥ 1 and d ≥ 2. Show that pc(q) < 1.39

Exercise 39. Fix q ≥ 1, p > pc(q). Verify that the argument of Burton and Keane applies
to show that ϕ1

p,q-a.s. and ϕ0
p,q-a.s., there exists a unique infinite cluster.

Exercise 40. a) Describe the Edwards–Sokal coupling in the reverse direction: given a
spin configuration σ ∼ µf

G,T,q (Potts model), how to sample an edge configuration ω ∼ ϕ0
G,p,q

(FK percolation model)? Express T as a function of p.

b) Describe the measure on spin configurations obtained from an edge configura-
tion ω ∼ ϕ1

G,p,q (FK-percolation model with wired boundary conditions) via the Edwards–
Sokal coupling.

The measure defined in this exercise is called the Potts model is called the Potts model
with monochromatic boundary conditions. The measure with color i on the boundary is
denoted by µiG,T,q.

Exercise 41. a) Let Ωk be an increasing sequence of domains on Zd that eventually
exhausts the whole space. Fix q ≥ 1, T > 0. Show that µfΩk,T,q has a weak limit that does
not depend on the sequence of domains. We denote it by µf

T,q.

b) Show the same for the Potts model with monochromatic boundary conditions. The
limit of µiΩk,T,q is denoted by µiT,q.

c) Show that measures µf
T,q, µ

1
T,q, . . . , µ

q
T,q are translation invariant.

d) Show that the monochromatic measures µ1
T,q, . . . , µ

q
T,q are ergodic for any T > 0,

and the free measure µf
T,q is ergodic when T > Tc and non-ergodic when T < Tc.

e) Describe the phase transition that occurs in the Potts model at T = T (pc).

Exercise 42. The goal of this exercise is to show the OSSS inequality for Bernoulli
percolation:

Varp(f) ≤ 2∑
e∈E

δe(f, T )Covp(f,ωe),

10



where the variance and covariance are taken with respect to the Bernoulli percolation
measure Pp, f ∶ {0,1}E → [0,1] is an increasing function, T = (e1;{ψt}) is any decision
tree for f , δe(f, T ) ∶= Pp(∃t ≤ τ e = et) is the revealment probability.

The proof is similar to Lindeberg’s proof of the Central Limit Theorem and is based
on replacing bits in the percolation configuration by fresh Bernoulli random variables one
by one. Let ω be distributed as Pp. Applying to ω the decision tree T , we get ordering
on the edges:

• e1 is the starting edge;

• et+1 = ψt(e1, . . . , et;ωe1 , . . . , ωet .
Consider a percolation configuration η distributed as Pp and independent of ω. Given t ∈
[0, n], define ωt as follows: take ω and its values by η at the first t edges and after τ .
Formally:

ωt ∶= (ηe1 , . . . , ηet , ωet+1 , . . . , ωeτ , ηeτ+1 , . . . , ηen).

Below we denote by P the joint distribution of ω and η. By E we denote the expectation
with respect to P.

a) Show that f(ω0) = f(ω) and f(ωn) = f(η).
b) By conditioning on ω, deduce that

Varp(f) ≤ E [∣f(ω0) − f(ωn)∣] .

c) Show that

Varp(f) ≤
n

∑
t=1

E [∣f(ωt) − f(ωt−1)∣ ⋅ 1t≤τ ] .

d) Fix t and consider possible values of et. Using that et and {t ≥ τ} are measurable
with respect to ωe[t−1] ∶= (ωe1 , . . . , ωet−1), show that

E [∣f(ωt) − f(ωt−1)∣1t≤τ ] = ∑
e∈E

E(E(∣f(ωt) − f(ωt−1)∣ ∣ωe[t−1]) ⋅ 1et=e,t≤τ) ,

where the second expectation is taken with respect to the edges not in e[t−1].
e) Note that ωt and ωt−1 are independent of ωe[t−1] and deduce, for every e ∈ E, the

term on the right-hand side equals to

2p(1 − p) ⋅E(f(ω[e,1]) − f(ω[e,0])) ⋅ P(et = e, t ≤ τ),

where by ω[e,1] and ω[e,0] we denote the configurations that agrees with ω on E ∖ {e}
and such that the edge is open in ω[e,1] and closed in ω[e,0].

f) Show that

p(1 − p)E(f(ω[e,1]) − f(ω[e,0])) = Covp(f,ωe).

Conclude.

Exercise 43. Fix dimension d = 2 and let q ≥ 1. The goal of this exercise is to describe
the dual FK percolation measure.

Let G = (V,E) = [−n,n]2 (subgraph of Z2). Define G∗ = (V ∗,E∗) (subgraph of the
dual lattice (Z2)∗) as follows

• V ∗ consists of all faces of Z2 that neighbor at least one edge of G;

• E∗ consists of all pairs of faces of Z2 that share an edge in E.

11



In particular, dual edges are in bijection with the primal edges: if uv is a primal edge
that separates faces u∗ and v∗, then we draw an edge u∗v∗.

Given a percolation configuration ω ∈ {0,1}E, we define the dual configuration ω∗ in
the usual way:

ω∗e∗ = 1 − ωe.

Consider the FK percolation measure with free boundary conditions:

ϕ0
G,p,q(ω) =

1

Z0
G,p,q

⋅ po(ω)(1 − p)c(ω)qk(ω)

a) Show that o(ω) = c(ω∗) and c(ω) = o(ω∗).

b) Show that
k((ω∗)1) − k(ω) = o(ω) + 1 − ∣V ∣,

where (ω∗)1 is obtained from ω∗ by identifying (=merging) all boundary vertices.40

c) Show that, if ω has the law ϕ0
G,p,q, then ω∗ has the law ϕ1

G∗,p∗,q, where p∗ satisfies

p

(1 − p)
⋅

p∗

(1 − p∗)
= q.

e) Deduce that the same holds also in the infinite-volume limit:

if ω ∼ ϕ0
p,q, then ω∗ ∼ ϕ1

p∗,q,

where the second measure is taken on the dual lattice.

e) Show that on has ϕ0
G,psd,q

(ω) = ϕ1
G∗,psd,q(ω

∗), where

psd = psd(q) =

√
q

√
q + 1

.

f)∗ Describe the correspondence for general boundary conditions.

Exercise 44. The goal of this exercise is to show that on Z2, when q ≥ 1, one has

pc = psd.

a) Assume that pc > psd. Apply sharpness of the phase transition at p = psd in the
primal and in the dual model to show that sizes of clusters in ω (primal) and ω∗ (dual)
have exponential tails. Arrive at a contradiction.

b) Assume that pc < psd. Show that then41

ϕ0
psd,q

(∃ infinite cluster) = ϕ1
psd,q

(∃ infinite cluster) = 1.

Use the same for the dual measure and apply the Burton–Keane theorem to show

ϕ0
psd,q

(∃ unique infinite primal and dual clusters) = 1.

Arrive at a contradiction via Zhang’s argument (exercise 22).

c) Note that the above proves also that

ϕ0
pc,q(∃ infinite cluster) = 0.
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Exercise 45. Let G = (V,E) be a finite subgraph of Zd. The Potts model at q = 2 is
called the Ising model and its configurations are viewed as possible ways to assign 1 or −1
to the vertices. Denote by µ+G,T the Ising measure with plus boundary conditions: all
spins in ∂G are fixed to by 1.

a) Show that

µ+G,T (σ) ∝ exp [
1

T
⋅ ∑
u∼v

σuσv] .

b) Show that, for any x ∈ V ,

µ+G,T (σx) = ϕ
1
G,p,2(x↔ ∂G),

where p as in the Edwards–Sokal coupling. Deduce that µ+G,T (σx) ≥ 0.

c) Use the Edwards–Sokal coupling to show that, for any x, y, z,w ∈ V ,

µ+G,T (σxσyσzσw) ≥ µ
+
G,T (σxσy)µ

+
G,T (σzσw).

d)* (First Griffiths’ inequality.) For A ⊂ V , use the notation σA = ∏x∈A σx. Using
the same ideas as above, show the first

µ+G,T (σA) ≥ 0.

e)* (Second Griffiths’ inequality.) For any A,B ⊂ V , show that

µ+G,T (σAσB) ≥ µ
+
G,T (σA)µ

+
G,T (σB).

Note that this holds also for free boundary conditions.
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Hints
1Use (without a proof) that the Galton–Watson tree survives in and only if the expected number of

offsprings for any given individual is strictly greater than 1.
2For any k,n ∈ N, prove that

lim sup an

n
≤

ak

k
.

For this, divide n by k with a remainder r and use sub-additivity.
3Use Dynkin’s lemma
4Use approximation by cylinder events. Shift by a long enough vector to get events of disjoint support.
5Use Kolmogorov’s zero-one law.
6For the first inequality: sample a Bernoulli site percolation configuration with parameter p and define

for it (in some way) a bond configuration. In the latter, each edge is open with probability p, but edges
are not independent! The trick is then to show that this percolation model is dominated by the Bernoulli
bond percolation of parameter p. To couple configurations, use uniform random variables (like in the
lectures) but do this by iteratively exploring the cluster of the origin.

The second inequality can be shown similarly but you need to go from bonds to sites.
7Use percolation. To get a better bound, explore the cluster of x step by step.
8Introduce a random variable C for the set of vertices connected to 0 in S and sum over all possible

values of C . Use that on any path connecting 0 and x there exists a vertex y ∈ ∂S.
9Use the coupling of percolation measures via uniform random variables.

10It’s enough to generate cylinders.
11Use the same exploration strategy as in Exercise 11.
12Use that the distance from any point y ∈ ∂S to ∂ΛN is at most N −L.
13Use the formula of Margulis–Russo. Then the trick is to force that the edge e = xy is closed (recall

Pive(A) does not depend on e!). Afterwards, you just need to assume Sn = S and sum over all possible
values of S. The pivotality of xy then reduces to the fact that 0

S
←→ x and xy ∈ ∆S. The sum over these

values can be written as an expectation.
14Use the square-root trick.
15Use uniqueness
16Use symmetry
17Use Harris’ (FKG) inequality.
18Adapt the proof of sharpness.
19Use sharpness and Borel-Cantelli to prove that the number of open circuits surrounding a given

vertex is finite.
20When x is very high, Pp(Sx

H
←→ `) − Pp(Sx

H
←→ `+) < ε (consider the distribution on top-most points

on {0} ×R connected to Sx). Choose ε, so that Pp(Sx
H
←→ `+ but Sx /

H
←→ `−) > ε.

21Square-root trick
22First prove that Pp(Sx

H
←→ {0} ×R) ≥ 1 − ε, when s is large enough (use uniqueness for this). Show

that in fact this connection cannot only go through 0 (again, use uniqueness). Use item c) to connect
Sx to both `+ and `− and then... use uniqueness once again.

23Color all points of Z2 into BL, BR, TL, TR, according to the sides that this points prefers (B is
for Bottom, etc). Consider a path γ on Z2 from the bottom-left to the top-right corner and look at the
first time you get a point of TR type. If the previous point is BL, we are done. Assume it is TL. Look
at the TL cluster of these points. Note that its external boundary must be TR, otherwise we are done.
Consider the last point on γ before this cluster and get a contradiction.

24Use item d).
25By the square-root trick, Sx is connected to one of the sides with probability 1 − ε. Same for Sx′

and Sx′′ . Consider which side is the best for which box. By the uniqueness, show that either Left or
Bottom is connected to each of the three boxes with probability 1 − ε. Conclude.

26Consider the largest k such that Pp(Hn,k) ≤ Pp(Vn,k).
27Use duality.
28Use the RSW estimates.
29Use RSW.
30Use Arzela–Ascoli.
31Use RSW
32Use the domination Lemma from the lecture.
33For increasing events that depend on finitely many edges use monotonicity from d). By inclusion-

exclusion, define the measure on all events that depend on finitely many edges — and then extend to the
σ-algebra by Caratheodory’s theorem. Invariance to translations follows if you shift the domains Gn.
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34Show that µ(ω ∧ ω′)µ(ω ∨ ω′) ≥ µ(ω)µ(ω′) by induction in the number of disagreements between ω
and ω′. Then use the domination Lemma.

35Divide Λ2n into 2d boxes of size n.
36Write derivative of f1

n(p, q) as an expectation — and then as an average probability that a particular
edge is open. When n is large, the measure is almost translation-invariant far from the boundary, and the
edges next to the boundary have a small contribution (use amenability of Zd for this, i.e. ∣∂Λn∣/∣Λn∣ → 0).

37Express Z1
Λn,p̃,q

/Z1
Λn,p,q

as expectation of some random variable with respect to ϕ1
Λn,p,q

(see lecture 9).
Take derivative in p̃ and show that this random variable is convex.

38Use monotonicity in q to compare the FK percolation to the standard Bernoulli percolation.
39As in percolation: reduce to d = 2 by monotonicity, then use duality and the counting argument. To

solve the exercise, you do not need to describe the distribution of the dual configuration precisely — but
you can already try to find out what it is (we will discuss this next week).

40Use induction in o(ω) or Euler’s formula.
41Use that ϕ0

p,q ≠ ϕ
1
p,q at at most countably many p.
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