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� Preface

These notes are based on lectures delivered at the Saint Flour Summer School in July
����� The �rst version of the notes was written and edited by Dimitris Gatzouras�
The notes were then expanded and revised by David Levin and myself� I hope that
they are useful to probabilists and graduate students as an introduction to the subject�
a more complete account is in the forthcoming book co�authored with Russell Lyons�

The �rst �	 chapters are devoted to basic facts about percolation on trees
 branch�
ing processes and electrical networks
 with an emphasis on several key techniques�
moment estimates
 the use of percolation to determine dimension
 and the �method
of random paths
 to construct �ows of �nite energy� These �	 chapters are the �in�
troductory climb
 alluded to in the title�

More advanced topics start in Chapter ��
 where the method of random paths is
re�ned in order to establish the Grimmett�Kesten�Zhang Theorem� Simple random
walk on the in�nite percolation cluster in Zd� d � � is transient�

Chapters �� and �� contain a regularity property of subperiodic trees
 and its
application to random walks on groups� In Chapter �� we discuss capacity estimates
for hitting probabilities� these are used in Chapter �� to derive intersection�equivalence
of fractal percolation and Brownian paths�

In Chapter �� we analyze the phase transition in a broadcasting model considered
by computer scientists� A random bit is propagated
 with errors
 from the root of a
tree to its boundary
 and the goal is to reconstruct the original bit from the boundary
values� Remarkably
 the same model arose independently in genetics
 as a mutation
model
 and in mathematical physics
 where it is equivalent to the Ising model on a
tree� In Chapter ��
 the Ising model on a tree is used to construct a nearest�neighbor
process on Z that is �less predictable
 than simple random walk�

In Chapters �� and ��
 we study the speed and recurrence properties of tree�
indexed processes� in particular
 we relate three natural notions of speed �cloud speed

burst speed
 and sustainable speed� to three well�known dimension indices �Minkowski
dimension
 packing dimension
 and Hausdor� dimension�� In Chapter �	 we consider a
dynamical variant of percolation
 where edges open and close according to independent
Poisson processes� At any �xed time
 the random con�guration is a sample of Bernoulli
percolation
 but we focus on exceptional random times when the number of in�nite
open clusters is atypical� There are striking parallels between the study of these
exceptional times for dynamical percolation
 and the study of multiple points for
Brownian motion� We conclude in Chapter �� by describing some results on stochastic
domination between randomly labeled trees
 and stating some open problems for other
graphs�

I was �rst drawn to thinking about general trees in a lecture of I� Benjamini in
����
 when H� Furstenberg noted that certain trees that appeared in the lecture could
be interpreted �via b�adic expansions� as Cantor sets with di�erent Hausdor� and
Minkowski dimensions� I� Benjamini and I proceeded to examine relations between
properties of trees and properties of the corresponding compact sets� these connections
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had unexpected uses later �see Chapter ���� For example
 consider a subset � of the
unit square in the plane and the corresponding tree T ��� b� in base b� Then � is hit by
planar Brownian motion �i�e�
 it has positive logarithmic capacity� i� simple random
walk on T ��� b� is transient�

We then learned that a year earlier
 R� Lyons �building on works of Furstenberg

Shepp
 Kahane and Fan� had established some remarkably precise connections be�
tween random walks
 percolation and capacity on trees� R� Lyons and R� Pemantle
had already used these ideas to determine the sustainable speed of �rst�passage per�
colation on trees�

The point of view of these lectures was largely developed in the ensuing collabora�
tion with Itai Benjamini
 Russell Lyons and Robin Pemantle
 whose in�uence pervades
these notes� Other coauthors whose insights and ideas are represented here include
Chris Bishop �see Chapter ���
 Will Evans
 Claire Kenyon
 and Leonard Schulman
�see Chapter ���
 Olle H�aggstr�om and Je� Steif �see Chapter �	��

In fact
 probability on trees is a rich and fast�growing subject
 so the account pre�
sented in these notes is necessarily incomplete� Natural complements are the two con�
ference proceedings volumes� Trees
 edited by B� Chauvin
 S� Cohen and A� Rouault
�Birkh�auser ����� and Classical and Modern Branching Processes
 edited by K� B�
Athreya and P� Jagers �Springer ������ Continuum random trees are fascinating ob�
jects studied in several papers by David Aldous� Tom Liggett is writing a detailed
account of the contact process on trees� Superprocesses
 which can be obtained as
scaling limits of branching random walks
 have been studied by numerous authors� I
apologize to the many researchers whose results involving probability on trees are not
described here�
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� Basic De�nitions and a Few Highlights

A tree is a connected graph containing no cycles� All trees considered in these notes
are locally �nite� the degree deg�v� is �nite for each vertex v
 although deg�v� may
be unbounded as a function of v�

Why study general trees�

�� More can be done on trees than on general graphs� Percolation problems
 for
example
 are easier to analyze on trees� The insight and techniques developed
for trees can sometimes be extended to more general models later�

�� Trees occur naturally� Some examples are�

�a� Galton�Watson trees� Let L be a non�negative integer�valued random

variable and set Z� � �
 Z� � L
 and Zn�� �
PZn

i�� L
�n���
i 
 where the L

�n�
i

are i�i�d� copies of L� Then Zn is the number of individuals in generation n
of a Galton�Watson branching process
 a population which starts with one
individual and in which each individual independently produces a random
number of o�spring with the same distribution as L� The collection of all
individuals form the vertices of a tree
 with edges connecting parents to
their children�

�b� Random spanning trees in networks� A spanning tree of a graph G
is a tree which is a subgraph of G including all the vertices of G� There
are several interesting algorithms for generating random spanning trees of
�nite graphs�

�� Trees describe well the complicated structure of certain compact sets in Rd�
Examples include Cantor sets on intervals and fractal percolation
 a collection
of nested random subsets of the unit cube described below�

Example ��� Fractal Percolation is a recursive construction generating random
subsets fAng of the unit cube �	� ��d� Tile A� � �	� ��d by bd similar subcubes with
side�length b��� Generate A� by taking a union of some of these subcubes
 including
each independently with probability p� In general
 An will be a union of b�adic cubes
of order n �cubes with side�length b�n and vertices with coordinates of the form kb�n��
An�� is obtained by tiling each such cube contained in An by bd b�adic subcubes of
order n � �
 and taking a union which includes each subcube independently with
probability p� The limit set of this construction

T�
n��An is denoted by Qd�p��

There is a tree associated with each realization of fractal percolation� The vertices
at level n correspond to b�adic cubes of order n which are contained in An
 and a
vertex v at level n is the parent of a vertex w at level n�� if the cube corresponding
to v contains the cube corresponding to w� �
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Figure �� A realization of A� and A� for d � �� b � ��

Let Q��
�
�
� � �	� ��� denote the limit set of fractal percolation with b � �
 d � �


and p � �
�
� In Chapter ��
 we will see that the random set Q��

�
�
� is intersection�

equivalent in the cube to the Brownian motion path started uniformly in the cube�
By this we mean the following� if �B� denotes the range fB�t� � t � 	g of a three�
dimensional Brownian motion started uniformly in �	� ���
 then for some constants
C�� C� � 	 and all closed sets � � �	� ���


C� P�Q������ � � �� �� � P��B� � � �� �� � C� P�Q������ � � �� �� �

Consequently
 hitting probabilities for Brownian motion can be related to hitting
probabilities of Q��

�
�
�� This gives a new perspective on the classical study of intersec�

tions and multiple points of Brownian paths�
For example
 consider two independent copies Q��

�
�
� and Q�

��
�
�
�� Then the intersec�

tion Q��
�
�
� �Q�

��
�
�
� has the same distribution as Q��

�
	
�� Since the tree corresponding

to Q��
�
	
� is a Galton�Watson tree with mean o�spring �
 it survives with positive

probability� Hence Q��
�
	
� �� � with positive probability
 and intersection�equivalence

shows that two independent Brownian paths in R� intersect with positive probability

a result �rst proved in �����

It also follows that three Brownian paths in space do not intersect �as �rst proved
in ������ By intersection�equivalence
 it is enough to show that the intersection of the
limit sets of three independent fractal percolations
 which has the same distribution as
Q��

�


�
 is empty a�s� But the tree corresponding to Q��

�


� is a critical Galton�Watson

process and hence dies out
 see Chapter ��

In�nite family trees arising from supercritical Galton�Watson Branching processes

�Galton�Watson trees in short� play a prominent role in these notes�

Question ��� In what ways are Galton�Watson trees like regular trees�
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First we establish a simple property of regular trees�

Example ��� Simple random walk fXngn�� on a graph is a Markov chain on the
vertices
 with transition probabilities

P�Xn�� � wjXn � v� �

�
�

deg�v�
if w 	 v �

	 otherwise �

The notation u 	 v means that the vertices u and v are connected by an edge� Now
suppose the graph is a tree
 and let jvj stand for the distance of a vertex v from the
root �
 i�e�
 jvj is the number of edges on the unique path from � to v� On the b�ary
tree


E
h
jXn��j 
 jXnj

���Xn

i
� b

b� �
���� �

�

b� �
�
�� � b
 �

b� �
�

�We have an inequality here because Xn may be at the root�� Hence the distance
of the random walk on the tree from the root stochastically dominates an upwardly
biased random walk on Z� It is therefore transient and will visit 	 only �nitely many
times� After the last visit of the random walk to the root


E
h
jXn��j 
 jXnj

���Xn

i
�
b
 �

b � �
�

and the strong law of large numbers for martingale di�erences implies that
 almost
surely
 n��jXnj � b��

b��
�

One speci�c case of Question ��� is

Question ��� On a Galton�Watson �GW� tree with mean m �
P

k kpk � �� is simple
random walk transient on survival of the GW process�

We will see later that the answer is positive� this was �rst proved by Grimmett and
Kesten �������

For a tree �
 denote �n � fv� jvj � ng� De�ne the lower growth and upper
growth of � as gr�T � �� lim inf j�nj��n and gr�T � � lim sup j�nj��n respectively� If
gr��� � gr���
 we speak of the growth of the tree � and denote it by gr����

Question ��� Is gr��� � � su	cient for transience of simple random walk on �� Is
it necessary�

The answer to both questions is negative� An analogous situation holds for Brown�
ian motion on manifolds
 where exponential volume growth is not su�cient and not
necessary for transience�

Example ��	 
��� tree� The ��� tree � has gr��� � � �actually j�nj � �n�
 but
simple random walk is recurrent on it� � can be embedded in the upper half�plane

with its root � at the origin� The root has two o�spring
 and for n � �
 each level �n



�� Basic De�nitions and a Few Highlights �

0

Figure �� The ��� Tree�

has �n vertices which can be ordered from left to right as vn� � � � � � v
n
�n� For k � �n��


each vnk has only one child
 while for �n�� � k � �n
 each vnk has three children�
Observe that for any vertex not on the right�most path to in�nity
 the subtree above
it will eventually have no more branching �because �powers of � beat powers of �
��
The random walk on � will have excursions on left�hand branches
 but must always
return to the right�most branch �because of recurrence of simple random walk on the
line�� If these excursions are ignored
 then we have a simple random walk on the
right�most path
 i�e�
 on Z�
 which is recurrent� �
It is even easier to construct transient trees of polynomial growth� E�g�
 replace every
edge at level k of the ternary tree by a path consisting of �k edges� Simple random
walk on the resulting tree
 considered just when it visits branch points
 dominates an
upward biased random walk on the integers
 whence it is transient�

On the other hand
 positive speed implies exponential growth�

Theorem ��
 De�ne the speed of a random walk as limn n
��jXnj� when this limit

exists� If the speed of simple random walk on a tree � exists and is positive� then �
has exponential growth� i�e�� gr��� � ��

This follows from Theorem ��� below�
Example ��� suggests that gr��� does not give much information on the behavior

of a random walk on �� The growth gr��� barely takes into account the structure of
�
 and a more re�ned notion is required�

A cutset � is a set of vertices such that any in�nite self�avoiding path from
emanating the root � must pass through some vertex in �� The branching number



�	

of a tree � is de�ned as

br��� � sup
n
� � � � inf

�cutset

X
v��

��jvj � 	
o
� ���

The function inf
n P
v��

��jvj � � a cutset

o
is decreasing in � and positive at � � ��

The boundary of a tree �
 denoted ��
 is the set of all in�nite self�avoiding
paths �rays� emanating from the root � of �� A natural metric on the boundary ��
is d�	� 
� � e�n
 where n is the number of edges shared by 	 and 
� dimH���� will
denote the Hausdor� dimension of �� with respect to this metric d� Because an open
cover of �� corresponds to a cutset of �
 and vice�versa
 the Hausdor� dimension of
�� is related to the branching number of � by

log br��� � dimH���� �

Similarly
 gr��� is related to the Minkowski dimension dimM���� by

log gr��� � dimM���� �

Generally
 br��� � gr���
 since for � � gr��� we must have

inf
n
j�nj��n � inf

n

X
v��n

��jvj � 	�

using the fact that �n is itself a cutset yields the inequality� If �� is countable
 then
br��� � �
 because dimH A � 	 for countable sets A� For the ��� tree in Example ���

�� is countable
 and consequently br��� � ��

As an indication that the branching number br��� contains more information about
the tree than the growth gr���
 we mention two results that we shall prove later
 in
Chapters � and ���

Bernoulli�p� percolation on a tree � is the random subgraph of � obtained by
independently including each original edge of � with probability p
 and discarding
each with probability � 
 p� The retained edges are called open
 and Pp is the
probability corresponding to this process �see Chapter � for the formal de�nition of
the probability space�� The �rst quantity of interest in percolation is

pc��� � inffp � �	� ���Pp��
�� � 	g � ���

where f�
�g denotes the event that the root � is connected to �
 i�e�
 that there
is an in�nite self�avoiding path emanating from �
 that consists of open edges�

Theorem ��� 
R� Lyons ����� For an in�nite and locally �nite tree ��

pc��� �
�

br���
� ���
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Theorem ��� 
R� Lyons ����� If br��� � �� then simple random walk on � is
transient�

We close with an equivalent description of the branching number br��� of a tree ��
If u� v are vertices in � so that v is a child of u
 denote by uv the edge connecting them�
A �ow � on � from the root � to � is an edge function obeying ��uv� �

P
��vw�


where the sum is over all children w of v� This property is known as Kirchho��s
node law� Imagine the tree as a network of pipes through which water can �ow
entering at the root� However much water enters a pipe must leave through the other
end
 splitting up among the outgoing pipes �edges�� De�ne ��v�
 for a vertex v �� �

to be the amount of �ow that reaches v
 i�e�
 ��v� �� ��uv� for u the parent of v� The
strength of a �ow �
 denoted jj � jj 
 is the amount �owing from the root


P
v
v�� ��v��

When jj � jj � �
 we call � a unit �ow�

Lemma ���� For a tree ��

br��� � supf� � � � � a nonzero �ow � from � to � � �v� ��v� � ��jvjg � ���

Proof� This follows directly from the Min�cut Max��ow Theorem
 which in our
setting says that

supf jj � jj � ��v� � ��jvj �vg � inf
� cutset

X
v��

��jvj � ���

For details
 see Lyons and Peres ������� �

Remark� As mentioned above
 br��� � gr��� � lim infnj�nj��n � In general
 to get
an upper bound for br��� one can seek explicit !good" cutsets� To get lower bounds
use either


i� Theorem ���
 which in particular says that br��� � ��pc���
 or


ii� �nd a good �ow � on � such that ��v� � ��jvj for all v� then br��� � �� �Recall
that ��v� denotes the �ow from the unique parent of v to v��

A �ow � on � induces a measure � on ��� for cylinder sets �v� � f	 � �� �
	 passes through vg
 de�ne ���v�� as ��v�� If �v��� � � � � �vn� are disjoint cylinders �which
means that no vi is an ancestor of another�
 and �v� �

Sn
i���vi� �i�e�
 the fvig form a

cutset for the subtree �v rooted at v�
 then Kirchho�"s node law implies �by induction
on n� that ���v�� �

Pn
i�� ���vi��� Countable additivity can be proven using the com�

pactness of ��� Cylinders form a basis consisting of open sets and are also closed in
the natural topology on ��� Thus countable additivity follows from �nite additivity�
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� Galton�Watson Trees

Let L be a non�negative integer�valued random variable and let pk � P�L � k�
for k � 	� �� �� � � �� To avoid trivial cases
 we assume throughout that p� � �� Let
fL�n�

i gi�n�N be independent and identically distributed copies of L
 set Z� � �
 and
de�ne

Zn�� �

� PZn
i�� L

�n���
i if Zn � 	 �

	 if Zn � 	 �

The variables Zn are the population sizes of a Galton�Watson branching process� The
tree associated with a realization of this process has Zn vertices at level n
 and for
i � Zn
 the i"th vertex in level n has L

�n���
i children in level n� ��

Generating functions are an indispensable tool in the analysis of Galton�Watson
processes� Set f�s� � E�sL� and de�ne inductively

f��s� � s � f��s� � f�s� � fn���s� � f � fn�s� � 	 � s � � �

It can be veri�ed by induction that fn�s� � E�sZn� for all n
 that is
 fn is the generating
function of Zn� Note that f�s� �

P�
k�� pks

k and f ���� � E�L� � m� We always have
f ���s� � 	 for s � 	
 so f is convex on R��

De�ne q to be the smallest �xed point of f in �	� ��� Note that if p� � 	
 then
q � 	� Observe that limnP�Zn � 	� � limn fn�	� � q
 and since limn fn�	� must be a
�xed point of f 
 it follows that q � limnP�Zn � 	�� So

q � P�Zn � 	� � probability of extinction�

Since f is convex
 if � � m � f ����
 then q � �� If instead � � m � f ����
 then
q � �� Thus
 a Galton�Watson process dies out a�s� if and only if m � ��

A property of trees A is inherited if all �nite trees have property A
 and all
the immediate descendant subtrees ��i� of � have A when � has A� �The immediate
descendant subtrees ��i� of � are the subtrees of � rooted at the children of the root
���

Example ��� The following are all inherited properties�

�� f� � supn j�nj ��g�
�� f� � j�nj grows polynomially in ng�
�� f� � � �nite or br��� � cg� �

Proposition ��� 
��� Law� Let P be the probability measure on trees corresponding
to a GW process with m � �� If A is inherited� then

P�A j non�extinction� � f	� �g�
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Proof� We have

P�� � AjZ� � k� � P

�
k�
i��

f��i� � Ag j Z� � k

�
� P�� � A�k�

Thus

P�� � A� �

X
k

pkP�� � AjZ� � k� � f�P�� � A���

Convexity of f implies that the only numbers x � �	� �� satisfying x � f�x� are
x � � and all x � �	� q�� Since A holds for all �nite trees
 P�� � A� � q� So
P�� � A� � fq� �g� �

Observe that m�nZn is a non�negative martingale and hence converges to some
�nite random variable W ��� If m � �
 then Zn � 	 eventually
 so a�s� W � 	� The
case m � � is treated by the following theorem�

Theorem ��� 
Kesten and Stigum 
��		a�� When m � ��

P�W � 	 j non�extinction� � � if and only if E�L log� L� ���

A conceptual proof of Theorem ��� appears in Lyons
 Pemantle
 and Peres �������

Hawkes ������
 under the assumption that E�L log� L� � �
 proved that for
Galton�Watson trees �


P�dimH���� � logm j non�extinction� � ��

This is equivalent to

P�br��� � m j non�extinction� � �� ���

R� Lyons discovered a simpler proof without the assumption E�L log� L� ��
 which
is given below in Corollary ���� Because a�s� m�nZn � W 
 where 	 � W � �
 it
follows that a�s� gr��� � m� This
 together with the general inequality br��� � gr���
and ���
 implies that a�s� given non�extinction


m � br��� � gr��� � gr��� � m�

� General percolation on a connected graph

General 
bond� percolation on a connected graph G is a random subgraph G�
�
of G such that
 for any edge e in G
 the event that e is an edge of G�
� is measurable�
Independent fpeg percolation is the percolation obtained when each edge e is
retained �or declared open� with probability pe
 independently of other edges �and
removed or declared closed otherwise�� We already discussed in Chapter � the special
case of Bernoulli�p� percolation where all probabilities pe are the same
 pe � p�



��

Formally
 the sample space for a general bond percolation is # � f	� �gE
 where
E is the edge set of the graph G� The ���eld F on # is generated by the �nite�
dimensional cylinders
 sets of the form f
 � # � 
�e�� � x�� � � � � 
�em� � xmg for
xi � f	� �g� The probability measures Pfpeg and Pp
 corresponding to independent
fpeg percolation and Bernoulli�p� percolation respectively
 are product measures on
�#�F��

We write the event that vertex sets A and B are connected by a path in G�
� by
fA 
 Bg� when G is an in�nite tree �
 we write f� 
 ��g for the event that there
is an in�nite path emanating from � with all edges open�

The connected components of open edges in percolation are called clusters
 and
the cluster containing v is denoted by C�v�� De�ne

C �� f�v � G with jC�v�j ��g�
C is the event that there is an in�nite cluster somewhere in the percolation on G� We
write CG when there is a possibility of ambiguity�

For Bernoulli�p� percolation
 at any �xed vertex v


Pp�jC�v�j ��� � 	 if and only if Pp�C� � �� ���

One implication in ��� follows immediately from Kolmogorov"s zero�one law� C does
not depend on the status of any �nite number of edges
 hence Pp�C� � f	� �g� To see
the other implication
 assume Pp�C� � � and take a ball Bn�v� large enough so that

Pp�there exists an in�nite path intersecting Bn�v�� � 	�

Then clearly
Pp��Bn�v�
�� � 	�

Because Bn�v� is �nite
 the event that all edges in Bn�v� are open has positive prob�
ability� By independence of disjoint edge sets


Pp�jC�v�j ��� � Pp�all edges in Bn�v� are open and �Bn�v�
��

� Pp�all edges in Bn�v� are open�Pp��Bn�v�
��

� 	 �

Alternatively
 one can use the FKG inequality for the events A � fall edges in Bn�v�
are openg and B � fthere exists an in�nite path connecting Bn�v� to �g
 as both
these events are increasing� See Grimmett ������ for details�

For Bernoulli�p� percolation on an arbitrary graph G
 the critical probability
�already mentioned in the case of trees� is

pc�G� � inff p � Pp�C� � � g �
For this de�nition to make sense
 p �� Pp�C� must be non�decreasing� This can be
seen by by coupling the measures Pp for all p together
 see Grimmett �������
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� The First�Moment Method

The �rst moment method is straightforward but useful� For general percolation on a
tree � with root �
 it asserts that

P��
�� � X
v��

P��
 v� ���

for any cutset �� For Bernoulli�p� percolation on the tree
 the inequality becomes

Pp��
�� � X
v��

pjvj �

When p � ��br���
 this can be made arbitrarily small for appropriate choice of cutset�
This proves

Proposition ��� For any locally �nite ��

pc��� � �

br���
� ���

In general there is equality here
 as advertised previously in Theorem ���� The proof
of equality is in x��
Corollary ��� Let T be a GW tree with mean m � �� Almost surely on non�
extinction� br�T � � m and pc�T � � ��m�

Proof� Let PGW be the distribution of T on the space of rooted trees T 
 and let
Zn � jTnj be the size of level n of T � Given t � T 
 let Pp�t be Bernoulli�p� percolation
on t�

Observe that

m � gr�T � � gr�T � � br�T � � �

pc�T �
� ��	�

The �rst inequality follows since Zn�m
n converges to a �nite random variable
 the

middle inequalities hold in general
 and the right�most is the content of Proposition
���� Thus it is enough to show that for p � m��


PGW �t � Pp�t�jC���j ��� � 	 non�extinction� � �� ����

Combine the measures PGW and Pp�t� Given the Galton�Watson tree T 
 perform
Bernoulli�p� percolation on T and let T � be the component of � in the percolation� T �

is itself a Galton�Watson tree
 where the number of individuals in the �rst generation
is Z �� �

PZ�
i�� Yi
 where fYig are i�i�d� Bernoulli�p� random variables� Because E�Z ��� �

mp � �
 with positive probability T � is in�nite�

P�jT �j ��� �
Z
Pp�t�jC���j ��g�dPGW �t� � 	�



��

We conclude that the integrand must be positive with positive PGW �probability�

PGW �t � Pp�t�jC���j ��� � 	� � 	�

Since the set
ft � Pp�t�jC���j ��� � 	g

de�nes an inherited property
 Proposition ��� implies that ���� holds� This proves
that a�s� on survival
 pc�T � � m��
 whence ��	� yields that br�T � � m� �

Kahane and Peyri$ere ������ calculated the dimension of the limit set of fractal
percolation� their methods were di�erent� The proof above is due to R� Lyons�

Question ��� 
H�aggstr�om� Suppose simple random walk fXngn�� on � has posi�
tive lower speed� i�e�� for some positive number s

P

�
lim inf

n

jXnj
n

� s

�
� 	 � ����

Is it necessarily true that br��� � ��

The answer is positive
 and the proof relies on the �rst�moment method again�

Theorem ��� If �
�� holds� then br��� � eI�s��s� where

I�s� �
�

�
��� � s� log�� � s� � ��
 s� log��
 s�� �

Proof� By ���� above
 there exists L such that

P �jXnj � ns for all n � L� � 	 �

De�ne a general percolation on � by

��
� �
n
v � � � jvj � L or Xn � v for some n � jvjs��

o
�

More precisely
 if e�v� denotes the edge from the parent of v to v
 we retain e�v� if
jvj � L or if Xn � v for some n � jvjs��� By the de�nition of this percolation


P��
�� � P �jXnj � ns for all n � L� � 	 � ����

On the other hand
 we claim that if Sn is simple symmetric random walk on Z
 then
for jvj � L


P��
 v� � P�Xn � v for some n � jvjs��� � P

�
max

n�jvjs��
jSnj � jvj

�
� ����

Consider a particle on � which moves with X when X moves along the unique path
from � to v
 but remains stationary during excursions �possibly in�nite� of X from
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this path� This particle performs a simple random walk on the path with �possibly
in�nite� holding times between moves� The probability on the left in ���� is the chance
that this particle reaches v before time jvjs��
 which is at most the chance that simple
random walk on Z travels distance jvj from the origin in the same time� This proves
�����

By the re�ection principle


P
�
max
n�N

jSnj � sN
�
� �P

�
max
n�N

Sn � sN
�
� �P�SN � sN� � � e�NI�s� �

where I�s� is the large deviations rate function for simple random walk on Z �see

e�g�
 Durrett ������ Thus for jvj � L we have

P��
 v� � � exp

�

jvjI�s�

s

�
�

Combine this with ���� and ��� to conclude that if � � eI�s��s
 then

	 � P��
�� � X
v��

P��
 v� � �
X
v��

��jvj

for any cutset � at distance more than L from the root� Hence br��� � eI�s��s� �

Conjecture � Under the assumptions of Question ��
 above

s � br���
 �

br��� � �
� i�e�� br��� � � � s

�
 s
�

Remark� Very recently
 this conjecture was proved by B� Virag �������

Recall that for simple random walk on the b�ary tree
 the speed a�s� equals b��
b��

�

Example ��� Take a binary tree and a ternary tree rooted together� The simple
random walk on this tree does not have an a�s� constant speed� �

The Fibonacci tree ��b is a subtree of the binary tree� We label vertices as �L� and
�R� �for �left
 and �right
�� The root is labeled �L�� Every vertex labeled �L� has
two o�spring
 one labeled �L� and one labeled �R�� Every vertex labeled �R� has one
o�spring
 which is labeled �L��

Exercise ��	 Justify the name Fibonacci tree� Also� show that

br���b� � gr���b� � �� �
p
�����

Hint� Use a two state Markov chain to de�ne a !good" �ow�



��

Figure �� The Fibonacci tree�

� Quasi�independent Percolation

Consider Bernoulli�p� percolation on a tree �� If v and w are vertices in �
 then

P��
 u and �
 w� �
pjvjpjwj

pjv�wj
�

P��
 u�P��
 w�

P��
 u � w�
�

where v�w is the vertex at which the paths from the root � to v and w separate� This
turns out to be a key property of independent percolation
 and we therefore make the
following de�nition�

A quasi�independent percolation on a tree � is any general percolation so that
for some M �� and any vertices u� v � �


P��
 v and �
 w� �M
P��
 u�P��
 w�

P��
 v � w� � ����

Example 	�� Percolation induced by i�i�d� labels�

�� Let E be the edge set of a tree �
 and let fXege�E be i�i�d� f
�� �g�valued
random variables with P�Xe � �� � ���� Write path�v� for the unique path
in � from the root to v� A tree�indexed random walk fSvg is de�ned for
vertices v of � by

Sv �
X

e�path�v�
Xe �

De�ne ��
� � fv�Sv�
� � �	� b�g� For b � �
 this is equivalent to Bernoulli�����
percolation� the only in�nite paths in ��
� are those for which each � is followed
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by 
�
 and each 
� by � �with � in the �rst step�� For b � �
 the corresponding
percolation process is not independent
 but it is quasi�independent�

�� Let fUeg be a collection of i�i�d� random variables
 uniform on �	� ��
 indexed by
the edges of �� De�ne

��
� �

�
v � for path�v� � e�e� � � � ejvj� Ue��
� � max

k�jvj
Uek�
�

	
�

This is not quasi�independent�

For more on tree�indexed processes
 see Chapter �� and the survey article by Pemantle
������� �

	 The Second Moment Method

For general percolation on a tree
 the cutset sums ��� bound P��
 ��� from above�
We get lower bounds by using the second moment method
 which we describe next�

By our standing assumption about local �niteness of trees


f�
 ��g ��
n

f�
 �ng �

We extend the de�nition of the boundary �� to �nite trees by

�� �

�
leaves of �
 i�e�
 vertices with no o�spring if � is �nite

in�nite paths starting at � if � is in�nite�

Consider the case � �nite �rst� Let � be a probability measure on �� and set

Y �
X
x���

��x��f�	xg
�

P��
 x�
�

Then E�Y � �
P

x���
��x� � �
 and

E�Y �� � E


�X
x���

X
y���

��x���y�
�f�	xg
f�	yg

P��
 x�P��
 y�

�

�

X
x���

X
y���

��x���y�
P��
 x and �
 y�

P��
 x�P��
 y�
�

����

Thus
 in the case of quasi�independent percolation


E�Y �� � M
X

x�y���
��x���y�

�

P��
 x � y� � ����



�	

In the case of independent percolation
 there is an equality with M � � in �����
De�ne the energy of the measure � in the kernel K as

EK��� �
X

x�y���
K�x� y���x���y� �

Z
��

Z
��
K�x� y���dx���dy��

When the kernel is

K�x� y� �
�

P��
 x � y� for x� y � �� �

���� can be rewritten as
E�Y �� � MEK��� �

By the Cauchy�Schwarz inequality


�E�Y ��� � �E�Y �fY ��g��
� � E�Y ��P�Y � 	� �

and consequently

P�Y � 	� � �E�Y ���

E�Y ��
� �

M

�

EK��� �

Since P��
 ��� � P�Y � 	�


P��
 ��� � �

M

�

EK��� �

The left�hand side does not depend on �
 so optimizing the right�hand side with
respect to � yields

P��
 ��� � �

M
sup

	
	������

�

EK��� �
�

M
CapK���� � ����

where we de�ne the capacity of �� in the kernel K to be

CapK���� � sup
	
	������

�

EK��� �

For � in�nite
 let � be any probability measure on ��� � induces a probability
measure on �n � for a vertex x � �n
 set

��x� � ��in�nite paths through x� �

By the �nite case considered above


P��
 �n� � �

M

�P
x�y��n

K�x� y���x���y�
�
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Each path 	 from the root � to� must pass through some vertex x in �n � write x � 	
if the path 	 goes through vertex x� If x � 	 and y � 

 then 	 � 
 is a descendant of
x � y� This implies that K�x� y� � K�	� 
� for x � 	 and y � 
� Therefore
Z

��

Z
��
K�	� 
�d��	�d��
� �

X
x�y��n

Z
x�


Z
y��

K�	� 
�d��	�d��
�

� X
x�y��n

K�x� y���x���y�

� �

M

�

P��
 �n�
�

Hence

P��
 �n� � �

M

�

EK���
for any probability measure � on ��� Optimizing over � and passing to the limit as
n��
 we get

P��
 ��� � �

M
CapK���� � ����

To summarize
 we have established the following proposition�

Proposition 
�� Let � be �nite or in�nite� P the probability measure corresponding
to a quasi�independent percolation on �� and K the kernel on �� de�ned by K�x� y� �
P��
 x � y���� Then

P��
 ��� � �

M
CapK����� ��	�

where M � � in the case of independent percolation�

For Bernoulli percolation
 we have already proven that pc��� � ��br��� in Proposition
���
 using the �rst�moment method� We will now prove the reverse inequality
 thus
showing equality� For convenience
 we restate the result�

Theorem ��� 
R� Lyons ����� For Bernoulli�p� percolation on a tree ��

pc��� � ��br��� �

Proof� Take p � ��br��� and ��p � � � br���� By Lemma ���	
 there exists a unit
�ow � from � to the boundary satisfying ��v� � C��jvj for each vertex v � �� We
may identify � with a probability measure on �� �see the discussion following Lemma
���	��

Consider the kernel

K�	� 
� �
�

P��
 	 � 
�
� p�j
��j �



��

The energy EK��� of � in the kernel K is given byZ
��

Z
��
p�j
��jd��	�d��
� �

X
v

p�jvj
Z Z


���v
d��	�d��
��

Since the set of pairs �	� 
� with 	 � 
 � v is contained in the set of pairs �	� 
� with
v � 	� v � 

 the right�hand side above is not larger than

X
v

p�jvj���v��� �
�X
n��

p�n
X
jvj�n

���v���

�
�X
n��

p�n
X
jvj�n

C��jvj��v�

� C
�X
n��

�p���n���n��

The last sum is �nite since �p � �� Applying Proposition ��� yields

Pp��
 ��� � C����
 ���p� � 	 �

�


 Electrical Networks

The basic reference for the material in this chapter is Doyle and Snell ������� Here
we will not restrict ourselves to trees
 but will discuss general graphs�

While electrical networks are only a di�erent language for reversible Markov chains

the electrical point of view is useful because of the insight gained from the familiar
physical laws of electrical networks�

A network is a �nite connected graph G
 endowed with non�negative numbers
fceg
 called conductances
 that are associated to the edges of G� The reciprocal
re � ��ce is the resistance of the edge e� A network will be denoted by the pair
hG� fcegi� Vertices of G are often called nodes� A real�valued function h de�ned on
the vertices of G is harmonic at a vertex x of G ifX

y�x

cxy
�x

h�y� � h�x� � where �x �
X
y�x

cxy� ����

�Recall that the notation y 	 x means y is a neighbor of x��
We distinguish two nodes
 fa� zg
 which are called the source and the sink of the

network� A function V which is harmonic on G n fa� zg will be called a voltage� A
voltage is completely determined by its boundary values
 Va� Vz� In particular
 the
following result is derived from the maximum principle�

Proposition ��� Let h be a function on a network G which is harmonic on Gnfa� zg
and such that h�a� � h�z� � 	� Then h must vanish everywhere on G�
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Proof� We will �rst show that h � 	� Suppose this is not the case� Then h�x��� �
maxG h � 	� By harmonicity on G n fa� zg
 if x �� fa� zg belongs to the set A �
fx� h�x� � maxG hg and y 	 x 
 then y � A also� By connectedness
 a� z � A
 hence
h�a� � h�z� � maxG h � 	
 contradicting our assumption� Thus h � 	
 and an
application of this result to 
h also yields h � 	� �

This proves that given boundary conditions h�a� � x and h�z� � y
 if there
is a function harmonic on G n fa� zg with these boundary conditions
 it is unique�
To prove that a harmonic function with given boundary values exists
 observe that
the conditions ���� in the de�nition of harmonic functions form a system of linear
equations with the same number of equations as unknowns
 namely �number of nodes
in G�
 �� for such a system
 uniqueness of solutions implies existence�

A more informative way to prove existence is via the probabilistic interpretation
of harmonic functions and voltages� Consider the Markov chain on the nodes of G
with transition probabilities

pxy � P�Xn�� � y j Xn � x� �
cxy
�x

�

This process is called the weighted random walk on G with edge weights fceg
 or
the Markov chain associated to the network hG� fcegi� This Markov chain is reversible
with respect to the measure ��

�xpxy � cxy � �ypyx �

A special case is the simple random walk on G
 which has transition probabilities

pxy �
�

deg�x�
for y 	 x

and corresponds to the weighted walk with conductances cxy � � for y 	 x�
To get a voltage with boundary values 	 and � at z and a respectively
 set

V �
x � Px�fXng hits a before z� �

where Px is the probability for the walk started at node x� For arbitrary boundary
values Va and Vz
 de�ne

Vx � Vz � V �
x �Va 
 Vz� �

Until now
 we have focused on undirected graphs� Now we need to consider also
directed graphs� An edge in a directed graph is an ordered pair of nodes �x� y�

which we denote by �e � �xy�

A �ow � from a to z
 previously discussed when the underlying graph is a tree
 is a
function on oriented edges which is antisymmetric
 �� �xy� � 
�� �yx�
 and which obeys
Kirchho��s node law

P
w�v �� �vw� � 	 at all v �� fa� zg� This is just the requirement

��ow in equals �ow out
 for any node �� a� z� Despite notational di�erences
 it is easily
seen that these de�nitions generalize the ones given earlier for trees�



��

Observe that it is only �ows that are de�ned on oriented edges� Conductance and
resistance are de�ned for unoriented edges� we may of course de�ne them on oriented
edges by c �xy � c �yx � cxy and r �xy � r �yx � rxy�

Given a voltage V on the network
 the current �ow associated with V is de�ned
on oriented edges by

I��e� �
Vy 
 Vx

re
� where �e � �xy �

Notice that I is antisymmetric and satis�es the node law at every x �� fa� zg�X
y�x

I� �xy� �
X
y�x

cxy�Vy 
 Vx� � 	�

Thus the node law for the current is equivalent to the harmonicity of the voltage�
The current �ow also satis�es the cycle law� if the edges �e�� � � � � �em form a cycle


i�e�
 �ei � 


�xi��xi and xn � x�
 then

mX
i��

reiI��ei� � 	 �

Finally
 by de�nition
 a current �ow also satis�es Ohm�s law� if �e � �xy


reI��e� � Vy 
 Vx �

The particular values of a voltage function V are less important than the voltage
di�erences
 so �x a voltage function V on the network normalized to have Vz � 	�

By de�nition
 if � is an arbitrary �ow on oriented edges satisfying Ohm"s law
rxy�� �xy� � Vy 
 Vx �with respect to the voltage V �
 then � equals the current �ow I
associated with V �

De�ne the strength of an arbitrary �ow � as

jj � jj � X
x�a

�� �ax� �

Proposition ��� 
Node law�cycle law�strength� If � is a �ow from a to z sat�
isfying the cycle law

mX
i��

rei���ei� � 	

for any cycle �e� � � � � �em� and if jj � jj � jj I jj � then � � I�

Proof� The function J � � 
 I satis�es the node�law at all nodes and the cycle law�
De�ne

h�x� �
mX
i��

J��ei�rei �
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where �ei� � � � � �em is an arbitrary path from a to x� By the cycle law
 J is well de�ned�
By the node law
 it is harmonic everywhere
 except possibly at a and z� Now jj � jj �
jj I jj implies that J is also harmonic at a and z� By the maximum principle
 h must
be constant� This implies that J � 	� �

Given a network
 the ratio �Va 
 Vz�� jj I jj 
 where I is the current �ow corresponding
to the voltage V 
 is independent of the voltage V applied to the network� De�ne the
e�ective resistance between vertices a and z as

R�a
 z�� �
Va 
 Vz
jj I jj �

We think of e�ective resistance as follows� replace the whole network by a single edge
joining a to z and require that the two networks be equivalent
 in the sense that the
amount of current �owing from a to z in the new network is the same as in the original
network if we apply the same voltage to both�

Next
 we discuss the probabilistic interpretation of e�ective resistance� Denote

P�a� z�� � Pa�hit z before returning to a� �

For any vertex x

Px�hit z before a� �
Va 
 Vx
Va 
 Vz

�

If pxy � cxy�
��
x are the transition probabilities of the Markov chain
 then

P�a� z� �
X
x

paxPx�hit z before a�

�
X
x�a

cax
�a

Va 
 Vx
Va 
 Vz

�
�

�a�Va 
 Vz�

X
x�a

I� �ax�

�
�

�a

jj I jj
Va 
 Vz

�
�

�aR�a
 z�
�

Call �R�a
 z� � �� the e�ective conductance
 written as C�a
 z�� Then

P�a� z� �
�

�a
C�a
 z� � ����

The Green function for the random walk stopped at z
 is de�ned by

G�a� x� � Ea�% visits to x before hitting z� �

�The subscript in Ea indicates the initial state�� Then G�a� a� � �aR�a 
 z� �
since the number of visits to a before visiting z has a geometric distribution with



��

parameter P�a � z�� It is often possible to replace a network by a simpli�ed one

without changing quantities of interest
 for example the e�ective resistance between
a pair of nodes� The following laws are very useful�

Parallel Law� Conductances in parallel add� Suppose edges e� and e�
 with con�
ductances c� and c� respectively
 share vertices v� and v� as endpoints� Then both
edges can be replaced with a single edge of conductance c� � c� without a�ecting the
rest of the network� All voltages and currents in G n fe�� e�g are unchanged and the
current I��e� equals I��e��� I��e��� For a proof
 check Ohm"s and Kirchho�"s laws with
I��e� �� I��e�� � I��e���

Series Law� Resistances in series add� If v � G n fa� zg is a node of degree � with
neighbors v� and v�
 the edges �v�� v� and �v� v�� can be replaced by a single edge
�v�� v�� of resistance rv�v � rvv� � All potentials and currents in G n fvg remain the
same and the current that �ows from v� to v� equals I�
�v�v� � I�
�vv��� For a proof

check again Ohm"s and Kirchho�"s laws
 with I�

�v�v�� �� I�
�v�v� � I�
�vv���
Glue� Another convenient operation is to identify vertices having the same voltage

while keeping all existing edges� Because current never �ows between vertices with
the same voltage
 potentials and currents are unchanged�

Example ��� Consider a spherically symmetric tree �
 a tree in which all vertices
of �n have the same number of children for all n � 	� Suppose that all edges at the
same distance from the root have the same resistance
 that is
 re � ri if jej � i
 i � ��
Glue all the vertices in each level� This will not a�ect e�ective resistances
 so we infer
that

R��
 �N� �
NX
i��

ri
j�ij

and

P��� �N� �
r��j��j
NP
i��

ri�j�ij
�

Therefore the corresponding random walk on � is transient i�
�P
i��

ri�j�ij ��� �

Theorem ��� 
Thomson�s Principle� For any �nite connected graph�

R�a
 z� � inf f E��� � � a unit �ow from a to z g �

where E���� � P
e���e��

�re� The unique minimizer in the inf above is the unit current
�ow�

Note� The sum in E��� is over unoriented edges
 so each edge fx� yg is only consid�
ered once in the de�nition of energy� Although � is de�ned on oriented edges
 it is
antisymmetric and hence ��e�� is unambiguous�
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Proof� By compactness
 there exists �ows minimizing E��� subject to jj � jj � �� By
Proposition ���
 to prove that the unit current �ow is the unique minimizer
 it is
enough to verify that any unit �ow � of minimal energy satis�es the cycle law�

Let the edges �e�� � � ��en form a cycle� Set ���ei� � � for all � � i � n and set �
equal to zero on all other edges� Note that � satis�es the node law
 so it is a �ow
 butP

���ei� � n �� 	� For any � � R
 we have that

	 � E�� � ���
 E��� � �

�

nX
i��

�����ei� � ��� 
 ���ei�
��rei � �

nX
i��

rei���ei� �O���� �

By taking �� 	 from above and from below
 we see that
nP
i��

rei���ei� � 	
 thus verifying

that � satis�es the cycle law�
To complete the proof
 we show that the unit current �ow I has E�I� � R�a
 z��

X
e

reI�e�
� �

�

�

X
x

X
y

rxy

�
Vy 
 Vx
rxy

��

�
�

�

X
x

X
y

cxy�Vy 
 Vx�
�

�
�

�

X
x

X
y

�Vy 
 Vx�I� �xy��

Since I is antisymmetric


�

�

X
x

X
y

�Vy 
 Vx�I� �xy� � 
X
x

Vx
X
y

I� �xy� � ����

Applying the node law and recalling that jj I jj � �
 we conclude that the right�hand
side of ���� is equal to

Vz 
 Va
jj I jj � R�a
 z� �

�

Let a� z be vertices in a network
 and suppose that we add to the network an edge
which is not incident to a� How does this a�ect the escape probability from a to z&
Probabilistically the answer is not obvious� In the language of electrical networks

this question is answered by�

Theorem ��� 
Rayleigh�s Monotonicity Law� If freg and fr�eg are sets of resis�
tances on the edges of the same graph G� and if re � re� for all e� then

R�a
 z� r� � R�a
 z� r�� �

Proof� Note that inf



P
e
re��e�

� � inf



P
e
r�e��e�

� and apply Thomson"s Principle �The�

orem ����� �



��

Corollary ��	 Adding an edge weakly decreases the e�ective resistance R�a
 z�� If
the added edge is not incident to a� the addition weakly increases the escape probability
P�a� z� � � �aR�a
 z� � ���

Proof� Before we add an edge to a network we can think of it as existing already
with c � 	 or r ��� By adding the edge we reduce its resistance to a �nite number�
�

Thus
 combining the relationship ���� and Corollary ��� shows that the addition
of an edge not incident to a �which we regard as changing a conductance from 	 to ��
cannot decrease the escape probability P�a� z��

Exercise ��
 Show that R�a
 z� is a concave function of freg�

Corollary ��� The operation of gluing vertices cannot increase e�ective resistance�

Proof� When we glue vertices together
 we take an in�mum over a larger class of
�ows� �

Moreover
 if we glue together vertices with di�erent potentials
 then e�ective resistance
will strictly decrease�

� In�nite Networks

For an in�nite graph G containing vertex a
 let fGng be a collection of �nite connected
subgraphs containing a and satisfying �nGn � G� If all the vertices in G n Gn are
replaced by a single vertex zn
 then

R�a
��� � lim
n��R�a
 zn in Gn � fzng� �

Now

P�a��� �
C�a
��

�a
�

A �ow on G from a to in�nity is an antisymmetric edge function obeying the node
law at all vertices except a� Thomson"s Principle remains valid for in�nite networks�

R�a
�� � inf f E��� � � a unit �ow from a to �g � ����

Let us summarize the facts in the following proposition�

Proposition ��� Let hG� fcegi be a network� The following are equivalent�


� The weighted random walk on the network is transient�

�� There is some node a with C�a
�� � 	 �equivalently� R�a
�� ����


� There is a �ow � from some node a to in�nity with jj � jj � 	 and E��� ���
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In particular
 any subgraph of a recurrent graph must be recurrent�
Recall that an edge�cutset � separating a from z is a set of edges so that any path

from a to z must include some edge in ��

Corollary ��� 
Nash�Williams 
������ If f�ng are disjoint edge�cutsets which
separate a from z� then

R�a
 z� �X
n

��X
e��n

ce

�A�� � ����

In an in�nite network hG� fcegi� the analogous statement with z replaced by � is also
valid� in particular� if there exist disjoint edge�cutsets f�ng that separate a from �
and satisfy X

n

��X
e��n

ce

�A�� �� �

then the weighted random walk on hG� fcegi is recurrent�
Proof� Let � be a unit �ow from a to z� For any n

X
e��n

ce �
X
e��n

re��e�
� �

��X
e��n

p
ce
p
rej��e�j

�A�

�

��X
e��n

j��e�j
�A�

� jj � jj � � � �

because �n is a cutset and jj � jj � �� Therefore

X
e

re��e�
� �X

n

X
e��n

re��e�
� �X

n

��X
e��n

ce

�A�� �
�

Example ��� 
Z� is recurrent� Take re � � on G � Z� and consider the cutsets
consisting of edges joining vertices in ��n to vertices in ��n��
 where �n � �
n� n���
Then by Nash�Williams ����


R�a
�� �X
n

�

���n� ��
�� �

Thus simple random walk on Z� is recurrent� Moreover
 we obtain a lower bound for
the resistance from the center of a square �n � �
n� n�� to its boundary�

R�	
 ��n� � c logn �

In the next chapter
 we will obtain an upper bound of the same type� �
The Nash�Williams inequality ���� is useful
 but in general is not sharp� For example

for the ��� tree in Example ���
 the e�ective resistance from the root to � is in�nite
because the random walk is recurrent
 yet the right�hand side of ���� is at most � for
any sequence of disjoint cutsets �prove this
 or see Lyons and Peres ������



�	

Example ��� 
Z� is transient� To each directed edge �e in the lattice Z�
 attach an
orthogonal unit square �e intersecting �e at its midpoint me� De�ne ���e� to be the
area of the radial projection of �e onto the sphere �B�	� �

	
�
 taken with a positive

sign if �e points in the same direction as the radial vector from 	 to me
 and with a
negative sign otherwise� By considering a unit cube centered at each lattice point
and projecting it to �B�	� �

	
�
 we can easily verify that � satis�es the node law at all

vertices except the origin� Hence � is a �ow from 	 to � in Z�� It is easy to bound
its energy�

E��� �X
n

C�n
�
�
C�

n�

��
�� �

By Proposition ���
 Z� is transient� This works for any Zd
 d � �� An analytic
description of the same �ow was given by T� Lyons �������

�
Exercise ��� Fix k � �� De�ne the k�fuzz of an undirected graph G � �V�E� as the
graph Gk � �V�Ek� where for any two distinct vertices v� w � V � the edge fv� wg is
in Ek i� there is a path of at most k edges in E connecting v to w� Show that for G
with bounded degrees� G is transient i� Gk is transient�

A solution can be found in Doyle and Snell �����
 x�����

�� The Method of Random Paths

A self�avoiding path from a to z is a sequence of vertices v�� � � � � vn such that v� � a
and vn � z
 adjacent vertices vi�� and vi are connected by an edge
 and vi �� vj for
i �� j� If � and � are two self�avoiding paths from a to z
 de�ne

j� � �j � number of edges in the intersection of � and � �

If �e is the oriented edge pointing from vertex v to w
 let �
e be the reversed edge
pointing from w to v� If � is a measure on the set of self�avoiding paths from a to z

de�ne

��e� � ��� � � � e� � ��� � � � �e or � � �
e ��

The Nash�Williams inequality yields lower bounds for e�ective resistance� For
upper bounds the following result is useful� Assume that re � � for all e� the result
can be extended easily to arbitrary resistances�

Theorem ���� 
Method of random paths�

R�a
 z� � inf
	

X
e

���e��� � inf
	
E	
	� j� � �j � �

where the in�mum is over all probability measures � on the set of self�avoiding paths
from a to z� and � and � are independent paths with distribution �� Similarly� if there
is a measure � on in�nite self�avoiding paths in a graph G with E	
	� j� � �j � ���
then simple random walk on G is transient�
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Remark� The useful direction here is R�a
 z� � P
��e�� for all ��

Proof� The second equality is trivial� write j� � �j as Pe �f��e���eg�

Given a probability measure � on the set of self�avoiding paths from a to z
 de�ne

���e� �� ��� � � � �e�
 ��� � � � �
e �

� E	 ��f� � �eg 
 �f� � �
e g� �
By de�nition
 � is antisymmetric� To see that � obeys the node law
 observe that

X
w
w�v

�� �vw� � E	

� X
w
w�v

�f� � �vwg 
 �f� � �
vwg
�
�

Assume v �� fa� zg� If
 for a sample path �
 a term in the sum is nonzero
 then �
must use either an edge directed to v or an edge directed from v� But because � is
a self�avoiding walk which terminates at z
 it must also use exactly one other edge
incident to v
 in the �rst case directed away from v and in the second case directed to
v� Hence the net contribution of � to the sum is zero� We conclude that � is a �ow�

Clearly
 � is a unit �ow
 i�e��

jj � jj � X
x�a

�� �ax� � � �

so we can apply Thomson"s principle�

R�a
 z� �X
e

���e��� �X
e

���e����

The other inequality R�a 
 z� � inf	
P
��e�� will not be used in these notes
 so

we only sketch a proof� Let I denote a unit current �ow� Then

R�a
 z� �
X
e

I�e���

Notice that a unit current �ow is acyclic� De�ne a Markov chain by making transitions
according to the �ow I normalized� This chain then de�nes a measure on paths and
���e� � I��e�
 because I is acyclic� For details
 see Lyons and Peres ������� �

Example ���� In Z�
 consider the boundary ��n � fx � Z�� jj x jj � � ng of the
square �n � �
n� n��� Using Nash�Williams we have seen that

R�	
 �n� � c logn �

Now de�ne a measure � on self�avoiding paths in �n as follows� Pick a ray �� em�
anating from the origin in a random uniformly distributed direction
 and let � be
the distribution of the lattice path that best approximates �� By considering edges e
according to their distance from the origin
 we also get

X
e

���e��� �
nX

k��

c�k
�
c�
k

��
� C log n �



��

So in Z� we have
c logn � R�	
 ��n� � C logn �

�

Example ���� In Z�
 de�ne � analogously
 but this time on the whole in�nite lattice�
Now

R�	
�� �X
k

c�k
�
�
c�
k�

��
���

�

Example ���� 
Wedges in Z�� Given a non�negative and non�decreasing function
f 
 consider the wedge

Wf � f�x� y� z� � 	 � y � x� 	 � z � f�x�g �
By Nash�Williams
 the resistance from the origin to � in Wf satis�es

R�	
�� � C
X
k

�

kf�k�
�

In particular
 if this sum diverges
 then Wf is recurrent� The converse also holds� �

Theorem ���� 
T� Lyons ����� If
P

k�kf�k��
�� ��� then the wedge Wf is tran�

sient�

Proof Idea� Choose a random point �U�� U�� according to the uniform distribution
on �	� ��� and �nd the lattice path closest to f�k� U�k� U�f�k��g�k��� The completion
of this proof is left as an exercise� �

�� Transience of Percolation Clusters

The graph Z� supports a �ow of �nite energy
 described in Example ���
 and hence
simple random walk in three dimensions is transient� Equivalently
 if each edge of
Z� is assigned unit conductance
 then the e�ective conductance from any vertex to
in�nity is positive� If a �nite number of edges are removed
 then the random walk on
the in�nite component of the modi�ed graph is also transient
 because the e�ective
conductance remains nonzero�

A much deeper result
 �rst proved by Grimmett
 Kesten
 and Zhang ������
 is that
if d � � and p � pc�Z

d�
 then simple random walk on C��Zd� p� is transient
 where
C��Zd� p� is the unique in�nite cluster of Bernoulli�p� percolation on Zd� Benjamini

Pemantle and Peres ������ �hereafter referred to as BPP ������� gave an alternative
proof of this result and extended it to high�density oriented percolation� Their argu�
ment uses certain �unpredictable
 random paths that have exponential intersection
tails to construct random �ows of �nite energy on C��Zd� p��



��� Transience of Percolation Clusters ��

Let G � �VG� EG� be an in�nite graph with all vertices of �nite degree and let
v� � VG� Denote by ' � '�G� v�� the collection of in�nite oriented paths in G which
emanate from v�� Let '� � '��G� v�� � ' be the set of paths with unit speed

i�e�
 those paths for which the nth vertex is at distance n from v��

Let 	 � � � �� A Borel probability measure � on '�G� v�� has exponential
intersection tails with parameter � �in short
 EIT���� if there exists C such that

�� �
n
��� �� � j� � �j � n

o
� C�n ����

for all n
 where j� � �j is the number of edges in the intersection of � and �� If
such a measure � exists for some basepoint v� and some � � �
 then we say that G
admits random paths with EIT���� By the previous chapter
 such a graph G must be
transient�

Theorem ���� 
Cox�Durrett ����� BPP ����� For every d � �� there exists
� � � such that the lattice Zd admits random paths with EIT����

Proof� For d � �
 we will show �following Cox and Durrett ����
 who attribute
the idea to Kesten� that the �uniform distribution
 on '��Z

d� 	� has the required
EIT property� for d � � such a simple choice cannot work
 and we will delay the
proof to Chapter ��� Let d � �
 and de�ne � to be the distribution of the random
walk with i�i�d� increments uniformly distributed on the d standard basis vectors
��� 	� � � � � 	�� � � � � �	� � � � � 	� ��� Let fXng and fYmg be two independent random walks
with distribution �� It su�ces to show that the number of vertex intersections of
these two walks has an exponential tail� Since jjXn jj � � n for all n
 we can have
Xn � Ym only if n � m� The process fXn
Yng is a mean 	 random walk in the d
�
dimensional sublattice of Zd consisting of vectors orthogonal to ��� �� � � � � ��
 and its
increments generate this sublattice� Since d
 � � �
 the random walk fXn 
 Yng is
transient
 and ���� holds with

� �� P��n � � Xn 
 Yn � 	�� and C � ��

�

Proposition ���� 
BPP ����� Suppose that the directed graph G admits random
paths with EIT���� and consider Bernoulli�p� percolation on G� If p � � then with
probability 
 there is a vertex v in G such that the open cluster C�v� is transient�
Proof� The hypothesis means that there is some vertex v� and a probability measure
� on ' � '�G� v�� satisfying ����� We will assume here that � is supported on '��
the general case is treated in BPP �������

For N � � and any in�nite path � � '��G� v��
 denote by �N the �nite path
consisting of the �rst N edges of �� Consider the random variable

ZN �
Z
��

p�N�f�N is openg d���� � ����



��

Except for the normalization factor p�N 
 this is the ��measure of the paths that stay
in the open cluster of v� for N steps�

Since each edge is open with probability p �independently of other edges�
 E�ZN� �
�
 but we can say more� Let BN be the ���eld generated by the status �open or closed�
of all edges on paths �N with � � '�� It is easy to check that for each � � '�

the sequence fp�N�f�N is opengg is a martingale adapted to the �ltration fBNgN���
Consequently
 fZNgN�� is also a non�negative martingale� By the Martingale Con�
vergence Theorem
 fZNg converges a�s� to a random variable Z�� In fact
 we now
show that fZNg is bounded in L�
 and hence converges in L�� Since each edge is open
with probability p �independently of other edges�
 E�ZN� � �� The second moment
of ZN satis�es

E�Z�
N� � E

Z
��

Z
��

p��N�f�N and �N are openg d���� d����

�
Z
��

Z
��

p�j�
�j d���� d����

�
�X
k��

p�k�� �f��� �� � j� � �j � kg � ����

By ����
 the sum on the right�hand side of ���� is bounded by
P�

k��C
�
�
p

�k

 which

does not depend on N and is �nite since � � p�
On the event fZ� � 	g
 the cluster C�v�� is in�nite
 and by Cauchy�Schwarz


P�jC�v��j ��� � P�Z� � 	� � �EZ���

EZ��
�

Since EZ�
N is bounded
 by Fatou"s Lemma the right�hand side is positive� Thus with

positive probability C�v�� is in�nite
 and it remains to prove that C�v�� is a�s� transient
on this event�

We will construct a �ow of �nite energy on C�v��� For each N � �
 and every edge
�e directed away from v�
 de�ne

fN ��e� �
Z
�
p�N�f�N is openg�f�e��Ng d���� � ����

If �e is directed towards v�
 let f��e� � 
f��
e �
 where �
e is the reversal of �e� Let
B�v�� N� denote the set of all vertices within distance N of v�� Then fN is a �ow
on C�v�� � B�v�� N � �� from v� to the complement of B�v�� N�
 i�e�� for any vertex
v � B�v�� N� except v�
 the incoming �ow to v equals the outgoing �ow from v� The
strength of fN �the total out�ow from v�� is exactly ZN �

Next
 we estimate the expected energy of fN by summing over edges directed away
from v��

E
X
�e

fN��e�
� � E

Z
��

Z
��

p��N�f�N ��N are openg
X
�e

�f�e��Ng�f�e��Ng d���� d����
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�
Z
��

Z
��

j� � �j p�j�
�j d���� d����

�
�X
k��

kp�k�� �f��� �� � j� � �j � kg� ��	�

Again using ���� and p � �
 from ��	� we conclude that

E
X
�e

fN ��e�
� �

�X
k��

k

�
�

p

�k
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where C does not depend on N �
For each directed edge �e of G
 the sequence ffN��e�g is a fBNg�martingale which

converges a�s� and in L� to a nonnegative random variable f��e�� The edge function
f is a �ow with strength Z� on C�v��
 and has �nite expected energy by ���� and
Fatou"s Lemma�

Thus
P�C�v�� is transient� � P�Z� � 	� � 	 �

so the tail event f�v � C�v� is transientg must have probability � by Kolmogorov"s
zero�one law� �

Theorem ���� 
Grimmett� Kesten and Zhang ����� Consider Bernoulli�p�
percolation on Zd� where d � �� For all p � pc� the unique in�nite cluster is a�s�
transient�

Proof� It follows from Theorem ���� and Proposition ���� that the in�nite cluster is
transient if p is close enough to ��

Recall that a set of graphs B is called increasing if for any graph G that contains
a subgraph in B
 necessarily G must also be in B�

Consider now percolation with any parameter p � pc in Zd� Following Pisztora
������
 call an open cluster C contained in some cube Q a crossing cluster for Q if
for all d directions there is an open path contained in C joining the left face of Q to
the right face� For each v in the lattice NZd
 denote by �N �v� the cube of side�length
�N�� in Zd
 centered at v� Let Ap�N� be the set of v � NZd with the following
property� The cube �N �v� contains a crossing cluster C such that any open cluster
in �N�v� of diameter greater than N��	 is connected to C by an open path in �N �v��

Proposition ��� in Antal and Pisztora ������
 which relies on the work of Grimmett
and Marstrand ����	�
 implies that Ap�N� stochastically dominates site percolation
with parameter p��N� on the stretched lattice NZd
 where p��N�� � as N ��� By
Liggett
 Schonmann and Stacey ������
 it follows that Ap�N� stochastically dominates
bond percolation with parameter p��N� on NZd
 where p��N�� � as N ��� This
domination means that for any increasing Borel set of graphs B
 the probability
that the subgraph of open sites under independent bond percolation with parameter
p��N� lies in B
 is at most P�Ap�N� � B�� If N is su�ciently large
 then the in�nite
cluster determined by bond percolation with parameter p��N� on the lattice NZd




��

is a�s� transient� The set of subgraphs of NZd that contain a transient subgraph is
increasing
 so Ap�N� contains a transient subgraph bAp�N� with probability �� Observe
that bAp�N� is isomorphic to a subgraph of the ��Nd�fuzz
 of the in�nite cluster Cp
in the original lattice
 so by Rayleigh"s monotonicity principle
 we conclude that Cp is
also transient a�s� �See Ex� ���
 or x��� in Doyle and Snell ������ for the de�nition and
properties of the k�fuzz of a graph�� Alternatively
 it can be veri�ed that bAp�N� is
�roughly isometric
 to a subgraph of Cp
 and therefore Cp is transient a�s� �see Soardi
������ �

Remark� Hiemer ������ proved a renormalization theorem for oriented percolation

that allowed him to extend the result of ��� on transience of oriented percolation
clusters in Zd for d � �
 from the case of high p to the whole supercritical phase for
oriented percolation�

Recall that a collection of edges � is a cutset separating v� from� if any in�nite
self�avoiding path emanating from v� must intersect �� Nash�Williams proved that
if f�ng�n�� is a sequence of disjoint cutsets separating v� from in�nity in a connected
transient graph
 then

P
n j�nj�� ���

The following extension of Theorem ���� provides �ner information about the
permissible growth rates of cutsets on supercritical in�nite percolation clusters�

Exercise ���� Show that for d � ��

inffq � � a �ow f �� 	 from 	 to � on Zd with
X jf�e�jq ��g � d

d
 �
�

Theorem ���� 
Levin and Peres ����� Let C��Zd� p� be the in�nite cluster of
Bernoulli�p� percolation on Zd� Then for d � � and p � pc�Z

d�� a�s��

inffq � � a �ow f �� 	 from 	 to � on C��Zd� p� with
X
e

jf�e�jq ��g � d

d
 �
�

Corollary ���	 Let d � � and p � pc�Z
d�� With probability one� if f�ng is a

sequence of disjoint cutsets in the in�nite cluster C��Zd� p� that separate a �xed vertex
v� from �� then

P
n j�nj�� �� for all � � �

d�� �

Proof� Pick � � �
d�� 
 and let f be a unit �ow on C��Zd� p� with

P jf�e�j��� � �

which exists by Theorem ����� Observe �rst that

E����f� �
X
e�EG

jf�e�j��� �X
n

X
e��n

jf�e�j����

since the f�ng are disjoint� By Jensen"s inequality
 for all n � �


�

j�nj
X
e��n

jf�e�j��� �
� �

j�nj
X
e��n

jf�e�j
����

� j�nj���� �

Multiplying by j�nj and summing over n establishes the Corollary� �

Remark� Theorem ���� was recently sharpened by Ho�man and Mossel�



��� Subperiodic Trees ��

�� Subperiodic Trees

For a tree �
 let �v denote the subtree of � rooted at vertex v that contains all
descendants of v� � is N�subperiodic if for any vertex v � � there exists a ���
adjacency preserving map f � �v � �f�v� with jf�v�j � N �

Example ���� Examples of subperiodic trees�

� b�ary trees for any integer b � ��

� The Fibonacci tree ��b described in Exercise ����

� The tree of all self�avoiding walks in Zd�

� Directed covers of �nite connected directed graphs� to every directed path of
length n in the graph corresponds v � � with jvj � n� extensions of the path
correspond to descendants of v�

� Universal covers of undirected graphs� to every non�backtracking path of length
n in the graph corresponds v � � with jvj � n� extensions correspond to de�
scendants
 as above�

�
Suppose that b � � is an integer� For a closed nonempty set � � �	� ��
 de�ne a

tree ���� b� as follows� Consider the system of b�adic subintervals of �	� ��� those which
have a non�empty intersection with � form the vertices of the tree� Two vertices are
connected by an edge if one of the corresponding intervals is contained in the other
and their orders di�er by one �i�e�
 the ratio of lengths is b�� The root of this tree is
�	� ��� Clearly
 ���	� ��� b� is the usual b�ary tree� If b��mod �� � �
 i�e�
 � is invariant
under the transformation x �� bx�mod ��
 then ���� b� is 	�subperiodic�

Theorem ���� 
Furstenberg ��	
� For � which is subperiodic� gr��� exists and
gr��� � br���� Furthermore�

inf
�
S�br������ � 	 �

where S����� �
P
v��

��jvj for a cutset ��

Corollary ���� 
Furstenberg�s formulation� Let � � �	� �� be a compact set� If
b��mod �� � �� then

dimH��� � dimM��� � �

for some �� and moreover� H���� � 	� where H� denotes ��dimensional Hausdor�
measure�



��

Proof of Theorem ����� We will give the proof for � 	�subperiodic� The N �
subperiodic case can be reduced to the 	�subperiodic case� this reduction is left as an
exercise� Assume �rst that � has no leaves�

Suppose that for some �nite cutset �


S����� � � � ����

Denote d � max
v��

jvj� By 	�subperiodicity
 for any v � �
 there exists a cutset ��v� of

�v such that X
w���v�

���jwj�jvj� � � �

In other words
 X
w���v�

��jwj � ��jvj �

Replace v in � by the vertices in ��v� to obtain a new cutset (� in � with S��� (�� � ��
Given n
 repeat this kind of replacement for every vertex v in the current cutset with
jvj � n to get a cutset �� such that all vertices u � �� satisfy n � juj � n� d� Then

j�nj��n�d � S������ � � �

This inequality depends on the assumption of no leaves� Thus j�nj � �n�d for all
n
 whence gr��� � �� Since ���� holds for any � � br���
 we infer that gr��� � ��
Therefore

gr��� � br��� � gr��� �

Finally
 consider �� � br���� If S������ � � for some �nite cutset �
 then we
could �nd � � �� such that S����� � �
 and the preceding argument would yield
that gr��� � � � ��
 a contradiction� Thus for all cutsets �


S�br������ � ��

If � has leaves
 create a modi�ed tree �� by attaching to each leaf an in�nite path�
�� is periodic as well
 and so the theorem can be applied to it
 yielding br���� � gr�����
But since br��� � br���� and gr��� � gr����
 we have

br��� � gr��� � gr��� � gr���� � br���� � br����

and hence gr��� � br���� �

Exercise ���� Construct a subperiodic tree with superlinear polynomial growth �more
precisely� construct a subperiodic tree T such that jTn jj to� as n � �� but jTnj �
O�nd� for some d ���

�Hint� build a subtree of the binary tree where all �nite paths are labeled by words
in the Morse sequence 	��	�		��		�	��	 � � �� This sequence is obtained by iterating
the substitution 	 �� 	�
 � �� �	� Alternatively
 use a lexicographic spanning tree in
Zd
 as described in the next chapter��



��� The Random Walks RW� ��

Exercise ���� Does every subperiodic tree with exponential growth have a subtree
without leaves that has bounded pipes�

�Hint� Consider the subtree T of the binary tree T�
 containing all self�avoiding paths
from the root in T� with the property that for every n � �		
 any n� consecutive
edges on the path contain a run of n consecutive left turns��

�� The Random Walks RW�

For a graph G
 �x an origin o
 and de�ne jej as the length of a shortest path from o to
an end�vertex of e� We will de�ne a family of processes RW� as weighted random walks
on G� Speci�cally
 each edge e is assigned conductance ��jej� We will mostly consider
the case where � is a tree and o is the root �
 although we will also consider these
processes de�ned on Cayley graphs of groups� By �ne tuning �
 we obtain random
walks that explore the graph better than the simple random walk� The following
result is stronger than Theorem ��� mentioned in Chapter ��

Theorem ���� 
R� Lyons ����� RW� is transient on a tree � if � � br���� and
recurrent if � � br����

Proof� If � � br���
 then for any � there exists a cutset � such that
P

v�� �
�jvj � ��

By Nash�Williams �for just one cutset�

R��
�� � �P
v��

��jvj
�

�

�
�

Letting � � 	 shows that R��
�� is in�nite
 and hence the walk is recurrent�
If � � br��� choose � � �� � br��� so that there exists a unit �ow � from � to �

with ��e� � C�
�jej
� � Then

E��� �X
e

re���e��
� �X

n

�n
X
jej�n

��e�C��jej� � C
X
n

�
�

��

�n X
jej�n

��e� �� �

since � is a unit �ow� �

Let G be a countable group with a �nite set of generators S � hg�� � � � gmi� With
every generator we include its inverse
 so S � S��� The Cayley graph of G has as
vertices the elements of the group
 and contains an �unoriented� edge between u and
v if u � giv for some gi � S� Each element g � G can be represented as a word in the
generators
 g � gi��� � � � gi�m�� let jgj be the minimal length of words which represent
g
 and let Gn � fg � G � jgj � ng� The growth gr�G� �� limn jGnj��n exists for such
groups
 and the group is of exponential growth if gr�G� � ��

Corollary ���� 
R� Lyons ����� RW� on the Cayley graph of a group G of expo�
nential growth is transient for � � gr�G� and recurrent for � � gr�G��



�	

Proof� The second statement follows from the Nash�Williams inequality� For the �rst

we will show that random walk on a subgraph is transient� by Rayleigh"s Monotonicity
Principle
 this is enough� We will use the lexicographic spanning tree � in G� Assign
g its lexicographically minimal representation g � gi��� � � �gi�m� where m � jgj and
if g � gj��� � � �gj�m� is another representation of g
 then at the smallest k such that
i�k� �� j�k� we have i�k� � j�k�� The edge gh is in � if j jgj 
 jhj j � � and either g
is an initial segment of h or h is an initial segment of g� Let the identity be the root�
Since there is a unique path from the root to any element in �
 and � contains all
elements of G
 it is indeed a spanning tree� One can check that it is 	)subperiodic�

Observe that j�nj � jGnj
 so gr��� � gr�G�� Since � is subperiodic
 Theorem ����
implies that br��� � gr�G�� By Theorem ����
 for � � gr�G� the biased walk RW� is
transient on �
 hence also on G� �

Open Problem � For � � � � gr�G�� is it true that

speed�RW�� �� lim
n��

jXnj
n

� 	 � a�s� �

Here jvj denotes the distance of v from the identity�

We remark that there exist groups of exponential growth where the speed of simple
random walk is 	 a�s� An example is the simple random walk on the lamplighter
group� see Lyons
 Pemantle and Peres �������

�� Capacity

In Chapter � we considered capacity on the boundary of a tree� We now generalize
the de�nition to any metric space X equipped with the Borel ���eld B� A kernel F
is a measurable function F � X�X � �	���� For a measure � on �X�B�
 the energy
of � in the kernel F is de�ned as

EF ��� �
Z
X

Z
X
F �x� y�d��x�d��y� �

We will mostly consider F of the form F �x� y� � f�jx 
 yj� for f non�negative and
non�increasing� we write Ef for EF in this case� De�ne the capacity of a set � in the
kernel F as

CapF ��� �

�
inf

	
	�����
EF ���

���
�

The �rst occurrence of capacity in probability theory was the following result�

Theorem ���� 
Kakutani ����a� ����b� If � � Rd is compact with 	 �� � and
B is a Brownian motion� then

P��B hits �� � 	 if and only if CapG��� � 	 �
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where G is the Green kernel

G�x� y� �

� jx
 yj��d d � � �
log� �jx
 yj��� d � � �

R� Lyons discovered connections between capacity and percolation on trees
 already
discussed in Chapter �� Let fpeg be a set of probabilities indexed by the edges of
a tree �� Let path�v� denote the unique path from the root to v
 and let F be the
kernel

F �x� y� �
Y

e�path�x�y�
p��e � ����

If pe � p
 then F �x� y� � p�jx�yj� More generally
 if P is the probability measure
corresponding to independent fpeg percolation
 then F �x� y� � �P�� 
 x � y�����
A� H� Fan proved that on an in�nite tree of bounded degree
 P�� 
 ��� � 	 i�
CapF ���� � 	� This was sharpened by R� Lyons to a quantitative estimate�

Theorem ���� 
R� Lyons ����� Let P be the probability measure corresponding to
independent fpeg percolation on a tree � and F the kernel de�ned in �

�� Then

CapF ���� � P��
 ��� � �CapF ���� � ����

Consider Brownian motion in dimension d � �� One obstacle to obtaining quanti�
tative estimates for Brownian hitting probabilities with capacity in Green"s kernel is
translation invariance of that kernel� If B is a Brownian motion started at the origin

then P�B hits � � x� becomes small as x � �� If we had a scale invariant kernel
instead
 we would have more hope
 as P�B hits c�� � P�B hits �� for any c � 	�
Hence we use capacity in the Martin kernel

K�x� y� �
G�x� y�

G�	� y�
�

� jyj
jx
 yj

�d��
����

for d � ��

Theorem ���� 
Benjamini� Pemantle� and Peres ����� Let B be a Brownian
motion in Rd for d � �� started at the origin� Let K be the Martin kernel de�ned in
�
��� Then for any closed set � in Rd�

�

�
CapK��� � P��B hits �� � CapK��� �

Remark� An analogous statement holds for planar Brownian motion
 provided it is
killed at an appropriate �nite stopping time �e�g�
 an independent exponential time
 or
the �rst exit from a bounded domain� and the corresponding Green function G�x� y�
is used to de�ne the Martin Kernel�



��

Theorem ���� 
BPP ����� Let fXng be a transient Markov chain on a countable
state space S with initial state � � S� and set

G�x� y� � Ex

� �X
n��

�fyg�Xn�

�
and K�x� y� �

G�x� y�

G��� y�
�

Then for any initial state � and any subset � of S�

�

�
CapK��� � P��fXng hits �� � CapK��� �

Exercise ���� Verify the analogous result for the stable��
�
subordinator and the kernel

G�s� t� � �

�
�t
 s����� 	 � s � t �
	 s � t � 	 �

Problem� Find the class of Markov processes for which the above estimate �for
suitable kernel G and resulting K� holds�
Proof of Theorem ����� To prove the right�hand inequality
 we may assume that
the hitting probability is positive� Let � � inffn � Xn � �g and let � be the measure
��A� � P��� � � and X� � A�� In general
 � is a sub�probability measure
 as �
may be in�nite� By the Markov property
 for y � �
Z

�

G�x� y�d��x� �
X
x��

P��X� � x�G�x� y� � G��� y� �

whence
R
�K�x� y�d��x� � �� Therefore EK��� � ����
 EK�������� � ��������� con�

sequently
 since ������ is a probability measure


CapK��� � ���� � P��fXng hits �� �
This yields one inequality� Note that the Markov property was used here�

For the reverse inequality
 we use the second moment method� Given a probability
measure � on �
 set

Z �
Z
�

�X
n��

�fyg�Xn�
d��y�

G��� y�
�

E��Z� � �
 and the second moment satis�es

E��Z
�� � E�

Z
�

Z
�

�X
m��

�X
n��

�fxg�Xm��fyg�Xn�
d��x�d��y�

G��� x�G��� y�

� �E�

Z
�

Z
�

X
m�n

�fxg�Xm��fyg�Xn�
d��x�d��y�

G��� x�G��� y�
�

Observe that

�X
m��

E�

�X
n�m

�fxg�Xm��fyg�Xn� �
�X

m��

P��Xm � x�G�x� y� � G��� x�G�x� y� �



��� Capacity ��

Hence

E��Z
�� � �

Z
�

Z
�

G�x� y�

G��� y�
d��x�d��y� � �EK��� �

and therefore

P��fXng hits �� � P��Z � 	� � �E��Z��
�

E��Z��
� �

�EK��� �

We conclude that P��fXng hits �� � �
�
CapK���� �

The upper bound on P�� 
 ��� obtained by the �rst moment method ��� is
not sharp enough to prove Theorem ����� For example
 take the binary tree with
Bernoulli�p� percolation for p � �

�
� if �n � fv� jvj � ng
 then the �rst�moment method

yields an upper bound of � for any n
 while CapF ���n� � ��n � ����� However
 we
can use Theorem ���� to give a short proof of Theorem �����

Proof of Theorem ����� The �rst inequality was already proven in Proposition ����
It remains to prove the right�hand inequality in ����� Assume �rst that � is �nite�

There is a Markov chain fVkg hiding here� Embed � in the lower half�plane
 with
the root at the origin� The random set of r � 	 leaves that survive the percolation
may be enumerated from left to right as V�� V�� � � � � Vr� The key observation is that
the random sequence �� V�� V�� � � � � Vr�*�*� � � � is a Markov chain on the state space
�� � f��*g
 where � is the root and * is a formal absorbing cemetery�

Indeed
 given that Vk � x
 all the edges on the unique path from � to x are retained

so that survival of leaves to the right of x is determined by the edges strictly to the
right of the path from � to x
 and is thus conditionally independent of V�� � � � � Vk���
This veri�es the Markov property
 so Theorem ���� may be applied�

The transition probabilities for the Markov chain above are complicated
 but it is
easy to write down the Green kernel� Clearly
 G��� y� equals the probability that y
survives percolation
 so

G��� y� �
Y

e�path�y�
pe �

If x is to the left of y
 then G�x� y� is equal to the probability that the range of the
Markov chain contains y given that it contains x
 which is just the probability of y
surviving given that x survives� Therefore


G�x� y� �
Y

e�path�y�npath�x�
pe �

and hence

K�x� y� �
G�x� y�

G��� y�
�

Y
e�path�x�y�

p��e �

Now G�x� y� � 	 for x on the right of y� thus �keeping the diagonal in mind�

F �x� y� � K�x� y� �K�y� x�



��

for all x� y � ��
 and therefore

EF ���� � �EK���� �

Now apply Theorem ���� to � � ���

CapF ���� �
�

�
CapK���� �

�

�
P�fVkg hits ��� �

�

�
P��
 ��� �

This establishes the upper bound for �nite ��
The inequality for general � follows from the �nite case by taking limits� �

Remark� The inequality ���� was recently sharpened by Marchal �����

The notation E has appeared twice
 once as a functional on �ows and once as a
functional on measures� As discussed following Lemma ���	
 measures on the bound�
ary of a tree correspond to �ows on the tree� we shall see that the energy of a measure
on �� is �up to an additive constant� the same as the energy of the corresponding �ow
on �� Given a measure � on ��
 let � be the corresponding �ow� ��uv� � ��	 � v � 	�

where u is the parent of v� Observe that

E��� �
X
e

re��e�
� �

X
e

re

Z
��

Z
��
�f
�eg�f��egd��	�d��
� �

Moving the sum inside the integral
 the above equalsZ
��

Z
��

X
e

�fe�

�gred��	�d��
� �
Z
��

Z
��

X
e�
��

red��	�d��
� �

By the series law for resistances
 we are left with

E��� �
Z
��

Z
��
R��
 	 � 
�d��	�d��
� � ����

Now if
��C��
 v� � � � ��P��
 v� � ����

then substituting in ���� yields

EK��� � � � E��� � ����

where K�	� 
� � ��P�� 
 	 � 
�� By taking in�mum on both sides of ���� and
applying Thomson"s Principle
 we can rewrite Theorem ����� If the correspondence
���� holds for resistances freg and an independent fpeg percolation P
 then

�

� �R��
��
� P��
�� � �

� �R��
��
� ����

It is easily checked that in the case of Bernoulli�p� percolation
 the correspondence
���� is preserved by taking ce � ��
 p���pjvj
 where e is the edge connecting v to its
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parent� In this case the weighted random walk on the resulting network is RW��p�
Thus
 ���� implies that percolation occurs at p if and only if RW��p is transient�

Consider a Cantor set � in the unit interval and the corresponding tree ���� b��
We shall see that simple random walk on this tree is transient i� �
 considered as a
subset of R�
 is non�polar for Brownian motion� In particular
 transience of ���� b� is
independent of b� The following theorem can be found in Benjamini and Peres ������
in a special case
 and in Pemantle and Peres �����b� in general�

Theorem ���	 Let � be a subtree of the bd�adic tree and let f � �	��� � �	���
be a non�increasing function with f�	�� � �� Let + be the canonical map from the
boundary of the bd�adic tree to �	� ��d� +�� is base�b representation of points in �	� ��d�
Let dist�v� w� � b�jv�wj for v� w � �� and let dist�x� y� be Euclidean distance for
x� y � �	� ��d� Then

Capf ���� � Capf�+����� �

where Capf stands for capacity in the kernel F �x� y� � f�dist�x� y��� This means
there exist constants c and C� depending on b and d only� such that

cCapf �+����� � Capf ���� � C Capf �+����� �

Exercise ���
 Consider Bernoulli�p� percolation on an in�nite tree �� Prove that

Pp�component of � is transient� � 	 i� Pfpeg��
 ��� � 	 �

where pe �
k

k��
p when jej � k�

Hint� An in�nite tree T is transient i� Capjx�yj��T � � 	� The kernel jx�yj is obtained
by applying f�r� � 
 logb r to the distance between x and y�

Proof of Theorem ���	 For v � �
 let ��v� � ��	 � 	 � v�� We will prove that
Ef��� � Ef��+���
 i�e�


c�b� d� � Ef���
Ef��+���

� C�b� d� ��	�

for some constants 	 � c�b� d� � C�b� d� � �
 depending on b and d only� This will
yield Capf���� � Capf�+����� � proving the theorem�

Let

h�k� �

�
f�b�k�
 f�b��k�� k � �
f���� k � 	�

In the following
 write u � w if w is a descendant of u� Then

Ef��� �
Z
��

Z
��

jx�yjX
k��

h�k� d��x�d��y� �
�X
k��

h�k�
Z Z

jx�yj�k
d��x�d��y��



��

Breaking up the region of integration and observing that x � y � v i� x � v and
y � v
 the above is equal to

�X
k��

h�k�
X
jvj�k

Z Z
x�y�v

d��x�d��y� �
�X
k��

h�k�
X
jvj�k

���v��� �
�X
k��

h�k�Sk�

where Sk � Sk��� �
P
jvj�k

���v���� Note that

X
jvj�k��

���v��� � X
jvj�k

���v��� � bd
X

jvj�k��

���v��� �

i�e�
 Sk�� � Sk � bdSk���
We claim that in �	� ��d


Ef��+��� �
Z
�����

Z
�����

�X
k��

h�k��fk
b��k�jx�yjg d�+
���x�d�+���y� �

This holds because for the largest k yielding a non�zero term in the sum above

b�k � jx
 yj and thus the sum is bounded below by f�jx
 yj��

For vertices v� w at the same level of �
 set ��v� w� � � i� +�v� and +�w� are the
same or adjacent subcubes of �	� ��d
 and ��v� w� � 	 otherwise� Then

�� �f�	� 
�� j+�	�
+�
�j � b��kg � X
jvj�k��

X
jwj�k��

��v���w���v� w� � ����

Now use the standard inequality ���v���w� � ���v��� � ���w��� and the fact that the
number of cubes adjacent to a given cube is bounded above by �d
 to deduce that

�� �f�	� 
�� j+�	�
 +�
�j � b��kg � �dSk�� � �dbdSk�

It follows that
Ef��+��� � ��b�d

X
k

h�k�Sk � ��b�dEf��� �

For the reverse inequality
 choose l so that bl � pd� Then jv � wj � k � l implies
that j+�v�
 +�w�j � b�k
 and consequently

Ef��+��� �
�X
k��

f�b�k� �� �fjv � wj � k � lg

�
�X
k��

f�b�k� �Sk�l���
 Sk�l������ �

Using summation�by�parts shows that the right�hand side above is equal to

�X
k��

h�k�Sk�l��� � b�dl
�X
k��

h�k�Sk��� � b�dlEf��� �

�
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�� Intersection�Equivalence

This Chapter follows Peres ������� Throughout this chapter we work in �	� ��d and all
processes considered are started according to the uniform measure on �	� ��d
 unless
otherwise indicated�

Lemma ���� If B is a Brownian path �killed at an exponential time for d � ��� then

P�B � � �� �� � Capg���

for any Borel set �� where

g�r� �

�
log��r��� if d � �
r��d if d � �

� ����

Proof� �for d � ��� Denote by K the Martin kernel
 see ����� By Theorem ����


P�B hits �� �
Z

�����d

P��B hits �
 x�dx � �

�

Z
�����d

CapK��
 x�dx �

Because EK��� � CdEg��� for any measure � on �	� ��d
 the right�hand side above is
bounded below by

�

�Cd

Z
�����d

Capg��
 x�dx �
�

�Cd

Capg��� �

The upper�bound is a consequence of the probabilistic potential theory developed
by Hunt and Doob� There exists a �nite measure � such that

Px�B hits �� �
Z
�
g�jx
 yj�d��y� and ���� � Capg��� �

�see
 e�g�
 Chung �������� Then

P�B hits �� �
Z

�����d

Px�B hits ��dx �
Z
�

Z
�����d

g�jx
 yj�dxd��y� � Cd ���� �

where Cd is a constant depending only on d� Note that this proof extends to any initial
distribution � for B�	� with a bounded density� more generally a bounded Greenian
potential su�ces� �

Shizuo Kakutani
 generalizing a question of Paul L,evy
 asked which compact sets
� satisfy P�� � B� � B� �� �� � 	
 where B�
 B� are independent Brownian paths in
Rd �d � � or ��&

Evans ������ and Tongring ������ gave a partial answer�

If Capg���� � 	 � then P�� � B� � B� �� �� � 	 � ����



��

They also found a necessary condition involving the Hausdor� measure of �� Later
Fitzsimmons and Salisbury ������ gave the full answer� Capg���� � 	 is necessary as
well as su�cient in ����� Furthermore
 in dimension �
 their very general results yield
the equivalence

Capgk��� � 	 � P �� �B� � � � � � Bk �� �� � 	� ����

This led Chris Bishop to make the following insightful conjecture�

Conjecture � 
Bishop� Let B denote a Brownian path� Then for any nonincreasing
gauge f and any closed set �� the event that Capf���B� � 	 has positive probability
i� Capfg��� � 	�

We will present a proof of this below� Applying Kakutani"s Theorem ���� to �� �
� � B� and B� shows that

P�� � B� � B� �� �� � 	 � Capg�� � B�� � 	 with positive probability� ����

Bishop"s Conjecture �with f � g� along with ���� imply that

Capg���� � 	 � P�� � B� � B� �� �� � 	�

Hence Bishop"s Conjecture and Kakutani"s Theorem together give �����

Theorem ���� Let f be a non�negative and non�increasing function� Consider in�
dependent fpeg percolation on the �d�ary tree� with pe � pk whenever jej � k and with
p� � � � pk � ��f���k�� Let Qd�f� � �	� ��d be the set corresponding to �� in �	� ��d�
where � is the component of the root in this percolation� �This component may be
�nite� whence Qd�f� � ��� Then� for any closed set � � �	� ��d�

Capf ��� � P�� �Qd�f� �� �� � ����

For f � g in particular� Qd�f� is intersection�equivalent to Brownian motion� i�e��

P�� �Qd�g� �� �� � P�� �B �� �� � ����

Proof� By Theorem ����


P�� �Qd�f� �� �� � Pfpeg��
 ����� ��� � Capf������ ��� � ����

where the constants in � are universal
 namely � and �� Theorem ���� with b � �
yields

Capf ������ ��� � Capf ��� � ����

where the constants in � depend on d� Combining ���� and ���� establishes �����
Finally
 use ���� and Lemma ���� to prove ����� �
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Corollary ���� Let f and h be non�negative and non�increasing functions� If a
random closed set A in �	� ��d satis�es

P�A � � �� �� � Caph��� ��	�

for all closed � � �	� ��d� then

P�Capf �A � �� � 	� � 	 if and only if Capfh��� � 	 ����

for all closed � � �	� ��d� In particular� Bishop�s conjecture is true�

Proof� Enlarge the probability space where A is de�ned to include independent limit
sets of fractal percolations Qd�f� and eQd�h�� By Theorem ����

P�A � � �Qd�f� �� � A� � 	 if and only if Capf �A � �� � 	 �

it follows that

P� Capf �A � �� � 	 � � 	 if and only if P�A � � �Qd�f� �� �� � 	 � ����

Conditioning on Qd�f� and then using ��	� with � �Qd�f� in place of � gives

P�A � � �Qd�f� �� �� � 	 if and only if P� Caph�� �Qd�f�� � 	 � � 	� ����

Conditioning on Qd�f� and applying Theorem ���� yields

P� Caph�� �Qd�f�� � 	 � � 	 if and only if P�� �Qd�f� � eQd�h� �� �� � 	 � ����

Since Qd�f�� eQd�h� has the same distribution as Qd�fh�
 Theorem ���� implies that

P�� �Qd�f� � eQd�h� �� �� � 	 if and only if Capfh��� � 	� ����

Combining ����
����
����
 and ���� proves ����� �

Corollary ���� Suppose fAig are independent random closed sets in �	� ��d satisfying

P�Ai � � �� �� � Capgi���

for all closed � � �	� ��d and some gi non�negative and non�increasing� Then

P�A� � � � � � Ak � � �� �� � 	 � Capg����gk��� � 	 �

Example ���� A�s�� two independent Brownian paths in R	 do not intersect�



�	

This is a well�known result of Dvoretsky
 Erd-os and Kakutani ����	�� we will show
how it follows from intersection�equivalence� Let B� and B� be two independent
Brownian paths in R	
 started uniformly in the cube �	� ��	 and intersected with that
cube� Each is intersection�equivalent to Q	�g�
 and thus

P��	� ��	 � B� �B� �� �� � P�Q	�g� � eQ	�g� �� �� � ����

where eQ	�g� is an independent copy of Q	�r
���� Because Q	�g�� eQ	�g� has the same

distribution as Q	�g
��


P��	� ��	 � B� �B� �� �� � P�Q	�g
�� �� �� � ����

Since the edge probabilities in the percolation corresponding to g��r� � r�	 are all
pk � ����
 the tree corresponding to Q	�g

�� is a critical branching process and thus
dies out almost surely�

P�Q	�g
�� �� �� � 	 � ����

Putting together ���� and ���� shows that the two paths never intersect� �

Corollary ���	 
Lawler 
����� ������ Aizenman 
������ Let B� and B� be in�
dependent Brownian paths intersected with �	� ��d� considered as sets in �	� ��d� Then

P�dist�B�� B�� � �� �

�������
� d � �

�
� log �

d � �

�d�	 d � �

�

Proof� We will prove the cases d � �� the other cases are handled similarly� Let g be
the Greenian potential ����
 and write Qd�p� instead of Qd�g�
 where p � ���d� For a
closed set C and � � 	
 let C� be the set of points within distance � from a point in
C� Conditioning on B�

� and applying Theorem ���� gives

P�dist�B�� B�� � �� � P�B� �B�
� �� �� � P�Qd�p� � B�

� �� �� � ����

Now conditioning on �Qd�p��
� and again applying Theorem ���� yields

P�Qd�p� � B�
� �� �� � P��Qd�p��

� �B� �� �� � P��Qd�p��
� � eQd�p� �� �� � ��	�

where eQd�p� is an independent copy of Qd�p��
Combining ���� and ��	� shows that

P�dist�B�� B�� � �� � P��Qd�p��
� � eQd�p� �� �� � ����

Next let ��� � ��k � � and choose � so that �� � pd� Then P��Qd�p��
�� eQd�p� �� �� is

at most the probability that Qd�p� and eQd�p� both intersect the interior of the same
binary cube of side�length ���k���
 and this is bounded below by

c� �P�the construction leading to Qd�p
�� survives for k � � generations� � ����
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where c � � 
 q � 	 is the probability of survival of the �supercritical� branching
process associated to the construction of Qd�p��

The probability in ���� may be estimated via standard branching process argu�
ments
 but we use percolation instead� Consider Bernoulli�p�� percolation on the
�d�ary tree T and write the probability as Pp���
 Tk���� Since the minimal energy
measure on �Tk is the uniform measure �
 Theorem ���� yields that

�

Pp��
 Tk�
� �

CapF �Tk�
� EF ��� �

where F �v� w� � p�jv�wj� We have

EF ��� � ��
X

v�w�Tk

kX
j��

�p�j 
 p��j���v���w� � ��
kX

j��

X
jv�wj��j

�p�j 
 p��j���v���w� �

Since jv � wj � j if and only if jvj � j and jwj � j


EF ��� � � �
kX

j��

�p�j 
 p��j�

��X
jvj�j

��v�

�A�

� � �
kX

j��

�p�j 
 p��j���dj �

where the last equality holds because � is the uniform measure� We conclude that
EF ��� � Pk

j���p�
d��j and

�

Pp��
 Tk�
�

�
k if p � ��d

��dp��k if p � ��d �

Recall that p � ���d and hence the probability in ���� is equal to

Pp���
 Tk��� �
�����

�k � ���� � j log �j�� if d � �� because p� � ��d for d � � �

��	�d��k��� � �d�	 if d � � �

For the reverse inequality
 recall �����

P�dist�B�� B�� � �� � P��Qd�p��
� � eQd�p� �� �� �

Let Qk��
d �p� denote the union of all binary cubes of side�length ���k in the �k 
 ��th

step of the construction of Qd�p�
 and recall that ��� � ��k � �� Then �Qd�p��
�

is contained in the union of �d translates Qk��
d �p� � x of Qk��

d �p� and therefore the
probability P��Qd�p��

� � eQd�p� �� �� is bounded above by

�dP�the construction leading to Qd�p
�� survives to the �k 
 ��th generation��

The proof is now concluded by using the previous calculation for this probability� �
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�

�
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�

�

� � �

� �

Figure �� Tree with �

 spins at the vertices�

�� Reconstruction for the Ising Model on a Tree

This chapter follows Evans
 Kenyon
 Peres and Schulman �������
Consider the following broadcast process� At the root � of a tree T 
 a random

�� valued �spin
 �� is chosen uniformly� This spin is then propagated
 with error

throughout the tree as follows� For a �xed � � �	� ����
 each vertex receives the spin
at its parent with probability �
 �
 and the opposite spin with probability �� These
events at the vertices are statistically independent� This model has been studied in
information theory
 mathematical genetics and statistical physics� some of the history
is described below�

Suppose we are given the spins that arrived at some �xed set of vertices W of the
tree� Using the optimal reconstruction strategy �maximum likelihood�
 the probability
of correctly reconstructing the original spin at the root is clearly at least ���� denote
this probability by ���

�
� We will establish a lower bound for * � *�T�W� �� in terms

of the the e�ective electrical conductance from the root � toW �Theorem �����
 and an
upper bound for * which is the maximum �ow from � toW for certain edge capacities
�Theorem ������ When T is an in�nite tree
 these bounds allow us to determine �in
Theorem ����� the critical parameter �c so that
 denoting the nth level of T by Tn

we have

lim
n��*�T� Tn� ��

��� � 	 if � � �c

� 	 if � � �c �
����

As we explain below
 vanishing of the above limit is equivalent to extremality of
the �free boundary
 limiting Gibbs state for the ferromagnetic Ising model� For the
special case of regular trees
 the problem of determining �c was open for two decades

and was �nally solved in ���� by Bleher
 Ruiz and Zagrebnov �����

The random spins f�vg that label the vertices of T as described above
 can be
constructed from independent variables f
eg labeling the edges of T 
 as follows� For
each edge e
 let P�
e � 
�� � � � �
 P�
e � ��� Let �� be a uniformly chosen spin

and for any other vertex v let

�v �� ��
Y
e


e � ����
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where the product is over all edges e on the path from � to v� Given �W � f�v � v � Wg

the strategy which maximizes the probability of correctly reconstructing ��
 is to de�
cide according to the sign of E��� j �W �� with this strategy
 the di�erence between
the probabilities of correct and incorrect reconstruction is

*�T�W� �� � E
���P��� � � j �W �
P��� � 
� j �W �

��� � ����

Alternatively
 *�T�W� �� can be interpreted as the total variation distance between
the conditional distributions of �W given �� � � and given �� � 
�� see below� The
dependence between �� and �W is also captured by the mutual information

I���� �W � ��
X
x�y

P��� � x� �W � y� log
P��� � x� �W � y�

P��� � x�P��W � y�
�

Theorem �	�� Let T be an in�nite tree with root �� and suppose its vertices are
assigned random spins f�vg� using the �ip probability � � ��� as in ����� Consider
the problem of reconstructing �� from the spins at the n�th level Tn of T �


i� If �
 �� � br�T ����� then infn��*�T� Tn� �� � 	 and infn�� I���� �Tn� � 	�


ii� If �
 �� � br�T ����� then infn��*�T� Tn� �� � 	 and infn�� I���� �Tn� � 	�

The tail �eld of the random variables f�vgv�T contains events with probability strictly
between � and 
 in case �i�� but not in case �ii��

Thus in the notation of ����
 �c � ��
br�T ��������� As mentioned above
 this was
already known when T is a b�� � regular tree �for which br�T � � b�� Theorem ���� is
considerably more general� Simple examples show that at criticality
 when � 
 �� �
br�T �����
 asymptotic solvability of the reconstruction problem is not determined by
the branching number� in this case there is a sharp capacity criterion
 proved in ����

that we will not develop here� To see the relevance of the quantity �
�� appearing in
Theorem ����
 note the following equivalent construction of the random variables f�vg�
Perform independent bond percolation on T with parameter � � �
�� �the probability
of open bonds�
 and independently assign to each of the resulting percolation clusters
a uniform random spin �the same spin is assigned to all vertices in each cluster�� This
is a special case of the Fortuin�Kasteleyn random cluster representation of the Ising
model �see
 e�g�
 ������ on a tree
 it is elementary to verify the equivalence of this
representation with the construction �����

The following two theorems contain estimates of reconstruction probability and
mutual information
 that imply Theorem �����

Theorem �	�� Let T be a tree with root �� and let W be a �nite set of vertices in T �
Given � � �	� ����� denote � �� �
 ��� and consider the electrical network obtained by
assigning to each edge e of T the resistance ��
 ������jej� Then

*�T�W� ��
I���� �W �

	
� �

� �R��
 W �
� ����

where R denotes e�ective resistance�



��

� � � � �� � � �

Figure �� Majority vote can disagree with maximum likelihood�

The proof of this theorem is based on reconstruction by weighted majority vote
 i�e�

reconstruction according to the sign of an unbiased linear estimator of the root spin�
We relate the variance of such an estimator to the energy of a corresponding unit �ow
from � toW � We �nd it quite surprising that on any in�nite tree
 reconstruction using
such linear estimators has the same threshold as maximum�likelihood reconstruction�

Next
 we present an upper bound on * and I���� �W �� Say that a set of vertices
W� separates � from W if any path from � to W intersects W�� For a vertex v of
T 
 denote by jvj the number of edges on the path from v to ��

Theorem �	�� Let W be a �nite set of vertices in the tree T � For any set of vertices
W� that separates the root � from W � we have

*�T�W� ��� � �
�
�
 Y

v�W�

q
�
 ��jvj

�
� �

X
v�W�

��jvj ����

and
I���� �W � � X

v�W�

I���� �v� �
X
v�W�

��jvj � ����

In view of the mincut�max�ow theorem
 ���� is an upper bound on mutual information
in terms of the maximum �ow in a capacitated network� Theorem ���� is proved by
comparing the given tree T to a �stringy tree
 bT which has an isomorphic set of paths
from the root to the vertices of W�
 but these paths are pairwise edge�disjoint� We
show that *�T�W� �� � *� bT �W�� �� by constructing a noisy channel that maps the
spins on W� in bT to the spins on W in T �
Symmetric trees� Recall that a tree T is spherically symmetric if for every
n � �
 all vertices in Tn have the same degree� For such a tree
 the e�ective resistance
from the root to level n is easily computed
 and we infer from Theorems ���������
that �

� � ���
 ���
nX

k��

���k

jTkj
��� � I���� �Tn� � inf

k�n
jTkj��k ����

and ��
 ��c�
�� � lim infn jTnj��n�

The example in Figure � shows that even on a regular tree
 majority vote can
disagree with maximum likelihood when the spin con�guration �Tn is given�

Given the boundary data in Figure �
 the root spin �� is more likely to be 
�
than �� provided that � is su�ciently small
 since �� � �� requires � spin �ips
 while
�� � 
� requires only � spin �ips�
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Organization of the rest of the chapter�
Next
 we present background on the Ising model and some references to the statis�

tical mechanics and genetics literatures� Then we infer Theorem ���� from Theorems
���������� After collecting some facts about mutual information and distances between
probability measures
 we prove the conductance lower bound for reconstruction
 The�
orem ����
 and the upper bound
 Theorem ����� Extensions and unsolved problems
are discussed at the end of the chapter�

Background

Let G be a �nite graph with vertex set V � In the ferromagnetic Ising model with
no external �eld on G
 the interaction strength J � 	 and the temperature t � 	
determine a Gibbs distribution G � GJ�t on f��gV which is de�ned by

G��� � Z�t��� exp�
X
u�v

J�u�v�t� � ��	�

where the normalizing factor Z�t� is called the partition function� If the graph G is a
tree
 then this is equivalent to the Markovian propagation description in the beginning
of the chapter
 for an appropriate choice of the error parameter �� Indeed
 if u 	 v
are adjacent vertices in a �nite tree with �u � �v
 then �ipping all the spins on one
side of the edge connecting u and v will multiply the probability in ��	� by e��J�t�
Thus if we de�ne � by

�

�
 �
� e��J�t � ����

then the distributions de�ned by ���� and ��	� coincide� For an in�nite graph G
 a
weak limit point of the Gibbs distributions ��	� on �nite subgraphs fGng exhaust�
ing G
 �possibly with boundary conditions imposed on ��Gn

�
 is called a �limiting�
Gibbs state on G� See Georgii ��	� for more complete de�nitions
 using the notion
of speci�cation�

For any in�nite graph with bounded degrees
 the limiting Gibbs state is unique
at su�ciently high temperatures
 i�e�
 the limit from �nite subgraphs exists and does
not depend on boundary conditions� When G � T is a tree
 this means that

lim
n��E��� j �Tn � �� � 	 ����

at high temperatures� Some graphs admit a phase transition� below a certain critical
temperature
 multiple Gibbs states appear and the limit in ���� is strictly positive�
The critical temperature t�c for this transition on a regular tree T was determined in
���� by Preston ����� his result was generalized in ���� by Lyons ���� who showed that
tanh�J�t�c � � br�T ���� in the equivalent Markovian description
 the critical parameter
��c for an all � boundary to a�ect �� in the limit
 satis�es �
 ���c � br�T ����

In general
 a Gibbs state is extremal �or �pure
� i� it has a trivial tail
 see Georgii
���	�
 Theorem ����� The tree�indexed Markov chain ���� on an in�nite tree T is the
limit of the Gibbs distributions ��	� on �nite subtrees
 with no boundary conditions
imposed� hence it is called the free boundary Gibbs state on T � In ���� Spitzer



��

�����
 Theorem �� claimed that on a b�� � regular tree T �b�
 the free boundary Gibbs
states are extremal at any temperature� A counterexample
 due to T� Kamae
 was
published in ���� �see Higuchi ������ Kamae showed that the sum of spins on T �b�

n 

normalized by its L� norm
 converges to a non�constant tail�measurable function

provided that �
�� � b����� In ����
 this result was put in a broader context by Moore
and Snell ����
 who showed it followed from the ���� results of Kesten and Stigum ����
on multi�type branching processes� Moore and Snell noted that it was open whether
the free boundary Gibbs state on T �b� is extremal when b�� � �
 �� � b����� Chayes

Chayes
 Sethna and Thouless ���� successfully analyzed a closely related spin�glass
model on Tb� by a gauge transformation
 this is equivalent to the Ising model with i�i�d�
uniform f��g boundary conditions� Although these boundary conditions are quite
di�erent from a free boundary
 they turn out to have the same critical temperature�
Bleher
 Ruiz and Zagrebnov ���� adapted the recursive methods of Chayes et al ����
to the extremality problem
 and showed that the free boundary Gibbs state on T �b� is
extremal whenever �
 �� � b����� Shortly thereafter
 a more streamlined argument
was found by Io�e ����� Theorem ���� was �rst established in ����� After learning of
that result
 Io�e ���� found an elegant alternative proof for the upper bound�

Genetic reconstruction and parsimony

Tree�indexed Markov chains as in the introduction have been studied in the Mathe�
matical Biology literature by Cavender ����
 by Steel and Charleston ����
 and others�
In that literature the two �spins
 are often called �colors

 and correspond to traits
of individuals
 species
 or DNA sequences� The �broadcasting errors
 �color changes
along edges� represent mutations
 and one attempts to infer traits of ancestors from
those of an observable population�

Proof of Theorem ��
�


i� From � � �
 �� � br�T ����� it follows that

R��
�� �� sup
n
R��
 Tn� ��

when each edge e is assigned conductance ��jej� see ���� and Theorem ���� There�
fore by ����


inf
n��

*�T� Tn� �� � inf
n��

�

� �R��
 Tn�
� �

� �R��
��
� 	

and similarly infn�� I���� �Tn� � 	
 as asserted� In particular
 �� is not indepen�
dent of the tail �eld of f�vg
 so this tail �eld is not trivial�


ii� If � � �
 �� � br�T ����� then inf�
P

v�� �
�jvj � 	
 so Theorem ���� implies that

infn��*�T� Tn� �� � 	 and infn�� I���� �Tn� � 	�

Next
 �x a �nite set of vertices W�� For each w � W� and n � jwj
 denote by
Tn�w� the set of vertices in Tn which connect to � via w� Then Lemma �����iii�
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implies that for su�ciently large n


I��W�
� �Tn� �

X
w�W�

I��W�
� �Tn�w�� �

X
w�W�

I��w� �Tn�w�� � ����

since the conditional distribution of �Tn�w� given �W�
is the same as its condi�

tional distribution given �w�

For any �nite W�
 the right�hand side of ���� tends to 	 as n � �� It follows
that the tail of f�vg is trivial�

�

Mutual Information� De�nition and Properties
Let X� Y be random variables de�ned on the same probability space which take

�nitely many values� The entropy of X is de�ned by

H�X� �� 
X
x

P�X � x� logP�X � x�

and the mutual information I�X�Y � between X and Y is de�ned to be

I�X�Y � �� H�X� �H�Y �
H�X� Y � �
X
x�y

P�X � x� Y � y� log
P�X � x� Y � y�

P�X � x�P�Y � y�
�

We collect a few basic properties of mutual information in the following lemma� See

e�g�
 Cover and Thomas ���� x��
Lemma �	�� 
i� I�X�Y � � 	� with equality i� X and Y are independent�


ii� Data processing inequality� If X �� Y �� Z form a Markov chain �i�e�� X and
Z are conditionally independent given Y �� then I�X�Y � � I�X�Z��


iii� Subadditivity� If Y�� � � � � Yn are conditionally independent given X� then
I�X� �Y�� � � � � Yn�� � Pn

j�� I�X�Yj��

The assumption of conditional independence in part �iii� cannot be omitted
 as is
shown by standard examples of � dependent random variables which are pairwise
independent �e�g�
 Boolean variables satisfying X � Y� � Y� mod ��� Nevertheless

inequality ���� in Theorem ���� extends �iii� to a setting where this conditional inde�
pendence need not hold�

Distances between probability measures
Let �� and �� be two probability measures on the same space #� �In our applica�

tion # is �nite
 but it is convenient to use notation that applies more generally�� Set
� �� �����

�
and denote f � d��

d�

 g � d��

d�

 so that f�g � � identically� Suppose that 	

is uniform in f��g
 and X has distribution �
� Inferring 	 from X is a basic problem
of Bayesian hypothesis testing� �In our application
 	 will be the root spin ��
 and X
will be some function of the spin con�guration �W on a �nite vertex set W ��

There are several important notions of distance between �� and ��
 that can be
related to this inference problem�



��

� Total variation distance DV ���� ��� �� �
�

R jf 
 gj d� can be interpreted
as the di�erence between the probabilities of correct and erroneous inference�
Indeed
 among all functions b	 of the observations
 the probability of error P�b	 ��
	� is minimized by taking b	 � � if f�X� � g�X�
 and b	 � 
� otherwise� We
then have

* �� P�b	 � 	�
P�b	 �� 	� �
�

�

� Z b	f d� 
 Z b	g d�� � �

�

Z
jf 
 gj d� � ����

� �� distance D����� ��� �� �
�
fR �f 
 g�� d�g��� represents the L� norm of the

conditional expectation E�	 jX� � �
�
�f�X�
 g�X���

� Mutual information between 	 and X


DI���� ��� �� I�	�X� �
�

�

Z
�f log f � g log g� d� ����

is a symmetrized version of the Kullback�Leibler divergence �see Vajda ������

� The Hellinger distance

DH���� ��� ��
Z
�
q
f 
pg�� d� � �

�
�


Z q
fg d�

�
� ����

derives its importance from the simple behavior of the Hellinger integrals

IntH���� ��� ��
Z q

fg d�

for product measures�

IntH��� � �� � �� � ��� � IntH���� ���IntH���� ��� � ����

These distances appear in di�erent sources under di�erent names and with di�erent
normalizations� We collect here some well known inequalities between them
 that will
be useful below� For more on this topic
 see
 e�g�
 Le Cam ���� or Vajda �����

Lemma �	�� With the notation above�


i� D�
� � DV � D� �

p
DH


ii� D�
� � DI � �D�

�


iii� If �� and �� are measures on IR� thenn Z
xd��� 
 ���

o�
�
n Z

x�f�x�
 g�x�� d�
o� � �

Z
x� d� �D�

� �

Proof�



�
� Reconstruction for the Ising Model on a Tree ��


i� The left�hand inequality follows from jf�x�
g�x�j � �
 and the middle inequality
from Cauchy�Schwarz� The right�hand inequality follows from the identity f 

g � �

p
f 
pg� � �pf �

p
g� and the concavity relation

p
f�
p
g

�
�
q

f�g
�

� ��


ii� Setting � � �f 
 g���
 the assertion follows from the pointwise inequalities

��

�
� � � �

�
log�� � �� �

�
 �

�
log��
 �� � �� � ����

Here the left�hand inequality is veri�ed for � � �	� �� by comparing second
derivatives
 and the right�hand inequality follows from log�� � y� � y�


iii� This is just the Cauchy�Schwarz inequality�

�

Finally
 we interpret the data processing inequality in terms of distances� Suppose
that we are given transition probabilities on the state space
 i�e�
 a stochastic matrix
M �the entries of M are nonnegative and the row sums are all ��� Write M���y� ��P

xM�x� y���x� � Then Lemma ���� �ii� implies that

DI�M
����M���� � DI���� ��� �

An analogous inequality holds for total variation�

DV �M
����M���� �

�

�

X
y

jM����y�
M����y�j

� �

�

X
y

X
x

M�x� y�j���x�
 ���x�j

�
�

�

X
x

j���x�
 ���x�j � DV ���� ��� � ����

Conductance lower bounds� Proof of Theorem ��
�

Recall that each edge e was assigned the resistance

R�e� �� ��
 ������jej � ��	�

Say that a set of vertices W is an antichain if no vertex in W is a descendant of
another�

Lemma �	�	 Let W be a �nite antichain in T � For any unit �ow � from � to W �
the weighted sum

S	 ��
X
v�W

��v��v
�jvj

����



�	

satis�es E�S	 j ��� � �� and

E�S�
	� � E�S�

	 j ��� � � �
X
e

R�e���e�� � ����

Consequently�
min
	
E�S�

	� � � �R��
W � � ����

and the minimum is attained precisely when � is the unit current �ow from � to W �

Proof� From the product representation ����
 we infer that

E��v j ��� � ���
jvj

for any vertex v� The formula for E�S	 j ��� follows by linearity� For any two ver�
tices v� w in T 
 denote by path�v� w� the path from v to w� Also
 write path�v� for
path��� v�� Clearly


E��v�w� � �jpath�v�w�j � �jvj�jwj��jv�wj � ����

where v � w
 the meeting point of v and w
 is the vertex farthest from the root �
on path�v� � path�w�� The percolation representation can also be invoked to justify
�����

It is now easy to determine the second moment of S	�

E�S�
	� �

X
v�w�W

��v���w�

�jvj�jwj
E��v�w� �

X
v�w�W

��v���w�

��jv�wj
� ����

Next
 insert the identity
���juj � � �

X
e�path�u�

R�e�

with u � v �w
 into ����� Changing the order of summation
 and using the fact that
W is an antichain
 we obtain

E�S�
	� � � �

X
e

R�e�
X

v�w�W
�fe�path�v�w�g��v���w� � ����

Since path�v � w� � path�v� � path�w� andX
v�w�W

�fe�path�v�w�g��v���w� �
� X
v�W

�fe�path�v�g��v�
�� X

w�W
�fe�path�w�g��w�

�
� ��e���

���� is equivalent to ����� Finally
 ���� follows from Thomson"s principle� �

Proof of Theorem �	��� We may assume that W is an antichain� �Otherwise

remove from W all vertices which have an ancestor in W �� Let � be the unit current
�ow from � to W for the resistances R�e� as in the preceding lemma
 and let S	 be
the weighted sum ����� In order to apply Lemma ����
 denote by �� the conditional
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T bT

Figure �� A tree T and the corresponding stringy tree bT �
distribution of S	 given that �� � �� de�ne �� analogously by conditioning that
�� � 
�
 so that � � ��� � ����� is the unconditioned distribution of S	� We then
have by Lemma �����iii� that

D�
����� ��� �

n R
xd��� 
 ���

o�
�
R
x� d�

�
�E�S	 j �� � ��
 E�S	 j �� � 
����

�E�S�
	�

�

Applying Lemma ����
 we deduce that

D�
����� ��� �

�

� �R��
W �
� ����

By Lemma ����
 the di�erence * � *�T�W� �� between the probabilities of correct
and incorrect reconstruction
 satis�es * � DV ���� ��� � D�

����� ���
 and the mutual
information between �� and �W also satis�es I���� �W � � DI���� ��� � D�

����� ����
In conjunction with ����
 this completes the proof� �

Mincut upper bound� Proof of Theorem ��
�

De�nition� A noisy tree is a tree with �ip probabilities labeling the edges� The
stringy tree bT associated with a �nite noisy tree T is the tree which has the same set
of root�leaf paths as T but in which these paths act as independent channels� More
precisely
 for every root�leaf path in T 
 there exists an identical �in terms of length and
�ip probabilities on the edges� root�leaf path in bT 
 and in addition
 all the root�leaf
paths in bT are edge�disjoint�

Theorem �	�
 Given a �nite noisy tree T with leaves W � let bT � with leaves cW and
root .�� be the stringy tree associated with T � There is a channel which� for 	 � f��g�
transforms the conditional distribution � bW j ���� � 	� into the conditional distribution

�W j ��� � 	�� Equivalently� we say that bT dominates T �



��

�

��

� b�

� �

��

�� �� b�� b��

�� b��

u

Figure �� ' is dominated by b'�

Remark A channel is formally de�ned as a stochastic matrix describing the con�
ditional distribution P�Y jX� of the output variable Y given the input X
 see �����
Often a channel is realized by a relation of the form Y � f�X�Z�
 where f is a de�
terministic function and Z is a random variable �representing the �noise
� which is
independent of X�
Proof� We only establish a key special case of the theorem� namely
 that the tree
' shown in Figure �
 is dominated by the corresponding stringy tree b'� The general
case is derived from it by �rst allowing the �ip probabilities to vary from edge to edge

and then applying an inductive argument� see ���� for details�

Given 	 � � � �
 to be speci�ed below
 we de�ne the channel as follows�

��� � b��
��� �

� b�� with probability �b�� with probability �
 �

To prove that �b��� ���� ���� has the same distribution as ���� ��� ���
 it su�ces to show
that the means of corresponding products are equal� �This is a special case of the fact
that the characters on any �nite Abelian group G form a basis for the vector space of
complex functions on G�� By symmetry

E���� � E���� � E���� � E�������� � E�b��� � E����� � E����� � E�b��������� � 	

and thus we only need to check pair correlations� Clearly
 E�b������ � E������ and
E�b��b��� � ��
 whence E�b������ � �� � E������ for any choice of �� Finally
 since
E���� b��� � �	 � �� � E������ and

E���� b��� � � � �� �

we can choose � � �	� �� so that E�����
�
�� � E������� explicitly


� � ��
 ������
 �	� � ����
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This proves that b' dominates '� �

Proof of Theorem �	��� We �rst prove ����� Since W� separates � from W 
 the
data processing inequality �Lemma ���� �ii�� yields I���� �W � � I���� �W�

�� Let T� be

the tree obtained from T by retaining only W� and ancestors of nodes in W�� Let cT�
be the stringy tree associated with T�� From Theorem ���� applied to T� and the data
processing inequality
 we obtain I���� �W�

� � I����� � bW�
�� Since the spins on leaves ofcT� are conditionally independent given ���
 subadditivity �Lemma ���� �iii�� gives

I����� � bW�
� � X

�v� bW�

I����� ��v� �

But due to the de�nition of the stringy tree
 the mutual information between ��� and
��v is identical to the mutual information between �� and �v in T�
 hence the left
inequality in �����

Since E����v� � �jvj for each v
 the right�hand inequality in ���� follows from the
right�hand inequality in �����

We now turn to the total variation inequality ����� Recall that *�T�W� ��
 the
di�erence between the probabilities of correct and incorrect reconstruction
 equals
DV ��

W
� � �W� �
 the total variation distance between the two distributions of the spins

on W given �� � ���
By ����
 Theorem ����
 and Lemma ����


DV ��
W
� � �W� � � DV ��

W�

� � �W�

� � � DV ��
bW�

� � �
bW�

� � �
r
DH��

bW�

� � �
bW�� � �

Now
 DH��
bW�

� � �
bW�� � on the stringy tree cT� is easily calculated using the mul�

tiplicative property of Hellinger integrals� �
bW�

� is just the product over w � cW�

of �w�
 the distribution of �w given �� � �
 and similarly �
bW�� �

Q
w �

w
�� Since

IntH��
w
�� �

w
�� �

q
�
 ��jwj
 the left�hand inequality in ���� follows� the right�hand

inequality there is a consequence of the standard inequality
Q
��
 xj� � �
Pxj� �

Remarks and unsolved problems

�� Reconstruction at criticality� It is shown in ���
 ��� that on in�nite regular
trees
 limn*�T� Tn� �c� � 	� On general trees
 Theorem ���� implies that �nite
e�ective resistance from the root to in�nity �when each edge at level � is assigned
the resistance ��
������� is su�cient for limn*�T� Tn� �� � 	� In ����
 a recursive
method is used to show this condition is also necessary�

�� Multi�colored trees and the Potts model� The most natural generaliza�
tion of the two�state tree�indexed Markov chain model studied in this chapter
involves multicolored trees
 where the coloring propagates according to any �nite
state tree�indexed Markov chain� For instance
 if this Markov chain is de�ned
by a q� q stochastic matrix where all entries o� the main diagonal equal �
 then



��

the q�state Potts model arises� The proof of Theorem ���� extends to general
Markov chains
 and shows that the tail of the tree�indexed chain is nontrivial
if br�T � � ���� 
 where �� is the second eigenvalue of the transition matrix �e�g�
for the q�state Potts model
 �� � �
 q��� However
 unpublished calculations of
E� Mossel indicate that this lower bound is not sharp in general� Furthermore

we do not know a reasonable upper bound on mutual information between root
and boundary variables� In particular
 it seems that the critical parameter for
tail triviality in the Potts model on a regular tree is not known�

�� An information inequality� Theorem ���� implies that the spins in the
ferromagnetic Ising model on a tree satisfy

I��v� �W � � X
w�W

I��v� �w� �

for any vertex v and any �nite set of vertices W � Does this inequality hold on
other graphs as well&
More generally
 are there natural assumptions �e�g�
 positive association� on
random variables X� Y�� � � � Yn that imply the inequality I�X� �Y�� � � � � Yn�� �Pn

j�� I�X� Yj� &

�	 Unpredictable Paths in Z and EIT in Z�

The goal of this chapter is to complete the proof of Theorem ����
 by exhibiting a
probability measure on directed paths in Z� that has exponential intersection tails�
We construct the required measure in three dimensions from certain nearest�neighbor
stochastic processes on Z that are �less predictable than simple random walk
�

For a sequence of random variables S � fSngn�� taking values in a countable set
V 
 we de�ne its predictability pro�le fPRES�k�gk�� by

PRES�k� � supP�Sn�k � x j S�� � � � � Sn� � ����

where the supremum is over all x � V 
 all n � 	
 and all histories S�� � � � � Sn�
Thus PRES�k� is the maximal chance of guessing S correctly k steps into the

future
 given the past of S� Clearly
 the predictability pro�le of simple random walk
on Z is asymptotic to Ck���� for some C � 	�

Theorem �
�� 
Benjamini� Pemantle� and Peres ����� For any � � � there
exists an integer�valued stochastic process fSngn�� such that jSn 
 Sn��j � � a�s� for
all n � � and

PRES�k� � C�k
�� for some C� ��� for all k � � � ��	�

After Theorem ���� was proven in BPP ������
 H�aggstr�om and Mossel ������ con�
structed processes with lower predictability pro�le� They showed that if f is non�
decreasing and

P
k �f�k�k�

�� � �
 then there is a nearest)neighbor process S on Z
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with PRES�k� � Cf�k�k��� �For example
 f�k� � log����k� satis�es this summability
condition��

Ho�man ������ proved that this result is sharp� if a nondecreasing function f
satis�es

P
k�f�k�k�

�� � �
 then there is no nearest)neighbor process on Z with
predictability pro�le bounded by O�f�k�k����

We prove Theorem ���� using the Ising model on a tree� We follow H�aggstr�om and
Mossel ������
 who improved the original argument from BPP ������� The following
lemma is the engine behind the proof� Let T be the b)adic tree of depth N 
 and �x
	 � � � ���� We will assign to the vertices of T �� labels f��v�gv�T according to an
Ising model �see Chapter ���� For the root �
 set ���� � �
 and for a vertex w with
parent v
 let

��w� �

�
��v� with probability �
 �

��v� with probability �

�

Lemma �
�� Denote by YN ��
P

v�TN ��v� the sum of the spins at level N � There
exists Cb �� such that for all N � � and all x � Z�

P�YN � x� � Cb

��b��
 ����N
�

Proof� By decomposing the sum YM�� into b parts corresponding to the subtrees of
depth M rooted at the �rst level
 we get

YM�� �
bX

j��

��vj�Y
�j�
M �

where f��vj�gbj�� are b i�i�d� spins with

��vj� �

�
�� with probability �
 �

� with probability �

�

and fY �j�
M gbj�� are i�i�d� variables with the distribution of YM 
 independent of these

spins� Consequently
 the characteristic functions

bYM��� � E�ei�YM �

satisfy the recursion

bYM����� � ���
 �� bYM��� � � bYM�
���b
� �� bYM��� � i��
 ��� bYM����b ����

where � denotes real part
 and  imaginary part� For �n��� �� arg bYn���
 de�ne
Jn ��

n
	 � � � �

�
� �k��� �

�

�b
� k � 	� � � � � n
 �

o
and

In �� Jn n Jn�� �



��

We will evaluate the integral of bYN��� over �	� ���� by using the decomposition

�	�
�

�
� �

�
N���
k��

Ik

��
JN �

Rewrite ���� as

bYM����� � j bYM���jb�cos �M��� � i��
 ��� sin �M����b� ����

and infer
 for 	 � �M��� � �
�b

 that

�M����� � b arctan
�
��
 ��� tan �M���

�
�

Since arctan is concave in �	��� and arctan 	 � 	


arctan
�
��
 ����

�
� ��
 ��� arctan���

for any � � 	� Therefore

If 	 � �M ��� � �

�b
� then

�

�
� b�M ��� � �M����� � b��
 ����M���� ����

If � � In
 then applying ���� for M � n
 � shows that

�

�
� �n��� � �

�b
� ����

Using ���� with M � n together with ����
 we �nd that for � � In


j bYn�����j �
�
cos��

�

�b
� � ��
 ���� sin��

�

�b
�
� b
� �

�
�
 �� sin��

�

�b
�
� b
� � e���b � ����

where � �� sin�� �
�b
�� Inductive use of ���� for � � In and N � n gives

j bYN���j � e���b
N�n

� ����

Since ����� � �
 ���� implies that �k��� � bk�� 
 ���kj�j for � � Jn and k � n�
Therefore

jInj � jJnj � �

�bn��
 ���n
� ����

By ����


�

��

Z �

��
j bYN���j d� �

�

�

Z �
�

�
j bYN���j d� � �

�

�N��X
k��

jIkje���bN�k

� jJN j
�
�

Inserting ���� yields

�

��

Z �

��
j bYN���j d� � �

��
 ���N

�N��X
k��

b�ke���b
N�k

� b�N
�
� ����
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In order to evaluate the sum in the right hand side of ����
 we de�ne

r � maxfk � ��bN�k � �g �
Separating the contributions of k � r and k � r
 we obtain that

N��X
k�r

b�ke���b
N�k

� b�N �
NX
k�r

b�k � b�r
�X
k��

b�k ����

and
r��X
k��

b�ke���b
N�k �

r��X
k��

b�ke�b
r�k � b�r

�X
k��

bke�b
k

� ��		�

Furthermore
 since ��bN�r�� � �
 we have that

b�r � �

��bN��
� ��	��

Combining ����
 ����
 ��		�
 and ��	�� we see that

�

��

Z �

��
j bYN���j d� � Cb

bN���
 ���N
�

where

Cb �
b�
P�

k�� b
�k �

P�
k�� b

ke�b
k

�

�

and � was de�ned after ����� Using the inversion formula we conclude that

P�YN � x� �
�

��

Z �

��
bYN���e�i�x d� � �

��

Z �

��
j bYN���j d� � Cb

bN ���
 ���N
�

�

Proof of Theorem �
��� For all N � 	
 we will de�ne a process S up to time
M � �N with the required properties� A process de�ned for all times will then exist
by consistency of the �nite dimensional distributions�

Fix a small � � 	� We assign spins f�vg to the vertices of the binary tree T of
depth N 
 according to the Ising model �described before Lemma ����� with error rate
�
 but we take �� to be random uniform in f��g
 rather than �xing it� Enumerate
the vertices at depth N from left to right as v�� v�� � � � � vM 
 and set

Sn �
nX

k��

��vk��

We claim that fSng has the desired predictability pro�le� To see this
 �x 	 � n � M
and 	 � k � M 
 n� Observe that Sn�k � Sn �

Pn�k
j�n�� ��vj�� If we now take the

unique h satisfying �h�� � k � �h��
 there will exist a vertex w at level N 
 h for
which all of the descendants at depth N are in the set fvn��� � � � � vn�kg� It follows �by



��

conditioning on the spins of all vi which are not descendants of w and on the spin of
w� that

sup
x�Z

P�Sn�k � xjS�� � � � � Sn� � sup
x�Z

P�Yh � x�� ��	��

Applying Lemma ���� and ��	�� we get

PRES�k� � Cb

�h���
 ���h
� ��	��

and the proof is complete� �

The process S serves as a building block for Zd�valued processes whose predictabil�
ity pro�les are controlled�

Corollary �
�� For each �
�
� � � �� there is a Zd�valued process / � /��d such that

the random edge sequence f/n��/ngn�� is in '�� and

�k � � PRE��k� � C��� d�k��d���� � ��	��

Proof� Let W r
k � �S

�r�
k � k��� for r � �� � � � � d
 �
 where S�r� are independent copies

of the process described in Theorem ����� For r � �� � � � � d
 �
 de�ne clocks

tr�n� �� bn � d
 �
 r

d
 �
c �

and let D�n� �� n
Pd��
r��W

r
tr�n�

�

Write /n � �W �
t��n�

� � � � �W d��
td���n�

� D�n��� It is then easy to see that

PRE��k� �
�
PRES�b k

d
 �
c�
�d��

�
�
C�k

d
 �

����d���
� C��� d�k���d��� �

�

The last ingredient we need to prove that Z� admits paths with exponential inter�
section tails is the following�

Lemma �
�� Let f�ng be a sequence of random variables taking values in a countable
set V � If the predictability pro�le �de�ned in ����� of � satis�es

P�
k�� PRE��k� ���

then there exist C � � and 	 � � � � such that for any sequence fvngn�� in V and
all � � ��

P�%fn � 	 � �n � vng � �� � C�� � ��	��

Proof� Choose m large enough so that
P�

k�� PRE��km� � � � �
 whence for any
sequence fvngn�� 


P
h
�k � � � �n�km � vn�km

������ � � � ��n
i
� � for all n � 	 � ��	��

If n is replaced by a stopping time � and the �)�eld generated by ��� � � � ��n is
replaced by the usual stopping time ���eld
 then ��	�� remains valid� This can be
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seen by decomposing the probability according to the value of � 
 and checking that
the bound holds in each case� Hence
 it follows by induction on r � � that for all
j � f	� �� � � � � m
 �g


P�%fk � � � �j�km � vj�kmg � r� � �r � ��	��

If %fn � 	 � �n � vng � � then there must be some j � f	� �� � � � � m
 �g such that

%fk � � � �j�km � vj�kmg � ��m
 � �

Thus the inequality ��	��
 with � � ���m and C � m���
 follows from ��	��� �

Proof of Theorem ���� for d � �� The process / constructed in Corollary ����
with � � ��� and d � � satis�es

P
k PRE��k� � �
 and hence by Lemma ����
 the

distribution � of the edge sequence f/n��/ng�n�� has exponential intersection tails�
�

�
 Tree�Indexed Processes

Label the vertices of a tree � by a collection of i�i�d� real random variables fXvgv���
Given � and the collection fXvgv��
 we de�ne the tree�indexed random walk
fSvgv�� by

Sv �
X
w�v

Xw �

where w � v means that v is a descendant of w�
The simple case where � is a binary tree and Xv � �� with probabilities p and

�
 p was considered by Dubins and Freedman �������
We want to determine the speed of tree�indexed random walks
 or at least recognize

when the speed is positive�
There are several ways to de�ne speed for tree�indexed walks and the answers

depend on the de�nition used� Here are three notions of speed�

De�nitions of Speed

� Cloud Speed

scloud �� lim
n

�

n
max
jvj�n

Sv �

� Burst Speed

sburst �� sup

���

lim
v�


Sv
jvj �

� Sustainable Speed

ssust �� sup

���

lim
v�


Sv
jvj �



�	

These speeds are a�s� constant by Kolmogorov"s zero�one law� The �rst two were
studied by Benjamini and Peres �����b�
 while the third was studied earlier by Lyons
and Pemantle �������

Assumptions� Throughout this chapter we will assume that each variable

Xv is not a�s� constant
 E�Xv� � 	 and E�e�Xv � �� for all � � 	 � ��	��

These assumptions can be relaxed
 but they make the ideas of the proofs more trans�
parent�

In general
 scloud � sburst � ssust � The following examples shows that the inequali�
ties may be strict�

Example ���� Consider the ��� tree � in Example ���� It follows from Theorem
���� below that on this tree

scloud � 	 but sburst � ssust � 	 �

Example ���� Let n� � n� � � � � be a sequence of positive integers� Construct a
tree � as follows� The �rst n� levels of � are as in the ��� tree� To each vertex v in
the n��th level of �
 attach a copy of the �rst n� 
 n� levels of the �)� tree
 with v
as its root� Continue by attaching a copy of the �rst nk�� 
 nk levels of the ��� tree
to each vertex at level nk of �� For any choice fnig
 the tree � has positive packing
dimension� in particular
 dimM���� � dimP ���� � log �� However
 if the ni increase
su�ciently fast
 then the Hausdor� dimension of �� is 	
 as in the ��� tree� Thus in
this case Theorem ���� yields that scloud � sburst � 	
 but ssust � 	�

Notation� Denote by f (Sngn�� the ordinary random walk indexed by the non�negative
integers with i�i�d� increments distributed like Xv� Let I��� be the rate function for
the random walk f (Sng
 de�ned by

I�a� � lim
n��

�

n
logP� (Sn � na� �a � 	� �

Theorem ���� 
Hammersley 
��
��� Kingman 
��
��� Biggins 
��

�� Let
� be a GW tree with mean m � �� Suppose that the vertices of � are labeled by random
variables Xv that satisfy �
���� On the event that � survives� a�s� all speeds coincide
and equal s� �� supfs � I�s� � logmg�

Proof� The inequality scloud � s� is easy� By the de�nition of s�
 for any � � 	 there
is � � 	 such that I�s� � �� � logm� �� Therefore


P� (Sn � n�s� � ��� � e�n�logm��� � m�ne�n� �

Consequently


P�Sv � n�s� � �� for some v � �n j non�extinction � � mn

�
 q
m�ne�n� �
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where q is the probability of extinction� The proof is concluded by invoking the
Borel�Cantelli Lemma�

For the reverse inequality
 let a � s� be given� Using the strict monotonicity of
the rate function and the de�nition of s�
 choose � so that I�a���� � logm� For each
k � � and M � �����
 we de�ne a new embedded branching process as follows� start
from the root of �
 and take the set of o�spring ��v� k�M� of a vertex v to consist of
all its descendants w in � that satisfy

� jwj � jvj� k in � �

� Sw � Sv � ka�

� Su � Sv 
M for all u on the path from v to w�

�HereM ��means the last requirement holds automatically�� Since Ej��v� k���j �
mkP� (Sk � ka�
 the de�nition of I yields that for su�ciently large k


Ej��v� k���j � mke�k�I�a���� � � �

By choosing M large
 we can ensure that the embedded process has mean o�spring

Ej��v� k�M�j � �

�
mke�k�I�a���� � � �

Thus for large k�M 
 the embedded process is supercritical� Therefore ssust � a with
positive probability� Since

f�� � �nite or ssust � a on �g

is an inherited property
 Proposition ��� implies that P�ssust � a j survival � � ��
Hence
 given survival
 we have that a�s�


s� � scloud � sburst � ssust � s� � �

We have already encountered two of the following de�nitions�

� The upper Minkowski dimension of ��
 written dimM����
 is log gr����

� The Hausdor� dimension of ��
 written dimH����
 is log br����

� The Packing dimension of ��
 is de�ned by

dimP ���� �� inf f sup
i

dimM����i�� g�

where the in�mum extends over all countable collections f��i�g of subtrees of �
such that �� � S

i
���i��



��

Theorem ���� Suppose that � is an in�nite tree without leaves� and the vertices of
� are labeled by random variables Xv that satisfy �
���� Then

�i� scloud � 	 � dimM���� � 	�

�ii� sburst � 	 � dimP ���� � 	�

�iii� ssust � 	 � dimH���� � 	�

Proof� �i� The implication �!
 is easy� By Cram,er"s theorem on large deviations

��	�� implies that I�a� � 	 for any a � 	� ThereforeX

n

P�Sv � na for some v � �n� �
X
n

j�njP� (Sn � an� �X
n

j�nj e�nI�a� �

which is �nite since dimM���� � 	 means that � has subexponential growth� Thus
by Borel�Cantelli

P�fSv � na for some v � �ng i�o� � � 	

for any a � 	�
For the implication �"

 observe that because we assumed � has no leaves
 there

exists at least one descendant in ��n for each v � �n� Denote the leftmost such
descendant by w�v�� The j�nj paths from vertices v � �n to the corresponding w�v�
are disjoint� Since dimM���� � 	
 if we choose � su�ciently small
 then

j�nj � en�I�������� for in�nitely many n ��	��

By Cram,er"s theorem
 P� (Sn � �n�� � e�n�I������� for large n�
Write ��n � fv � �n�Sv � 
n�g� By the Weak Law of Large Numbers


j�nj��Ej��nj � P� (Sn � 
n�� 
� �

and therefore P�j��nj � j�nj��� 
� 	� Denote

An �� f�w � ��n � Sw � n�g �

Then

P�Ac
n� � P�j��nj � j�nj��� �P�j��nj � j�nj�� and Sw�v� 
 Sv � �n� � v � ��n� �

The right�hand side is at most

P�j��nj � j�nj��� �
�
�
 e�n�I�������

�j�nj��
�

which tends to zero along a subsequence of n values by ��	��� Taking stock
 we infer
that P�An i�o�� � limnP�An� � �
 so scloud � ��� a�s�
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�ii� The implication �!
 is easy again� if dimP ���� � 	
 then given � � 	 we can
�nd a cover

S
i
���i� of �� with dimM����i�� � � for all i� As in the proof of �i�


scloud��
�i�� � ��

for some �� and all i� Whence

sburst��
�i�� � scloud��

�i�� � ��

for all i and so sburst��� � ��� Here �� can be made arbitrarily small because � may be
taken arbitrarily small�

For the reverse implication �"

 let d � dimP ���� � 	� Pick � � 	 small and let

�� � fv � �� dimP ���v�� � d
 �g �
here ��v� � fw � ��w � v or w � vg�

Now � � ��
 so �� �� � and dimP ���
�� � d
 �� Actually
 it is easy to see from the

de�nition of packing dimension that

dimM�����v�� � d
 � for all v � �� �

By �i� and the de�nition of cloud�speed
 with probability one we can �nd for each
v � �� a vertex w � f�v� � ���v� with w � v and Sw � jwj� for some �xed � � 	�
The sequence �� f���� f�f����� � � � is a sequence of vertices fvjgj�� along a ray of �
such that

Svi
jvij � � � for all i � � �

�iii� was proved by Lyons and Pemantle ������ in the following sharp form�

I�ssust� � log br��� � dimH���� �

�For the other speed notions there is no analogous exact formula��
The inequality I�ssust� � log br��� is proved using the �rst�moment method �see

the proof of Theorem ����� For the other inequality
 �x a so that I�a� � dimH����

and then choose k such that P
�
(Sk � ka

�
� br���k� Consider a compressed tree ��k�

whose �th level is the k�th level of �
 with the induced partial order� It is easy to
see that dimH ����k�� � k dimH����� De�ne a general percolation on ��k� in which
the edge

�
vw is retained if Sw 
 Sv � ka� This general percolation process is not

independent� however
 for each �xed k
 it is quasi�independent� By proposition ���

this percolation survives with positive probability
 whence ssust � a� It follows that
I�ssust� � log br���� �

Exercise ���� Suppose that � is an in�nite tree without leaves� and its vertices are
labeled by i�i�d� variables Xv 	 N�	� ��� Denote d � dimM����� Prove thatq

d�� � scloud �
p
�d

and both bounds can be achieved�



��

Hint� Use the ideas in the proof of �i� and optimize
 or see ���� These bounds were
sharpened by Benassi �������

Consider an in�nite tree � again
 label its vertices by i�i�d� real�valued random
variables fXvgv��
 and let fSvgv�� be the corresponding tree�indexed random walk�
The following question is mostly open�

Open Problem � 
Bouncing Rays� Suppose that there a�s� exists a ray 	 � ��
such that lim inf

v�

Sv � 
�� Must there a�s� exist a ray 	� � �� with lim

v�
�
Sv � ���

The only cases for which the answer is known �Pemantle and Peres ����a� are when

� Xv � �� with probability ��� each
 or when

� Xv 	 N�	� ���

In these cases there is an exact capacity criterion on the tree for the property to hold�
Even in these special cases the proofs are complicated�

�� Recurrence for Tree�Indexed Markov Chains

This chapter is based on Benjamini and Peres �����a�� For a tree � and a vertex
v
 denote by �v the subtree consisting of v and its descendants� We are given a
countable state�space G and a set of transition probabilities fp�x� y�� x� y � Gg� the
induced ��indexed Markov chain is a collection of G�valued random variables fSvgv��

with some initial state S� �� x� � G and �nite�dimensional distributions speci�ed by
the following requirement� if w � � and v is the parent of w
 then

P
�
Sw � y j Sv � x � Su for u �� �v

�
� P�Sw � y j Sv � x� � p�x� y� �

We may think of the state�space G as a graph
 with vertices the elements of G and
an edge between x and y i� p�x� y� � 	� If p � fp�x� y�� x� y � Gg is irreducible
 i�e�

for any x� y � G there exists an n such that pn�x� y� � 	
 then the associated graph is
connected�
De�nitions� A tree�indexed Markov chain is recurrent if it returns in�nitely often
to its starting point with positive probability�

P�Sv � S� for in�nitely many v � �� � 	 �

A stronger requirement is ray�recurrence� fSvgv�� is ray�recurrent if

P�� 	 � �� � Sv � S� for in�nitely many v � 	� � 	 �

In general
 recurrence does not imply ray�recurrence �even when G � Z��� Indeed

the ��� tree has exponential growth �which yields recurrence for G � Zd�
 yet it has
a countable boundary �which precludes ray�recurrence on any transient G��
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The probabilities in the de�nitions of recurrence and ray�recurrence may lie strictly
between 	 and �
 even when the indexing tree is a binary tree� If G is a group and the
transition probabilities are G�invariant
 then there are zero)one laws for both notions
of recurrence�

Given a state space G
 an irreducible stochastic matrix p � fp�x� y� � x� y � Gg
and a �nite subset F of G
 write ��pF � for the spectral radius of the substochastic
matrix pF � fp�x� y�� x� y � Fg� We then de�ne

��G� p� � sup
F �nite

��pF � �

Then

P�� 	 � �� with bounded trajectory� � 	 � br��� �
�

��G� p�
�

Simple random walk on Z has spectral radius �
 but we can make a quantitative
statement on rays with bounded trajectories� For the ��indexed simple random walk
on Z


br��� �
�

cos ����b� ���

is su�cient for the existence of a ray with trajectory in f	� �� � � � � b
�g to have positive
probability
 and

br��� � �

cos ����b� ���

is necessary�
Finally
 we note that recurrence of a ��indexed Markov chain on G is related to

a comparison of the Minkowski dimension of � and the spectral radius of G
 while
ray�recurrence is related to a comparison of packing dimension and spectral radius�
In particular
 dimM���� � 
 log���G� p�� implies non�recurrence and dimP ���� �

 log���G� p�� implies non�ray�recurrence�

More details on the notions described in this chapter
 and some amusing examples

can be found in ��
 ��� Benjamini and Schramm ��	� give an application of tree�indexed
Markov chains to a problem in discrete geometry�

�� Dynamical Percolation

This chapter is based on H�aggstr�om
 Peres
 and Steif �������

Consider Bernoulli�p� percolation on an in�nite graph G� Recall that each edge is

independently
 open with probability p� As before
 PG�p � Pp will denote this product
measure� Write C for the event that there exists an in�nite open cluster� Recall that
by Kolmogorov"s 	�� law
 the probability of C is
 for �xed G and p
 either 	 or �� As
remarked previously
 there exists a critical probability pc � pc�G� � �	� �� such that

Pp�C� �
�

	 for p � pc
� for p � pc�



��

At p � pc we can have either Pp�C� � 	 or Pp�C� � �
 depending on G�
In this chapter we consider a dynamical variant of percolation� Given p � �	� ��
 we

want the set of open edges to evolve so that at any �xed time t � 	
 the distribution
of this set is Pp� The most natural way to accomplish this is to let the distribution
at time 	 be given by Pp
 and to let each edge change its status �open or closed�
according to a continuous time
 stationary ��state Markov chain
 independently of all
other edges� For an edge e of G
 write 
t�e� � � if e is open at time t
 and 
t�e� � 	
otherwise� The entire con�guration of open and closed edges at time t
 denoted 
t

can then be regarded as an element of X � f	� �gE �where E is the edge set of G��
The evolution of 
t is a Markov process
 and can be viewed as the simplest type of
particle system� Each edge �ips �changes its value� at rate

��
t� e� �

�
p if 
t�e� � 	
�
 p if 
t�e� � �

and the probability that two edges �ip simultaneously is 	� Write �G�p �or �p� for
the underlying probability measure of this Markov process
 and write Ct for the event
that there is an in�nite cluster of open edges in 
t� Since Pp is a stationary measure
for this Markov process
 Fubini"s theorem implies that��� �p� Ct occurs for Lebesgue a�e� t� � � if Pp�C� � �

�p�#Ct occurs for Lebesgue a�e� t� � � if Pp�C� � 	

where #Ct denotes the complement of Ct� The main question studied here is the
following


Question ���� For which graphs can the quanti�er �for a�e� t� in the above state�
ments be replaced by �for every t��

For p �� pc
 the answer is all graphs�

Proposition ���� For any graph G we have��� �p� Ct occurs for every t � � � if p � pc�G�

�p�#Ct occurs for every t� � � if p � pc�G� �
���	�

Notation� For 	 � a � b �� and any edge e of a graph G
 we abbreviate

inf
�a�b�


�e� �� inf
t��a�b�


t�e��

and write C inf�a�b� for the event that there is an in�nite cluster of edges with inf �a�b� 
�e� �
�� Analogously
 de�ne sup�a�b� 

 and let Csup�a�b� be the event that there is an in�nite
cluster of edges with sup�a�b� 
�e� � ��
Proof� 
i� Suppose p � pc� Let 	 � � � p
 pc and observe that for every edge e


�p

n
inf
�����


�e� � �
o
� p exp�
��
 p��� � p
 � � pc �
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Since the events
n
inf ����� 
�e� � �

o
are mutually independent as e ranges over the

edges of G
 it follows from the de�nition of pc that �p

h
Cinf�����

i
� � and therefore

�p

�
Ct occurs for all t � �	� ��

�
� � �

Repeating the argument for the intervals �k�� �k����� with integer k and using count�
able additivity
 we obtain the supercritical part of the proposition�

ii� A similar argument proves that for p � pc there is never an in�nite open cluster�
We take � � �	� pc 
 p� and �nd that

�p

n
sup
�����


�e� � �
o
� �
 ��
 p� exp�
p�� � p� p� � pc � �����

Therefore �p

�
Csup�����

�
� 	
 whence there is a�s� no in�nite cluster for any t � �	� ���

Countable additivity concludes the argument� �

At the critical value pc�G� the situation is more delicate�

Theorem ���� There exists a graph G� with the property that at p � pc�G� we have

PG�p�C� � 	 but �G�p

�
�t�� Ct

�
� �� �The latter probability is � or 
 for any graph��

There also exists a graph G� such that for p � pc�G�� we have PG��p�C� � � � yet
�G��p��t��Ct� � 	�

The graphs for which percolation problems have been studied most extensively are
the lattices Zd
 and trees� On Z�
 the critical value pc is ��� and Ppc�C� � 	 �see
Kesten ����	��� for d � � the precise value of pc�Z

d� is not known� Hara and Slade
������ showed that Ppc�C� � 	 for Zd if d � ��
 and it is certainly believed that this
holds for all d�

Theorem ���� Let G be either the integer lattice Zd with d � �� or a regular tree�
Then �G�pc�#Ct occurs for every t� � ��

Remark� It is not known whether G � Z� can be included in Theorem �	��� Let ��p�
denote the Pp�probability that the origin is in an in�nite open cluster� The proof of
Theorem �	�� for G � Zd with d � �� uses more information than just ��pc� � 	� it
also uses that � has a �nite right derivative at pc� In Z� it is known that ��pc� � 	

but Kesten and Zhang proved that the right derivative of � is in�nite at pc�

Next
 we consider dynamical percolation on general trees� In Chapter ��
 we proved
R� Lyons" criterion for Pp�C� � 	 in terms of e�ective electrical resistance �see ������
e�ective resistance is easy to calculate on trees using the parallel and series laws� Here
we obtain such a criterion for dynamical percolation�

For an in�nite tree � with root �
 as before we write �n for the set of vertices
at distance exactly n from �
 the nth level of �� Recall that a tree is spherically
symmetric if all vertices on the same level have equally many children�



��

Theorem ���� Let f
tg be a dynamical percolation process with parameter 	 � p � �
on an in�nite tree �� Assign each edge between levels n
 � and n of � the resistance
p�n�n� If in the resulting resistor network the e�ective resistance from the root to
in�nity is �nite� then ���p�a�s� there exist times t � 	 such that � has an in�nite
open cluster� while if this resistance is in�nite� then a�s� there are no such times� In
particular� if � is spherically symmetric� then

���p��t��Ct� � � if and only if
�X
n��

p�n

nj�nj �� � �����

Recall R� Lyons" criterion for the percolation probability on a general tree � to be
positive� Suppose that 	 � p � � and assign each edge between levels n 
 � and n
resistance p�n� Then P��p�C� � 	 i� the resulting e�ective resistance from the root
to in�nity is �nite� Thus a spherically symmetric tree � with p � pc��� � �	� ��
 has

���p��t��Ct� � � but P��p�C� � 	 i� the series in ����� converges but
P�

n��
p�n

j�nj ���
In the course of the proof of Theorem �	��
 we obtain bounds for the probability

that there exists a time t � �	� �� for which there is an open path in 
t from the root to
the nth level �n� For example
 on the regular tree Tk with p � ��k
 this probability is
bounded between constant multiples of �� logn� �The probability under P��k that an
open path exists from � to the nth level of Tk
 is bounded between constant multiples
of ��n� this follows from Kolmogorov"s theorem on critical branching processes
 see
Athreya and Ney �������� For a general tree these bounds
 given in Theorem �	��

can be expressed in terms of the e�ective resistance from the root to �n
 and the ratio
of the upper and lower bounds is an absolute constant�

For a graph with �G�p��t��Ct� � � but PG�p�C� � 	
 the set of percolating times
at criticality has zero Lebesgue measure
 so it is natural to ask for its Hausdor�
dimension� For spherically symmetric trees there is a complete answer�

Theorem ���	 Let p � �	� �� and let � be a spherically symmetric tree� If the set of
times ft � �	��� � Ct occursg is a�s� nonempty� then �p�a�s� this set has Hausdor�
dimension

sup
n
� � �	� �� �

�X
n��

p�nn���

j�nj ��
o
�

�Note that this series converges for � � 	 by ������ �

Here are some interesting trees with �T�p��t��Ct� � � but PT�p�C� � 	�

Example ���
 Let � be the spherically symmetric tree where each vertex on level
n has � children if n � �� �� � � � � is a power of �
 and � children otherwise� Then it is
easily seen that n�n � j�nj � �n�n for all n � 	� Combining Theorem �	�� with the
result of R� Lyons quoted after Theorem �	��
 we see that �����a�s� the set of times
for which percolation occurs on � has Hausdor� dimension � but Lebesgue measure
	� �
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Example ���� Let 	 � p� � � �
 and suppose that � is a spherically symmetric tree
with j�nj � p�nn��o��� as n��� Then Theorem �	�� implies that �p�a�s� the set of
times for which percolation occurs on � has Hausdor� dimension �� �

Since we will introduce an auxiliary random killing time � 
 we denote the under�
lying probability measure P rather than �p� The event that there is an open path

from the root to �� in 
t is denoted f� t
 ��g�
Theorem ���� Consider dynamical percolation f
tg with parameter 	 � p � � on a
tree � which is either �nite or in�nite with P��p�C� � 	� Let � be a random variable
with an exponential distribution of mean 
� which is independent of the process f
tg�
Let

h�n� �
p�n

n� �
� �
 pn��

�
 p
for n � 	 � �����

Then the event A � f�t � �	� � � � �
t
 ��g satis�es for some constant C

�

�
Caph���� � P�A� � �CCaph���� � �����

Remarks�


i� It is easy to verify that h is increasing and h�n� � p�n for all n� These properties
also follow from the interpretation of h given in Lemma �	��	�iii� below� In the
sequel
 we will sometimes write h�v� instead of h�jvj� when v is a vertex�


ii� The event A is easier to work with than the perhaps more natural event

B � f�t � �	� �� � �
t
 ��g� Noting that P�B� � P�Aj� � �� � P�A��e�� and

P�A� � P�
k�� e

�kP�B� � P�B����
 e���
 we obtain

�
 e��

�
Caph���� � P�B� � �eCCaph���� �

We will only prove the lower bound in Theorem �	��� consult ���� for the other
inequality� We will need a lemma concerning the behavior of a pair of paths�

Notation� Denote by fv t
 wg the event that there is an open path in 
t between

the vertices v and w� Similarly
 when x is a ray of the tree
 f� t
 xg means that x is

open at time t� Thus f� t
 ��g � �
x���

f� t
 xg� For s � 	 let Tv�s� ��
Z s

�
�f� t	vg dt

be the amount of time in �	� s� when the path from the root to v is open�

Lemma ����� Let u and w be vertices of �� With the notation of Theorem ���� in
force�

�i� E�Tw���� � pjwj

�ii� E�Tw��� j Tw��� � 	� � E�Tw��� j � �
 w� � h�w�pjwj



�	

�iii� P�Tw��� � 	� � h�w���

�iv� E�Tu���Tw���� � �h�u � w�pjuj�jwj

Proof� Let q � �
 p�

�i� This is immediate from Fubini"s Theorem�

�ii� The �rst equality follows from the lack of memory of the exponential distribution�
Verifying the second equality requires a calculation�

E�Tw��� j � �
 w� �
Z �

�
P��

t
 w j � �
 w�P�� � t� dt

�
Z �

�
�p� qe�t�jwje�t dt �


�p� qe�t�jwj��

�jwj� ��q

����
t��

�

�iii� The required probability is the ratio of the expectations in �i� and �ii��

�iv� Since the process f
tg is reversible


E�Tu���Tw���� � E
Z �

�

Z �

�
�f� s	ug�f� t	wg dt ds

� �
Z �

�

Z �

s
P��

s
 u�P
�
�

t
 w j � s
 u
�
e�t dt ds � �����

Observe that for t � s


P
�
�

t
 w j � s
 u
�
� pjwj�ju�wjP

�
�

t
 u � w j � s
 u � w
�
�

Change variables (t � t
 s in ����� to get that E�Tu���Tw���� equals

� �pjwj�ju�wj
Z �

�

Z �

�
P��

s
 u�e�s��tP
�
�

�t
 u � w j � �
 u � w
�
d(t ds

� �pjwj�ju�wjE�Tu���� �E�Tu�w��� j � �
 u � w� �

Substituting parts �i� and �ii� of the lemma into the last equation proves �iv��

�

Proof of lower bound in Theorem ����� We prove the theorem when � is a
�nite tree� the general case then follows by an appropriate limiting procedure� The
lower bound on P�A� is proved via the second moment method� Let � be a probability
measure on ��
 and consider the random variable

Z ��
X
v���

Tv���p
�jvj��v� � �����
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Lemma �	��	�i� implies that E�Z� � �� Part �iv� of the same lemma gives

E�Z�� �
X
v���

X
w���

E�Tv���Tw����p
�jvj�jwj��v���w� � �Eh��� � �����

Using the Cauchy�Schwarz inequality we �nd that

P�A� � P�Z � 	� � E�Z��

E�Z��
�

�

�Eh��� �

Taking the supremum of the right�hand side over all probability measures � on ��
proves the lower bound on P�A� in ������ �

We include the statement of one result from Peres and Steif �������

Theorem ����� Let � be an in�nite spherically symmetric tree� p � pc��� � �	� ��
and T k denote the set of times in �	��� when there are at least k in�nite clusters�
Suppose that Pp�C� � 	� Let

�c �� sup
n
� � �	� �� �

�X
n��

p�nn���

j�nj ��
o
�

Then for all k� the Hausdor� dimension of T k is

maxf	� �
 k��
 �c�g �p)a�s� � �����

�� Stochastic Domination Between Trees

For a tree � with total height N � �
 label its vertices by i�i�d� random variables
fXvgv��� If B � RN is a Borel set
 we write

P�B� �� � P�� 	 � �� � �Xv�v�
 � B� �

For two such trees � and �� of height N � �
 labeled by fXvgv�� and fX �
vgv���

respectively
 we say that �� stochastically dominates � if for any Borel set B � RN 


P�B� �� � P�B� ��� �

To verify that one tree dominates another
 it su�ces to consider the case where the
Xv are i�i�d� uniform random variables in �	� ��
 since other random variables can be
written as functions of these�

Recall that a tree � is spherically symmetric if all vertices in �n have the same
number of o�spring�

Theorem ���� 
Pemantle and Peres ����� Let �� be a spherically symmetric tree
and � another �arbitrary� tree� Then �� stochastically dominates � i� j�nj � j��nj for
all n � ��



��

Γ Γ'

Figure �� � is dominated by ���

Example ���� Two trees of height ��

Let � be the tree of height � in which the root has two o�spring and each of these
three o�spring� Let �� be the tree for which the root has three o�spring and and each
of these two o�spring�

Then it is not clear a priori which tree dominates� The result above yields that �
is dominated by ��� �

Stochastic domination between trees is well understood only for trees which are
either spherically symmetric or have height two� Already for trees of height three
 the
domination order is somewhat mysterious
 as the following example from Pemantle
and Peres ������ demonstrates�

Example ���� Comparison between a tree T and T with vertices glued�

Consider the trees T and T � in the next �gure
 where T � is obtained from T by gluing
together the vertices in the �rst generation�

r

r r

r r r

r r r r r

�
�

�
�
�
�
S
S

�
�
S
S

T

r

r

r r r

r r r r r

�
�

�
�
�
�
S
S

T �

Intuitively
 it seems that T should dominate T �
 but this is not the case� If

Bc � ��	� ����� �	� ��� �	� ����� � ������ ��� �	� ����� �	� ���

and the Xv are uniform on �	� ��
 then the probability that �Xv� � Xv�� Xv�� � Bc for
all paths ��� v�� v�� v�� in T is �	�������
 while the corresponding probability for T � is
only ��������� �

A consequence of Theorem ���� is that
 among all trees of height n with j�nj �
k
 the tree T �n� k� consisting of k disjoint paths joined at the root is maximal in
the stochastic order� If the common law of the Xv is � and B � Rn
 then � 
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P�B�T �n� k�� � ��
 �n�B��k
 where �n is n�fold product measure� thus for any tree
� of height n


�
P�B� �� � ��
 �n�B��k �

The de�nition of P�B� �� extends naturally to any graded graph �
 a �nite graph
whose vertices are partitioned into levels �� � � � � n and oriented edges allowed only
between vertices in adjacent levels� The following is a natural conjecture�

Conjecture � For any graded graph � of height n� let K��� be the number of oriented
paths that pass through every level of � and let Xv be i�i�d� random variables with
common law �� Then for any B � Rn�

�
P�B� �� � ��
 �n�B��K��� �

If B is upwardly closed �that is
 x�B and y�x coordinate�wise imply y�B�
 then the
conjecture is an easy consequence of the FKG inequality� The case n � � corresponds
to a bipartite graph� Conjecture � for this case is due to Sidorenko ������
 who stated
it �and proved it in many special cases� in the following analytic form�

Sidorenko�s Conjecture� Let f � �	� ��� � �	��� be a nonnegative bounded measur�
able function and consider the bipartite graph with vertices X�� � � � � Xn and Y�� � � � � Ym�
If E is the edge�set of this graph� then

Z
� � �

Z Y
Xi�Yj

f�xi� yj�dx� � � � dxndy� � � � dym �
�ZZ

f�x� y�dxdy
�jEj

� �����

For the bipartite graph consisting of three vertices X� Y� Z and two edges XY and
XZ
 the conjecture readsZZZ

f�x� y�f�x� z�dxdydz �
�ZZ

f�x� y�dxdy
��

and can be easily proved using the Cauchy�Schwarz inequality�

Exercise ���� Prove Sidorenko�s conjecture for the bipartite graph with four vertices
and three edges� XY � XZ� and WZ� �Hint� use H�older�s inequality with p � � and
q � �����

Sidorenko proved his conjecture for bipartite graphs with at most one cycle
 and for
bipartite graphs where one side has at most four vertices� For general �nite bipartite
graphs
 it is still open whether ����� always holds�

We conclude with yet another problem� In the statement of Theorem ���� we
de�ned an information�theoretic domination relation between trees� It would be quite
interesting to compare that relation with the stochastic domination relation studied
in this chapter�



��
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