Probability on Trees: An Introductory Climb

YUVAL PERES

Lectures at the Saint Flour Summer School, July 1997
Notes prepared with Dimitris Gatzouras and David Levin

March 10, 1999



1 Preface

These notes are based on lectures delivered at the Saint Flour Summer School in July
1997. The first version of the notes was written and edited by Dimitris Gatzouras.
The notes were then expanded and revised by David Levin and myself. T hope that
they are useful to probabilists and graduate students as an introduction to the subject;
a more complete account is in the forthcoming book co-authored with Russell Lyons.

The first 10 chapters are devoted to basic facts about percolation on trees, branch-
ing processes and electrical networks, with an emphasis on several key techniques:
moment estimates, the use of percolation to determine dimension, and the “method
of random paths” to construct flows of finite energy. These 10 chapters are the “in-
troductory climb” alluded to in the title.

More advanced topics start in Chapter 11, where the method of random paths is
refined in order to establish the Grimmett-Kesten-Zhang Theorem: Simple random
walk on the infinite percolation cluster in Z%, d > 3 is transient.

Chapters 12 and 13 contain a regularity property of subperiodic trees, and its
application to random walks on groups. In Chapter 14 we discuss capacity estimates
for hitting probabilities; these are used in Chapter 15 to derive intersection-equivalence
of fractal percolation and Brownian paths.

In Chapter 16 we analyze the phase transition in a broadcasting model considered
by computer scientists: A random bit is propagated, with errors, from the root of a
tree to its boundary, and the goal is to reconstruct the original bit from the boundary
values. Remarkably, the same model arose independently in genetics, as a mutation
model, and in mathematical physics, where it is equivalent to the Ising model on a
tree. In Chapter 17, the Ising model on a tree is used to construct a nearest-neighbor
process on Z that is “less predictable” than simple random walk.

In Chapters 18 and 19, we study the speed and recurrence properties of tree-
indexed processes; in particular, we relate three natural notions of speed (cloud speed,
burst speed, and sustainable speed) to three well-known dimension indices (Minkowski
dimension, packing dimension, and Hausdorff dimension). In Chapter 20 we consider a
dynamical variant of percolation, where edges open and close according to independent
Poisson processes. At any fixed time, the random configuration is a sample of Bernoulli
percolation, but we focus on exceptional random times when the number of infinite
open clusters is atypical. There are striking parallels between the study of these
exceptional times for dynamical percolation, and the study of multiple points for
Brownian motion. We conclude in Chapter 21 by describing some results on stochastic
domination between randomly labeled trees, and stating some open problems for other
graphs.

I was first drawn to thinking about general trees in a lecture of I. Benjamini in
1989, when H. Furstenberg noted that certain trees that appeared in the lecture could
be interpreted (via b-adic expansions) as Cantor sets with different Hausdorff and
Minkowski dimensions. I. Benjamini and I proceeded to examine relations between
properties of trees and properties of the corresponding compact sets; these connections
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had unexpected uses later (see Chapter 15). For example, consider a subset A of the
unit square in the plane and the corresponding tree T'(A, b) in base b. Then A is hit by
planar Brownian motion (i.e., it has positive logarithmic capacity) iff simple random
walk on T'(A,b) is transient.

We then learned that a year earlier, R. Lyons (building on works of Furstenberg,
Shepp, Kahane and Fan) had established some remarkably precise connections be-
tween random walks, percolation and capacity on trees. R. Lyons and R. Pemantle
had already used these ideas to determine the sustainable speed of first-passage per-
colation on trees.

The point of view of these lectures was largely developed in the ensuing collabora-
tion with Itai Benjamini, Russell Lyons and Robin Pemantle, whose influence pervades
these notes. Other coauthors whose insights and ideas are represented here include
Chris Bishop (see Chapter 15), Will Evans, Claire Kenyon, and Leonard Schulman
(see Chapter 16), Olle Haggstrom and Jeff Steif (see Chapter 20).

In fact, probability on trees is a rich and fast-growing subject, so the account pre-
sented in these notes is necessarily incomplete. Natural complements are the two con-
ference proceedings volumes: Trees, edited by B. Chauvin, S. Cohen and A. Rouault
(Birkhduser 1996) and Classical and Modern Branching Processes, edited by K. B.
Athreya and P. Jagers (Springer 1996). Continuum random trees are fascinating ob-
jects studied in several papers by David Aldous; Tom Liggett is writing a detailed
account of the contact process on trees. Superprocesses, which can be obtained as
scaling limits of branching random walks, have been studied by numerous authors. I
apologize to the many researchers whose results involving probability on trees are not
described here.

Acknowledgements I am grateful to the participants in the St. Flour summer school
for their comments and to the organizer, Pierre Bernard, for his warm hospitality.

I am greatly indebted to Dimitris Gatzouras and David Levin for their help in
preparing these notes. I thank Itai Benjamini, Dayue Chen, Amir Dembo, Nina Gan-
tert, David Grabiner, Olle Haggstrom, Davar Khoshnevisan, Elon Lindenstrauss, El-
hanan Mossel, Oded Schramm and Balint Virag for their comments on the manuscript.

Yuval Peres
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2 Basic Definitions and a Few Highlights

A tree is a connected graph containing no cycles. All trees considered in these notes
are locally finite: the degree deg(v) is finite for each vertex v, although deg(v) may
be unbounded as a function of v.

Why study general trees?

1. More can be done on trees than on general graphs. Percolation problems, for
example, are easier to analyze on trees. The insight and techniques developed
for trees can sometimes be extended to more general models later.

2. Trees occur naturally. Some examples are:

(a) Galton-Watson trees. Let L be a non-negative integer-valued random
variable and set Zy = 1, Z; = L, and Z, 1 = X7, L (nt+1) , where the LE")
are i.i.d. copies of L. Then Z, is the number of 1nd1v1duals in generation n
of a Galton-Watson branching process, a population which starts with one
individual and in which each individual independently produces a random
number of offspring with the same distribution as L. The collection of all
individuals form the vertices of a tree, with edges connecting parents to
their children.

(b) Random spanning trees in networks. A spanning tree of a graph G
is a tree which is a subgraph of GG including all the vertices of G. There
are several interesting algorithms for generating random spanning trees of
finite graphs.

3. Trees describe well the complicated structure of certain compact sets in R?.
Examples include Cantor sets on intervals and fractal percolation, a collection
of nested random subsets of the unit cube described below.

Example 2.1 Fractal Percolation is a recursive construction generating random
subsets {A,} of the unit cube [0,1]¢. Tile Ay = [0,1]¢ by b similar subcubes with
side-length b=!. Generate A; by taking a union of some of these subcubes, including
each independently with probability p. In general, A, will be a union of b-adic cubes
of order n (cubes with side-length b~™ and vertices with coordinates of the form kb—").
A, is obtained by tiling each such cube contained in A, by b b-adic subcubes of
order n + 1, and taking a union which includes each subcube independently with
probability p. The limit set of this construction 72, A, is denoted by Qu(p).

There is a tree associated with each realization of fractal percolation. The vertices
at level n correspond to b-adic cubes of order » which are contained in A,, and a
vertex v at level n is the parent of a vertex w at level n + 1 if the cube corresponding
to v contains the cube corresponding to w. A
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Figure 1: A realization of A; and A, for d =2, b = 2.

Let Q3(3) C [0,1]* denote the limit set of fractal percolation with b = 2, d = 3,
and p = % In Chapter 15, we will see that the random set Qg(%) is intersection-
equivalent in the cube to the Brownian motion path started uniformly in the cube.
By this we mean the following: if [B] denotes the range {B(t) : t > 0} of a three-
dimensional Brownian motion started uniformly in [0,1]*, then for some constants

Co, Cy > 0 and all closed sets A C [0, 1]?,
CoP(Qs(1/2)NA#0) < P(BINA#D) < Ci P(Qs(1/2)NA#D).

Consequently, hitting probabilities for Brownian motion can be related to hitting
probabilities of Qg(%). This gives a new perspective on the classical study of intersec-
tions and multiple points of Brownian paths.

For example, consider two independent copies Q3(3) and Q4(3). Then the intersec-
tion Q3(3) N Q4(3) has the same distribution as Q3(;). Since the tree corresponding
to Q3(i) is a Galton-Watson tree with mean offspring 2, it survives with positive
probability. Hence Qg(i) # ) with positive probability, and intersection-equivalence
shows that two independent Brownian paths in R? intersect with positive probability,
a result first proved in [21].

It also follows that three Brownian paths in space do not intersect (as first proved
in [22]). By intersection-equivalence, it is enough to show that the intersection of the
limit sets of three independent fractal percolations, which has the same distribution as
Qg(%), is empty a.s. But the tree corresponding to Qg(%) is a critical Galton-Watson
process and hence dies out, see Chapter 3.

Infinite family trees arising from supercritical Galton-Watson Branching processes,
(Galton-Watson trees in short) play a prominent role in these notes.

Question 2.2 In what ways are Galton-Watson trees like reqular trees?



First we establish a simple property of regular trees.

Example 2.3 Simple random walk {X,},>0 on a graph is a Markov chain on the
vertices, with transition probabilities

L ifw~u,
P(Xo =w|X, =v) = { Seg(v) otherwise .

The notation u ~ v means that the vertices v and v are connected by an edge. Now
suppose the graph is a tree, and let |v| stand for the distance of a vertex v from the
root p, i.e., |v] is the number of edges on the unique path from p to v. On the b-ary
tree,

1 b—1
—(+1)+ —(-1) = ——.
b+1( ) b—i—l( ) b+1
(We have an inequality here because X, may be at the root.) Hence the distance
of the random walk on the tree from the root stochastically dominates an upwardly
biased random walk on Z. It is therefore transient and will visit 0 only finitely many
times. After the last visit of the random walk to the root,

B, - 1] X,] >

B[ Xl - 1) | %] = 77

and the strong law of large numbers for martingale differences implies that, almost

surely, n~![X, | — = A

One specific case of Question 2.2 is

Question 2.4 On a Galton-Watson (GW) tree with mean m = >, kpy > 1, is simple
random walk transient on survival of the GW process?

We will see later that the answer is positive; this was first proved by Grimmett and
Kesten (1984).

For a tree I', denote I', = {v:|v] = n}. Define the lower growth and upper
growth of T as gr(7) := liminf |T',|'/" and gF(T) = limsup |T,|"/™ respectively. If
gr(I') = g&(T"), we speak of the growth of the tree I' and denote it by gr(T').

Question 2.5 Is gr(I') > 1 sufficient for transience of simple random walk on I'? Is
it necessary?

The answer to both questions is negative. An analogous situation holds for Brown-
ian motion on manifolds, where exponential volume growth is not sufficient and not
necessary for transience.

Example 2.6 (3-1 tree) The 3-1 tree I' has gr(I') = 2 (actually |T',| = 2"), but
simple random walk is recurrent on it. ' can be embedded in the upper half-plane,
with its root p at the origin. The root has two offspring, and for n > 1, each level I,
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Figure 2: The 3-1 Tree.

has 2" vertices which can be ordered from left to right as v},...,v5.. For k < 2"7!,
each v} has only one child, while for 2"! < k < 2", each v} has three children.

Observe that for any vertex not on the right-most path to infinity, the subtree above
it will eventually have no more branching (because “powers of 3 beat powers of 2").
The random walk on I'" will have excursions on left-hand branches, but must always
return to the right-most branch (because of recurrence of simple random walk on the
line). If these excursions are ignored, then we have a simple random walk on the
right-most path, i.e., on Z*, which is recurrent. A

It is even easier to construct transient trees of polynomial growth: E.g., replace every
edge at level k of the ternary tree by a path consisting of 2* edges. Simple random
walk on the resulting tree, considered just when it visits branch points, dominates an
upward biased random walk on the integers, whence it is transient.

On the other hand, positive speed implies exponential growth:

Theorem 2.7 Define the speed of a random walk as lim, n='|X,,|, when this limit
exists. If the speed of simple random walk on a tree I exists and is positive, then T’
has exponential growth, i.e., gr(I") > 1.

This follows from Theorem 5.4 below.

Example 2.6 suggests that gr(I") does not give much information on the behavior
of a random walk on I'. The growth gr(I") barely takes into account the structure of
I', and a more refined notion is required.

A cutset II is a set of vertices such that any infinite self-avoiding path from
emanating the root p must pass through some vertex in II. The branching number
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of a tree I' is defined as

br(l') = sup{ A>1: Hglltfset S atso } (1)
vell

The function inf{ SAPTIT a cutset} is decreasing in A and positive at A = 1.
vell
The boundary of a tree I', denoted OI', is the set of all infinite self-avoiding

paths (rays) emanating from the root p of I'. A natural metric on the boundary oT
is d(¢,n) = e ", where n is the number of edges shared by ¢ and 1. dimy(9T') will
denote the Hausdorff dimension of OI" with respect to this metric d. Because an open
cover of OI' corresponds to a cutset of I', and vice-versa, the Hausdorff dimension of
Ol is related to the branching number of I' by

logbr(T') = dimy(9T).

Similarly, gr(T") is related to the Minkowski dimension dim,(9T") by
loggr(T') = dimy(9T).

Generally, br(I') < gr(I"), since for A > gr(I") we must have

inf T, A =inf > A1 =0;

’UGFVL

using the fact that I, is itself a cutset yields the inequality. If OT is countable, then
br(T") = 1, because dimy A = 0 for countable sets A. For the 3-1 tree in Example 2.6,
I is countable, and consequently br(T') = 1.

As an indication that the branching number br(I") contains more information about
the tree than the growth gr(I"), we mention two results that we shall prove later, in
Chapters 7 and 13.

Bernoulli(p) percolation on a tree I' is the random subgraph of " obtained by
independently including each original edge of I' with probability p, and discarding
each with probability 1 — p. The retained edges are called open, and P, is the
probability corresponding to this process (see Chapter 4 for the formal definition of
the probability space.) The first quantity of interest in percolation is

pe(T) = inf{p € [0,1]: P,(p < o0) > 0}, (2)

where {p < 0o} denotes the event that the root p is connected to oo, i.e., that there
is an infinite self-avoiding path emanating from p, that consists of open edges.

Theorem 2.8 (R. Lyons 1990) For an infinite and locally finite tree T,

1

pe(T) = Dr(T) (3)
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Theorem 2.9 (R. Lyons 1990) If br(I') > 1, then simple random walk on T is
transient.

We close with an equivalent description of the branching number br(T") of a tree T.
If u, v are vertices in I' so that v is a child of u, denote by uv the edge connecting them.
A flow # on T from the root p to oo is an edge function obeying #(uv) = 3 0(vw),
where the sum is over all children w of v. This property is known as Kirchhoff’s
node law. Imagine the tree as a network of pipes through which water can flow
entering at the root. However much water enters a pipe must leave through the other
end, splitting up among the outgoing pipes (edges). Define #(v), for a vertex v # p,
to be the amount of flow that reaches v, i.e., #(v) := 6(uv) for u the parent of v. The
strength of a flow ¢, denoted | @], is the amount flowing from the root, 3°,.,., 0(v).
When |6 =1, we call § a unit flow.

Lemma 2.10 For a tree T,
br(I') = sup{\ > 1 : 3 a nonzero flow # from p to co : Vo, O(v) <A}, (4)

Proof. This follows directly from the Min-cut/Max-flow Theorem, which in our
setting says that

sup{ 0] : 0(v) <A " wol = inf ST ATM, (5)

II cutset
v

For details, see Lyons and Peres (1999). O

Remark: As mentioned above, br(T') < gr(T') = liminf,|[,|'/" . In general, to get
an upper bound for br(I') one can seek explicit ‘good’ cutsets. To get lower bounds
use either

(i) Theorem 2.8, which in particular says that br(I') > 1/p.(T"), or

(ii) find a good flow # on T such that f(v) < A~/ for all v; then br(T') > A. (Recall
that #(v) denotes the flow from the unique parent of v to v.)

A flow 6 on I induces a measure p on OI': for cylinder sets [v] = {£ € IT :
¢ passes through v}, define p([v]) as 6(v). If [v1], ..., [v,] are disjoint cylinders (which
means that no v; is an ancestor of another), and [v] = U [v;] (i.e., the {v;} form a
cutset for the subtree I'” rooted at v), then Kirchhoff’s node law implies (by induction
on n) that u([v]) = X", u([v;]). Countable additivity can be proven using the com-
pactness of OI': Cylinders form a basis consisting of open sets and are also closed in
the natural topology on OT'. Thus countable additivity follows from finite additivity.
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3 Galton-Watson Trees

Let L be a non-negative integer-valued random variable and let p, = P(L = k)
for £ = 0,1,2,.... To avoid trivial cases, we assume throughout that p; < 1. Let
{LE")}MEN be independent and identically distributed copies of L, set Z; = 1, and
define
S LY i 7, >0,
Zn+1 = ! ! .
0 if Z,=0.

The variables Z,, are the population sizes of a Galton-Watson branching process. The
tree associated with a realization of this process has 7, vertices at level n, and for
i < Z,, the 1’th vertex in level n has LE”*” children in level n + 1.

Generating functions are an indispensable tool in the analysis of Galton-Watson
processes. Set f(s) = E[s!] and define inductively

fU(S):Sa fl(s):f(s)v fn+1(8):fofn(s>v 0<s<1.

It can be verified by induction that f,(s) = E[s?"] for all n, that is, f, is the generating
function of Z,. Note that f(s) = 232, prs® and f/(1) = E[L] = m. We always have
f"(s) >0 for s >0, so fis convex on R*.

Define ¢ to be the smallest fixed point of f in [0,1]. Note that if py = 0, then
¢ = 0. Observe that lim, P(Z, = 0) = lim,, f,(0) < ¢, and since lim,, f,,(0) must be a
fixed point of f, it follows that ¢ = lim, P(Z, = 0). So

q =P(Z, — 0) = probability of extinction.

Since f is convex, if 1 > m = f(1), then ¢ = 1. If instead 1 < m = f’(1), then
q < 1. Thus, a Galton-Watson process dies out a.s. if and only if m < 1.

A property of trees A is inherited if all finite trees have property A, and all
the immediate descendant subtrees I of I have A when T' has A. (The immediate
descendant subtrees I'?) of T' are the subtrees of ' rooted at the children of the root

p-)

Example 3.1 The following are all inherited properties:
1. {T: sup, |I's| < oo}.
2. {T": |I',| grows polynomially in n}.

3. {T': T finite or br(T") < c}. A

Proposition 3.2 (0-1 Law) Let P be the probability measure on trees corresponding
to a GW process with m > 1. If A is inherited, then

P(A | non-extinction) € {0,1}.
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Proof. We have

Pl cAZ =k)<P <ﬁ{r<i> c A} | Z, = k> =P(T' € A)*.
Thus,
P eA)=) nP(eAlZ =k) < f(P(T € A)).

Convexity of f implies that the only numbers x € [0,1] satisfying @ < f(z) are
x = 1 and all x € [0,¢q]. Since A holds for all finite trees, P(I' € A) > ¢. So
P(T e A)e{q1}. 0

Observe that m™"Z, is a non-negative martingale and hence converges to some
finite random variable W < oco. If m < 1, then Z,, = 0 eventually, so a.s. W = 0. The
case m > 1 is treated by the following theorem.

Theorem 3.3 (Kesten and Stigum (1966a)) When m > 1,
P(W > 0 | non-extinction) = 1 if and only if E[Llog" L] < .

A conceptual proof of Theorem 3.3 appears in Lyons, Pemantle, and Peres (1995).

Hawkes (1981), under the assumption that E[Llog® L] < oo, proved that for
Galton-Watson trees I,

P(dimg(9T") = logm | non-extinction) = 1.
This is equivalent to
P(br(T') = m | non-extinction) = 1. (6)

R. Lyons discovered a simpler proof without the assumption E[L log? L] < oo, which
is given below in Corollary 5.2. Because a.s. m™"Z, — W, where 0 < W < o0, it
follows that a.s. gr(I') < m. This, together with the general inequality br(I') < gr(I")
and (6), implies that a.s. given non-extinction,

m = br(I') < gr(I') < gr(I') < m.

4 General percolation on a connected graph

General (bond) percolation on a connected graph G is a random subgraph G(w)
of G such that, for any edge e in G, the event that e is an edge of G(w) is measurable.
Independent {p.} percolation is the percolation obtained when each edge e is
retained (or declared open) with probability p., independently of other edges (and
removed or declared closed otherwise). We already discussed in Chapter 2 the special
case of Bernoulli(p) percolation where all probabilities p, are the same, p. = p.
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Formally, the sample space for a general bond percolation is Q = {0,1}”, where
E is the edge set of the graph G. The o-field F on €2 is generated by the finite-
dimensional cylinders, sets of the form {w € Q : w(e1) = x1,...,w(em) = @y} for
x; € {0,1}. The probability measures Py, y and P,, corresponding to independent
{pe} percolation and Bernoulli(p) percolation respectively, are product measures on
(Q, F).

We write the event that vertex sets A and B are connected by a path in G(w) by
{A < B}; when G is an infinite tree I', we write {p <> 9I'} for the event that there
is an infinite path emanating from p with all edges open.

The connected components of open edges in percolation are called clusters, and
the cluster containing v is denoted by C(v). Define
C :={3Jv € G with |C(v)| = o0};

C is the event that there is an infinite cluster somewhere in the percolation on G. We
write Ci when there is a possibility of ambiguity.
For Bernoulli(p) percolation, at any fixed vertex v,

P,(|C(v)| = o0) > 0 if and only if P,(C) = 1. (7)

One implication in (7) follows immediately from Kolmogorov’s zero-one law: C does
not depend on the status of any finite number of edges, hence P,(C) € {0,1}. To see
the other implication, assume P,(C) = 1 and take a ball B,(v) large enough so that

P, (there exists an infinite path intersecting B, (v)) > 0.

Then clearly
P,(0B,(v) < c0) > 0.

Because B, (v) is finite, the event that all edges in B, (v) are open has positive prob-
ability. By independence of disjoint edge sets,
P,(|C(v)] = 0) > P,(all edges in B, (v) are open and 9B, (v) < o0)
= P,(all edges in B, (v) are open)P,(9B,(v) < 00)
> 0.
Alternatively, one can use the FKG inequality for the events A = {all edges in B, (v)

are open} and B = {there exists an infinite path connecting B, (v) to oo}, as both
these events are increasing. See Grimmett (1989) for details.

For Bernoulli(p) percolation on an arbitrary graph G, the critical probability
(already mentioned in the case of trees) is

p(G)=inf{p: P,(C)=1}.

For this definition to make sense, p — P,(C) must be non-decreasing. This can be
seen by by coupling the measures P, for all p together, see Grimmett (1989).
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5 The First-Moment Method

The first moment method is straightforward but useful. For general percolation on a
tree I' with root p, it asserts that

P(p = 00) < 3 P(p s v) ®)

vell

for any cutset II. For Bernoulli(p) percolation on the tree, the inequality becomes

P,(p = 00) < 3 pll.

vell

When p < 1/br(T), this can be made arbitrarily small for appropriate choice of cutset.
This proves

Proposition 5.1 For any locally finite T,

pe(l') > (9)

br(T)
In general there is equality here, as advertised previously in Theorem 2.8. The proof
of equality is in §7.

Corollary 5.2 Let T be a GW tree with mean m > 1. Almost surely on non-
extinction, br(T) = m and p.(T) = 1/m.

Proof. Let Pgw be the distribution of T on the space of rooted trees 7, and let
Z, = |T,,| be the size of level n of T. Given t € T, let P,, be Bernoulli(p) percolation
on .

Observe that

m > gE(T) > gr(T) > be(T) > (10)

N pe(T)
The first inequality follows since Z,,/m" converges to a finite random variable, the
middle inequalities hold in general, and the right-most is the content of Proposition

5.1. Thus it is enough to show that for p > m™!,

Pow (t © P,(|C(p)] = 00) > 0 | non-extinction) = 1. (11)

Combine the measures Pgyw and P,;: Given the Galton-Watson tree 7', perform
Bernoulli(p) percolation on T and let 7" be the component of p in the percolation. T”
is itself a Galton-Watson tree, where the number of individuals in the first generation
is Z! = >72Y;, where {Y;} are i.i.d. Bernoulli(p) random variables. Because E[Z]] =
mp > 1, with positive probability 7" is infinite:

P(IT'| = 50) = [ Pyu(IC(p)| = oo})dPaw(t) > 0.
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We conclude that the integrand must be positive with positive P gy -probability:
Pow (t : P,(|C(p)] = o0) > 0) > 0.

Since the set
{t : Pp(|C(p)| = o) = 0}

defines an inherited property, Proposition 3.2 implies that (11) holds. This proves
that a.s. on survival, p.(T) = m~!, whence (10) yields that br(7T) = m. O

Kahane and Peyriere (1976) calculated the dimension of the limit set of fractal
percolation; their methods were different. The proof above is due to R. Lyons.

Question 5.3 (Haggstréom) Suppose simple random walk {X,}n>0 on T’ has posi-
tive lower speed, i.e., for some positive number s

n

Xn
P (limnimfu > s) >0. (12)

Is it necessarily true that br(I') > 12
The answer is positive, and the proof relies on the first-moment method again.

Theorem 5.4 If (12) holds, then br(T') > e'®)/* where
(5) = 511+ ) Tog(1 +5) + (1 — ) log(1 — 5)].
Proof. By (12) above, there exists L such that
P(|X,| >nsforalln>1L)>0.
Define a general percolation on I' by
F(w):{vef‘: |v| < L or X,, = v for some n < |v|s_1} .

More precisely, if e(v) denotes the edge from the parent of v to v, we retain e(v) if
|v] < L or if X,, = v for some n < |v|s~'. By the definition of this percolation,

P(p < oc0)>P(|X,|>nsforalln>L)>0. (13)
On the other hand, we claim that if S, is simple symmetric random walk on Z, then

for [v| > L,

P(p < v) = P(X, = v for some n < |v]|s™") < P ( max [S,|> |v|> : (14)

n<|v|s™

Consider a particle on [' which moves with X when X moves along the unique path
from p to v, but remains stationary during excursions (possibly infinite) of X from
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this path. This particle performs a simple random walk on the path with (possibly
infinite) holding times between moves. The probability on the left in (14) is the chance
that this particle reaches v before time |v|s~!, which is at most the chance that simple

random walk on Z travels distance |v| from the origin in the same time. This proves
(14).
By the reflection principle,

P <m<a1$[< 1S, > 3N> <2P <m<a13[< Sp > 3N> <4P(Sy > sN) < 4e M)

where I(s) is the large deviations rate function for simple random walk on Z (see,
e.g., Durrett 1996). Thus for |v| > L we have

Pl o) < temp (—1of )

Combine this with (13) and (8) to conclude that if A = e!(*)/s then

0<P(peno) < Y Ppeou) <4Y AT

vell vell
for any cutset II at distance more than L from the root. Hence br(T') > e/(9)/s, a

Conjecture 1 Under the assumptions of Question 5.3 above

br(T") — 1 A 1+s
< —t €. br(I") > .
S_br(F)+1’ e r()_l—s
Remark. Very recently, this conjecture was proved by B. Virag (1998).
Recall that for simple random walk on the b-ary tree, the speed a.s. equals er—}

Example 5.5 Take a binary tree and a ternary tree rooted together. The simple
random walk on this tree does not have an a.s. constant speed. JAN

The Fibonacci tree Iy, is a subtree of the binary tree. We label vertices as (L) and
(R) (for “left” and “right”). The root is labeled (L). Every vertex labeled (L) has
two offspring, one labeled (L) and one labeled (R). Every vertex labeled (R) has one
offspring, which is labeled (L).

Exercise 5.6 Justify the name Fibonacci tree. Also, show that
bI‘(Fﬁb) = gr(Fﬁb) = (1 + \/g)/Q

Hint: Use a two state Markov chain to define a ‘good’ flow.
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Figure 3: The Fibonacci tree.

6 Quasi-independent Percolation

Consider Bernoulli(p) percolation on a tree I'. If v and w are vertices in T, then

pPpt  Pp = u)P(p o w)
plvaw] P(p < u A w)

P(p < u and p < w) =

)

where v Aw is the vertex at which the paths from the root p to v and w separate. This
turns out to be a key property of independent percolation, and we therefore make the
following definition.

A quasi-independent percolation on a tree I' is any general percolation so that
for some M < oo and any vertices u,v € I,

P(p < u)P(p < w)
Plp—vAw)

P(p—vand p—w) <M (15)

Example 6.1 Percolation induced by i.i.d. labels.

1. Let E be the edge set of a tree I', and let {X_ }.cp be i.id. {—1,1}-valued
random variables with P(X, = 1) = 1/2. Write path(v) for the unique path
in ' from the root to v. A tree-indexed random walk {S,} is defined for

vertices v of I' by
S,= X,

e€path(v)

Define I'(w) = {v: S,(w) € [0,b)}. For b = 2, this is equivalent to Bernoulli(1/2)
percolation: the only infinite paths in I'(w) are those for which each 1 is followed
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by —1, and each —1 by 1 (with 1 in the first step). For b > 2, the corresponding
percolation process is not independent, but it is quasi-independent.

2. Let {U.} be a collection of i.i.d. random variables, uniform on [0, 1), indexed by
the edges of I". Define

[Nw) = { v : for path(v) = ejey---ep), U, (w) = maxU,, (w) } .

k<[v|
This is not quasi-independent.

For more on tree-indexed processes, see Chapter 18 and the survey article by Pemantle
(1995). A

7 The Second Moment Method

For general percolation on a tree, the cutset sums (8) bound P(p < 9T") from above.
We get lower bounds by using the second moment method, which we describe next.
By our standing assumption about local finiteness of trees,

{p— T} = ﬂ{p —T,}.

We extend the definition of the boundary JI' to finite trees by

o7 — leaves of T, i.e., vertices with no offspring if I" is finite,
| infinite paths starting at p if T' is infinite.

Consider the case I finite first. Let u be a probability measure on OI' and set

1
Y = 3 pl@) e —— .
xgp PPl o )

Then E[Y] = ¥ p(x) =1, and

zedl

1
EVY = E () ply {pozin{poyl
VI = B 5 2 KO B el )

B i P(p < zand p < y)
N xgrygru( MBS PGy

(16)
Thus, in the case of quasi-independent percolation,

1

EY? ] < M > u(@)uly) Plrosiy)

z,yeol’

(17)
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In the case of independent percolation, there is an equality with M =1 in (17).
Define the energy of the measure ;4 in the kernel K as

Ex(p)= > K(fv,y)u(ﬂf)u(y)=/aF /8F K(x,y)pu(dz)pu(dy).

z,yeol’

When the kernel is

1

_ fi eor
Ppoany 7 ’

K(x,y) =
(17) can be rewritten as
E[Y?] < MEx(u).
By the Cauchy-Schwarz inequality,
(E[Y])* = (EY 1iy-q))’ <E[}’IP(Y > 0),
and consequently

ERD* 1 1

PY >0) > EMSK(M) .

Since P(p < oI') > P(Y > 0),
1 1

P or) > — .
(p < )—MEK(/L)

The left-hand side does not depend on g, so optimizing the right-hand side with
respect to p yields

1 1 1
P(p— dl') > — sup —

- Ca ’e 8F y 18
M w:p(0T)=1 EK(M) M pl( ) ( )

where we define the capacity of OI' in the kernel K to be

1
Capg(0T') =  sup .
A ( ) wp(0T)=1 EK(M)

For I' infinite, let © be any probability measure on OI'. p induces a probability
measure on I'), : for a vertex z € I',,, set

p(x) = p(infinite paths through ).

By the finite case considered above,

1 1

> — .

~ M Y Kz, y)m(a)u(y)
Iayern

P(p<T,)
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Each path £ from the root p to co must pass through some vertex x in I, ; write € &
if the path £ goes through vertex x. If x € £ and y € n, then £ A n is a descendant of
x A y. This implies that K(x,y) < K(§,n) for x € £ and y € n. Therefore,

[ [ seniu@inn = X [ [ KEndu©ant)

zY€ln e yen

> Y K(x,y)u()u(y)

z,yely
1 1
> ——
T MP(peTh)
Hence
PlpoTy) > —
Y M Ex (1)

for any probability measure x on JI'. Optimizing over p and passing to the limit as
n — 00, we get

1
To summarize, we have established the following proposition.

Proposition 7.1 Let I" be finite or infinite, P the probability measure corresponding
to a quasi-independent percolation on T', and K the kernel on 0T defined by K(x,y) =
P(p— x Ay)~'. Then

1
P(p < dl') > MCapK(af), (20)
where M =1 in the case of independent percolation.

For Bernoulli percolation, we have already proven that p.(I') > 1/br(T") in Proposition
5.1, using the first-moment method. We will now prove the reverse inequality, thus
showing equality. For convenience, we restate the result.

Theorem 2.8 (R. Lyons 1990) For Bernoulli(p) percolation on a tree T,

p.(T) =1/br(T).

Proof. Take p > 1/br(T") and 1/p < A < br(I'). By Lemma 2.10, there exists a unit
flow 4 from p to the boundary satisfying p(v) < CA7I*! for each vertex v € . We
may identify ;1 with a probability measure on OI" (see the discussion following Lemma
2.10).

Consider the kernel
—l&nn|

e 1
K(&n) = m—p
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The energy Ex(u) of 1 in the kernel K is given by

O\n\d €)dpu( Ivl//
~/BF BFp ,U ,U Zp EAn=v )

Since the set of pairs (£,7n) with £ A n = v is contained in the set of pairs (£, n) with
v € £, v € n, the right-hand side above is not larger than

S @ = iopnz (o))
< Yop "ty CAPlu(w)
n=0 [v|=n
= 3N u)

The last sum is finite since Ap > 1. Applying Proposition 7.1 yields

P,(p« o) >C (1 —1/Ap) >0

8 Electrical Networks

The basic reference for the material in this chapter is Doyle and Snell (1984). Here
we will not restrict ourselves to trees, but will discuss general graphs.

While electrical networks are only a different language for reversible Markov chains,
the electrical point of view is useful because of the insight gained from the familiar
physical laws of electrical networks.

A network is a finite connected graph G, endowed with non-negative numbers
{c.}, called conductances, that are associated to the edges of G. The reciprocal
re = 1/c. is the resistance of the edge e. A network will be denoted by the pair
(G,{c.}). Vertices of G are often called nodes. A real-valued function h defined on
the vertices of G is harmonic at a vertex x of G if

> @h(y) = h(x), where T, = ) ¢yy. (21)

Yy~ 7T£I) Yy~

(Recall that the notation y ~ x means y is a neighbor of z.)

We distinguish two nodes, {a, z}, which are called the source and the sink of the
network. A function V' which is harmonic on G \ {a, z} will be called a voltage. A
voltage is completely determined by its boundary values, V,, V.. In particular, the
following result is derived from the maximum principle.

Proposition 8.1 Let h be a function on a network G which is harmonic on G\{a, z}
and such that h(a) = h(z) = 0. Then h must vanish everywhere on G.
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Proof. We will first show that A < 0. Suppose this is not the case. Then h(z,):=
maxg h > 0. By harmonicity on G \ {a,z}, if © ¢ {a,z} belongs to the set A =
{z:h(x) = maxg h} and y ~ = , then y € A also. By connectedness, a,z € A, hence
h(a) = h(z) = maxgh > 0, contradicting our assumption. Thus A < 0, and an
application of this result to —h also yields A > 0. O

This proves that given boundary conditions h(a) = z and h(z) = vy, if there
is a function harmonic on G \ {a, 2z} with these boundary conditions, it is unique.
To prove that a harmonic function with given boundary values exists, observe that
the conditions (21) in the definition of harmonic functions form a system of linear
equations with the same number of equations as unknowns, namely (number of nodes
in G) — 2; for such a system, uniqueness of solutions implies existence.

A more informative way to prove existence is via the probabilistic interpretation
of harmonic functions and voltages. Consider the Markov chain on the nodes of G
with transition probabilities

Cy
pry:P(Xn+1:y|Xn:$):7r—y.

This process is called the weighted random walk on G with edge weights {c.}, or
the Markov chain associated to the network (G, {c.}). This Markov chain is reversible
with respect to the measure 7:

TxPry = Coy = TyDya -
A special case is the simple random walk on G, which has transition probabilities

o
~ deg()

Day fory ~ x
and corresponds to the weighted walk with conductances c,, =1 for y ~ 2.
To get a voltage with boundary values 0 and 1 at z and a respectively, set

V¥ =P,({X,} hits a before z),

x

where P, is the probability for the walk started at node x. For arbitrary boundary
values V, and V., define
Vo=V, +Vi(Va = Vo).

Until now, we have focused on undirected graphs. Now we need to consider also
directed graphs. An edge in a directed graph is an ordered pair of nodes (z,y),
which we denote by & = 7.

A flow # from a to z, previously discussed when the underlying graph is a tree, is a
function on oriented edges which is antisymmetric, 6(2y) = —60(yx), and which obeys
Kirchhoff’s node law Y, 0(viv) = 0 at all v & {a, z}. This is just the requirement
“flow in equals flow out” for any node # a, z. Despite notational differences, it is easily
seen that these definitions generalize the ones given earlier for trees.



24

Observe that it is only flows that are defined on oriented edges. Conductance and
resistance are defined for unoriented edges; we may of course define them on oriented
edges by ¢z = Cjp = oy and 15 = Tyn = T4y,

Given a voltage V' on the network, the current flow associated with V' is defined
on oriented edges by

vV, =V,

I(é) = , where €= 2.
Te

Notice that [ is antisymmetric and satisfies the node law at every x ¢ {a, z}:

Z I(2y) = Z Coy(Vy — V) =0.

y~r Y~z

Thus the node law for the current is equivalent to the harmonicity of the voltage.
The current flow also satisfies the cycle law: if the edges €}, ..., €, form a cycle,
ie. € =x,_1x; and x, = xg, then

> red(€)=0.
i=1

Finally, by definition, a current flow also satisfies Ohm’s law: if & = a7,

red(€) =V, = V..

The particular values of a voltage function V' are less important than the voltage
differences, so fix a voltage function V' on the network normalized to have V., = 0.

By definition, if # is an arbitrary flow on oriented edges satisfying Ohm’s law
roy0(2Y) =V, — V.. (with respect to the voltage V'), then 6 equals the current flow I
associated with V.

Define the strength of an arbitrary flow 6 as

[0] =3 0(at).

r~a

Proposition 8.2 (Node law/cycle law/strength) If 0 is a flow from a to z sat-
1sfying the cycle law

> re0(€;) =0
=1
for any cycle @ ..., e, and if |6 = |I|, then 8 = 1.

Proof. The function J = # — [ satisfies the node-law at all nodes and the cycle law.
Define

ha) = Y T(@)r,
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where €, ..., €, is an arbitrary path from a to x. By the cycle law, .J is well defined.
By the node law, it is harmonic everywhere, except possibly at @ and z. Now |6 =
| 7| implies that .J is also harmonic at ¢ and z. By the maximum principle, h must
be constant. This implies that .J = 0. O

Given a network, the ratio (V, —V.)/| I|, where [ is the current flow corresponding
to the voltage V', is independent of the voltage V applied to the network. Define the
effective resistance between vertices a and z as

Vo = V.

Rlo=2:==Tp

We think of effective resistance as follows: replace the whole network by a single edge
joining a to z and require that the two networks be equivalent, in the sense that the
amount of current flowing from a to z in the new network is the same as in the original
network if we apply the same voltage to both.

Next, we discuss the probabilistic interpretation of effective resistance. Denote

P(a — z):= P,(hit z before returning to a).

For any vertex x
Va - Vx
Va - sz .

If p,, = cuym, " are the transition probabilities of the Markov chain, then

P.(hit z before a) =

P(a —z) = > peP.(hit z before a)

Car‘/a_‘/r

Ta, ‘/a_‘/;:

1

- — = N I{a
v, ) 2

L 1]

Ta, Va_‘/z
1

T R(a < z)’

r~a

Call [R(a < z)] ! the effective conductance, written as C(a < z). Then

Pla — z) = iC(a - z). (22)

Ta
The Green function for the random walk stopped at z, is defined by
G(a,z) = E,[# visits to x before hitting z] .

(The subscript in E, indicates the initial state.) Then G(a,a) = 7, R(a < z),
since the number of visits to a before visiting z has a geometric distribution with
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parameter P(a — z). It is often possible to replace a network by a simplified one

without changing quantities of interest, for example the effective resistance between
a pair of nodes. The following laws are very useful.

Parallel Law. Conductances in parallel add: Suppose edges e; and ey, with con-
ductances ¢y and ¢y respectively, share vertices vy and vy as endpoints. Then both
edges can be replaced with a single edge of conductance ¢; + ¢ without affecting the
rest of the network. All voltages and currents in G\ {e1, €5} are unchanged and the
current (&) equals I(€;) 4 I(€,). For a proof, check Ohm’s and Kirchhoff’s laws with
I(é):=1(&1) + I(ey).

Series Law. Resistances in series add: If v € G\ {a, z} is a node of degree 2 with
neighbors v; and vy, the edges (vy,v) and (v,v;) can be replaced by a single edge
(v1,vq) of resistance 7,,, + 7y,. All potentials and currents in G\ {v} remain the
same and the current that flows from v; to vy equals I(v70) = I(973). For a proof,
check again Ohm’s and Kirchhoff’s laws, with I(v703) := I(v70) = I(v03).

Glue. Another convenient operation is to identify vertices having the same voltage,
while keeping all existing edges. Because current never flows between vertices with
the same voltage, potentials and currents are unchanged.

Example 8.3 Consider a spherically symmetric tree I', a tree in which all vertices
of I',, have the same number of children for all n > 0. Suppose that all edges at the
same distance from the root have the same resistance, that is, r. = r; if |e| =4, 7 > 1.
Glue all the vertices in each level; This will not affect effective resistances, so we infer
that

N
=1 |F7»|
and r
P(p— T = 0L
L rif [Tl
Therefore the corresponding random walk on I is transient iff § ri/|ITi] <oo. A
=1

Theorem 8.4 (Thomson’s Principle) For any finite connected graph,
R(a < z) =inf {E(0): 0 a unit flow from a to z },

where £(0): = >_.[0(e)]?re. The unique minimizer in the inf above is the unit current

flow.

Note: The sum in £(f) is over unoriented edges, so each edge {x,y} is only consid-
ered once in the definition of energy. Although 6 is defined on oriented edges, it is
antisymmetric and hence (e)? is unambiguous.
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Proof. By compactness, there exists flows minimizing £(6) subject to | 6| = 1. By
Proposition 8.2, to prove that the unit current flow is the unique minimizer, it is
enough to verify that any unit flow # of minimal energy satisfies the cycle law.

Let the edges é1,...¢é, form a cycle. Set y(&;) = 1 for all 1 < i < n and set v
equal to zero on all other edges. Note that v satisfies the node law, so it is a flow, but
> v(€) =n #0. For any € € R, we have that

0<EB+ey)—E0) = %i [(0(8) + €)> — 0(&)]re, = Ei%ﬂ(é) +O(€?).

By taking ¢ — 0 from above and from below, we see that i r.,0(€;) = 0, thus verifying
i=1
that 6 satisfies the cycle law.

To complete the proof, we show that the unit current flow I has £(I) = R(a < z2):

Srde? = 3T ¥ xy(v V)

ry

- T el -V
_ % S = VI,
Since I is antisymmetric,
—ZZV Vo)l -2V Zlfcy (23)

Applying the node law and recalling that || =1, we conclude that the right-hand
side of (23) is equal to
‘/2 - Va
I 1]

=R(a + z).
]

Let a, z be vertices in a network, and suppose that we add to the network an edge
which is not incident to a. How does this affect the escape probability from a to 2?7
Probabilistically the answer is not obvious. In the language of electrical networks,
this question is answered by:

Theorem 8.5 (Rayleigh’s Monotonicity Law) If {r.} and {r.} are sets of resis-
tances on the edges of the same graph G, and if r. < r. for all e, then

R(a < z;r) < Rla < z;1').

Proof. Note that i%f Srf(e)? < i%f S 7'6(e)? and apply Thomson’s Principle (The-
orem 8.4). O
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Corollary 8.6 Adding an edge weakly decreases the effective resistance R(a < z). If
the added edge is not incident to a, the addition weakly increases the escape probability
Pla — 2) = [7,R(a < z)] L.

Proof. Before we add an edge to a network we can think of it as existing already
with ¢ = 0 or » = 00. By adding the edge we reduce its resistance to a finite number.
a

Thus, combining the relationship (22) and Corollary 8.6 shows that the addition
of an edge not incident to a (which we regard as changing a conductance from 0 to 1)
cannot decrease the escape probability P(a — 2).

Exercise 8.7 Show that R(a < z) is a concave function of {r.}.
Corollary 8.8 The operation of gluing vertices cannot increase effective resistance.

Proof. When we glue vertices together, we take an infimum over a larger class of
flows. O

Moreover, if we glue together vertices with different potentials, then effective resistance
will strictly decrease.

9 Infinite Networks

For an infinite graph G containing vertex a, let {G,,} be a collection of finite connected
subgraphs containing a and satisfying U,G, = G. If all the vertices in G \ G, are
replaced by a single vertex z,, then

R(a < o0):= lim R(a < z, in G, U{z,}).

n—0oo

Now p
P(a — 00) = 0= )
Ty

A flow on G from a to infinity is an antisymmetric edge function obeying the node
law at all vertices except . Thomson’s Principle remains valid for infinite networks:

R(a < oo) =inf { £(): 6 a unit flow from a to 0o }. (24)
Let us summarize the facts in the following proposition.
Proposition 9.1 Let (G,{c.}) be a network. The following are equivalent.
1. The weighted random walk on the network is transient.
2. There is some node a with C(a < 00) > 0 (equivalently, R(a < 00) < 00).

3. There is a flow 0 from some node a to infinity with | 0] > 0 and £(0) < .
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In particular, any subgraph of a recurrent graph must be recurrent.
Recall that an edge-cutset II separating a from z is a set of edges so that any path
from a to z must include some edge in II.

Corollary 9.2 (Nash-Williams (1959)) If {IL,} are disjoint edge-cutsets which
separate a from z, then

R(a < 2) Z(Z ) : (25)

n ecll,

In an infinite network (G, {c.}), the analogous statement with z replaced by oo is also
valid; in particular, if there exist disjoint edge-cutsets {I1,} that separate a from oo
and satisfy

o(ze) =~

then the weighted random walk on (G,{c.}) is recurrent.

Proof. Let 6 be a unit flow from a to z. For any n

D cer D mebe)’ = (Z \/C_e\/r_e|9(6)|> = (Z |9(6)|) > |0]° =1,

eclIl,, eclIl,, ecll,, €ll,

because II,, is a cutset and | 0| = 1. Therefore

26:7“69(6)22227“69 )2 ;(Z )

n ecll, ecll
O
Example 9.3 (Z? is recurrent) Take r, = 1 on G = Z? and consider the cutsets

consisting of edges joining vertices in 90, to vertices in 90,1, where O, = [—n, n]>.
Then by Nash-Williams (25),

Ra<—>oo >Z 2n+1) = 0.

Thus simple random walk on Z? is recurrent. Moreover, we obtain a lower bound for
the resistance from the center of a square O, = [—n,n]? to its boundary:

R(0 < 00,) > clogn.
In the next chapter, we will obtain an upper bound of the same type. A

The Nash-Williams inequality (25) is useful, but in general is not sharp. For example,
for the 3-1 tree in Example 2.6, the effective resistance from the root to oo is infinite
because the random walk is recurrent, yet the right-hand side of (25) is at most 1 for
any sequence of disjoint cutsets (prove this, or see Lyons and Peres 1999).
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Example 9.4 (Z? is transient) To each directed edge € in the lattice Z3, attach an
orthogonal unit square O, intersecting € at its midpoint m.. Define (&) to be the
area of the radial projection of O, onto the sphere dB(0, i), taken with a positive
sign if € points in the same direction as the radial vector from 0 to m,., and with a
negative sign otherwise. By considering a unit cube centered at each lattice point
and projecting it to 9B(0, i), we can easily verify that # satisfies the node law at all
vertices except the origin. Hence 6 is a flow from 0 to oo in Z3. Tt is easy to bound
its energy:

2
£(0) <> Cin? <Q22> < 00.
- n

By Proposition 9.1, Z? is transient. This works for any Z¢, d > 3. An analytic
description of the same flow was given by T. Lyons (1983).
A

Exercise 9.5 Fiz k > 1. Define the k-fuzz of an undirected graph G = (V, E) as the
graph Gy, = (V, Ey) where for any two distinct vertices v,w € V', the edge {v,w} is
in By iff there is a path of at most k edges in E connecting v to w. Show that for G
with bounded degrees, G is transient iff Gy 1s transient.

A solution can be found in Doyle and Snell (1984, §8.4).

10 The Method of Random Paths

A self-avoiding path from a to z is a sequence of vertices vy, ..., v, such that vg = a
and v, = z, adjacent vertices v;_; and v; are connected by an edge, and v; # v; for
t # j. If p and ¥ are two self-avoiding paths from a to z, define

| M 1| = number of edges in the intersection of ¢ and .

If € is the oriented edge pointing from vertex v to w, let € be the reversed edge
pointing from w to v. If i is a measure on the set of self-avoiding paths from a to z,
define
ple)=ulp : p3e)=pulp: p3€orp> ).
The Nash-Williams inequality yields lower bounds for effective resistance. For
upper bounds the following result is useful. Assume that r. = 1 for all e; the result
can be extended easily to arbitrary resistances.

Theorem 10.1 (Method of random paths)

R(a < 2) =inf 3 [u(e)]” = inf Byl 0],

where the infimum is over all probability measures p on the set of self-avoiding paths
from a to z, and p and 1) are independent paths with distribution . Similarly, if there
is a measure (1 on infinite self-avoiding paths in a graph G with E,.,[ |¢ N Y]] < o0,
then simple random walk on G is transient.
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Remark. The useful direction here is R(a < z) < ¥ u(e)? for all p.
Proof. The second equality is trivial: write [ N1 as 3, 156 poe)-

Given a probability measure p on the set of self-avoiding paths from a to z, define

0&) = plp: 938 —pulp:9>%e)
= E,[H{e>e} —1{p> e}

By definition, # is antisymmetric. To see that ¢ obeys the node law, observe that

> 0(vw) =E,| Y 1{p3vw}-1{p > tw}|.

w:Iwn~v w:Iwn~v

Assume v ¢ {a,z}. If, for a sample path ¢, a term in the sum is nonzero, then ¢
must use either an edge directed to v or an edge directed from v. But because ¢ is
a self-avoiding walk which terminates at z, it must also use exactly one other edge
incident to v, in the first case directed away from v and in the second case directed to
v. Hence the net contribution of ¢ to the sum is zero. We conclude that 6 is a flow.

Clearly, # is a unit flow, i.e..
101 =>_0(ai)=1.

so we can apply Thomson’s principle:
Ria = 2) < Y0P < 3 [u(e))”

The other inequality R(a < z) > inf, 3" u(e)? will not be used in these notes, so
we only sketch a proof. Let I denote a unit current flow. Then

Rla < 2)=> I(e)’

Notice that a unit current flow is acyclic. Define a Markov chain by making transitions
according to the flow I normalized. This chain then defines a measure on paths and
w(€) = I(€), because I is acyclic. For details, see Lyons and Peres (1999). O

Example 10.2 In Z? consider the boundary 00, = {z € Z* |z|; = n} of the
square O, = [—n,n]?. Using Nash-Williams we have seen that

R(0 < O,) > clogn.

Now define a measure p on self-avoiding paths in 0O, as follows: Pick a ray  em-
anating from the origin in a random uniformly distributed direction, and let u be
the distribution of the lattice path that best approximates (. By considering edges e
according to their distance from the origin, we also get

C:

> lue))” < kz:clk (%)2 < Clogn.

e
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So in Z? we have
clogn < R(0 « 00,) < Clogn.

A

Example 10.3 In Z3, define y analogously, but this time on the whole infinite lattice.
Now

A

Example 10.4 (Wedges in Z*) Given a non-negative and non-decreasing function
f, consider the wedge

Wy={(z,y,2):0<y <z, 0<z< f(a)}.
By Nash-Williams, the resistance from the origin to oo in Wy satisfies
1
kf(k)

In particular, if this sum diverges, then W/ is recurrent. The converse also holds: A

R(0 < 00)>C>

Theorem 10.5 (T. Lyons 1983) If S [kf(k)] ' < oo, then the wedge W is tran-
sient.

Proof Idea. Choose a random point (Uy, U,) according to the uniform distribution
on [0,1]* and find the lattice path closest to {(k, Uik, Usf(k))}3%,. The completion
of this proof is left as an exercise. O

11 Transience of Percolation Clusters

The graph Z3 supports a flow of finite energy, described in Example 9.4, and hence
simple random walk in three dimensions is transient. Equivalently, if each edge of
7?3 is assigned unit conductance, then the effective conductance from any vertex to
infinity is positive. If a finite number of edges are removed, then the random walk on
the infinite component of the modified graph is also transient, because the effective
conductance remains nonzero.

A much deeper result, first proved by Grimmett, Kesten, and Zhang (1993), is that
if d > 3 and p > p.(Z%), then simple random walk on C.(Z<,p) is transient, where
Coo(Z%, p) is the unique infinite cluster of Bernoulli(p) percolation on Z¢. Benjamini,
Pemantle and Peres (1998) (hereafter referred to as BPP (1998)) gave an alternative
proof of this result and extended it to high-density oriented percolation. Their argu-
ment uses certain “unpredictable” random paths that have exponential intersection
tails to construct random flows of finite energy on Cy(Z?, p).
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Let G = (Vg, Eg) be an infinite graph with all vertices of finite degree and let
vy € V. Denote by T = T(G, vg) the collection of infinite oriented paths in G which
emanate from vg. Let Y1 = YT;(G,v9) C T be the set of paths with unit speed,
i.e., those paths for which the n'* vertex is at distance n from vy.

Let 0 < ¢ < 1. A Borel probability measure p on Y(G,v) has exponential
intersection tails with parameter ¢ (in short, EIT(()) if there exists C' such that

wx p{(p,0) len el >np <CC* (26)

for all n, where |p N 1| is the number of edges in the intersection of ¢ and . If
such a measure p exists for some basepoint vy and some ( < 1, then we say that G
admits random paths with EIT(C). By the previous chapter, such a graph G must be
transient.

Theorem 11.1 (Cox-Durrett 1983, BPP 1998) For every d > 3, there exists
¢ < 1 such that the lattice Z% admits random paths with EIT(C).

Proof: For d > 4, we will show (following Cox and Durrett 1983, who attribute
the idea to Kesten) that the “uniform distribution” on Y;(Z< 0) has the required
EIT property; for d = 3 such a simple choice cannot work, and we will delay the
proof to Chapter 17. Let d > 4, and define p to be the distribution of the random
walk with i.i.d. increments uniformly distributed on the d standard basis vectors
(1,0,...,0),...,(0,...,0,1). Let {X,} and {Y;,} be two independent random walks
with distribution p. It suffices to show that the number of vertex intersections of
these two walks has an exponential tail. Since | X, |1 = n for all n, we can have
X, =Y, only if n = m. The process {X,, — Y, } is a mean 0 random walk in the d —1
dimensional sublattice of Z? consisting of vectors orthogonal to (1,1,...,1), and its
increments generate this sublattice. Since d — 1 > 3, the random walk {X,, — Y, } is
transient, and (26) holds with

¢(:=P[In>1 X, -Y,=0], and C =1.
O

Proposition 11.2 (BPP 1998) Suppose that the directed graph G admits random
paths with EIT(C), and consider Bernoulli(p) percolation on G. If p > ( then with
probability 1 there is a vertexr v in G such that the open cluster C(v) is transient.

Proof. The hypothesis means that there is some vertex vy and a probability measure
pon T = Y(G, vy) satisfying (26). We will assume here that p is supported on Y1;
the general case is treated in BPP (1998).

For N > 1 and any infinite path ¢ € T{(G,vp), denote by ¢y the finite path
consisting of the first NV edges of p. Consider the random variable

Zn = /T1 prl{gDN is openy 4H(¥) - (27)
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Except for the normalization factor p~V, this is the p-measure of the paths that stay
in the open cluster of vy for IV steps.

Since each edge is open with probability p (independently of other edges), E(Zy) =
1, but we can say more. Let By be the o-field generated by the status (open or closed)
of all edges on paths ¢n with ¢ € Y. It is easy to check that for each ¢ € Ty,
the sequence {p‘Nl{wN s open}} is a martingale adapted to the filtration {Bx}n>1.
Consequently, {Zy}y>; is also a non-negative martingale. By the Martingale Con-
vergence Theorem, {Zy} converges a.s. to a random variable Z,. In fact, we now
show that {Zy} is bounded in L?, and hence converges in L?. Since each edge is open
with probability p (independently of other edges), E(Zy) = 1. The second moment
of Zy satisfies

E(Zy) = E/T1 o piml{w and vy are open} du(e) du(v)
< —leny| g d
< /T P p(e) dp(v)

= i_ojp’“u x (o, ) lpNap| =k} (28)

k
By (26), the sum on the right-hand side of (28) is bounded by >3, C (%) , which
does not depend on N and is finite since ¢ < p.

On the event {Z,, > 0}, the cluster C(vy) is infinite, and by Cauchy-Schwarz,

(BEZs)?

P(C(uw)| = %) > P(Zo > 0) 2 e

Since EZ% is bounded, by Fatou’s Lemma the right-hand side is positive. Thus with
positive probability C(wp) is infinite, and it remains to prove that C(vy) is a.s. transient
on this event.

We will construct a flow of finite energy on C(vg). For each N > 1, and every edge
¢ directed away from vy, define

@ = [ 71, is open Leeo) () (29)

If € is directed towards vy, let f(€) = —f(%€ ), where € is the reversal of €. Let
B(vg, N) denote the set of all vertices within distance N of vy. Then fy is a flow
on C(vg) N B(vg, N + 1) from vy to the complement of B(vy, N), i.e., for any vertex
v € B(vg, N) except v, the incoming flow to v equals the outgoing flow from v. The
strength of fy (the total outflow from wvg) is exactly Zy.

Next, we estimate the expected energy of fy by summing over edges directed away
from vy:

B /x(@ = B [ 0 1o are open) & Lieeon) Liceun) dule) dp(v)
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< /T/T o N | p P dpu( ) du(w)
= i kp~*ux p{(p,0)  lp Nl = k). (30)

k=1

Again using (26) and p > ¢, from (30) we conclude that

o k

B v <Yk (8) =0 < 1)
¢ k=1

where C' does not depend on N.

For each directed edge € of G, the sequence {fx(€)} is a {By}-martingale which
converges a.s. and in L? to a nonnegative random variable f(€). The edge function
f is a flow with strength Z,, on C(vp), and has finite expected energy by (31) and
Fatou’s Lemma.

Thus

P[C(wvp) is transient] > P[Z,, > 0] > 0,

so the tail event {Jv : C(v) is transient} must have probability 1 by Kolmogorov’s
zero-one law. O

Theorem 11.3 (Grimmett, Kesten and Zhang 1993)  Consider Bernoulli(p)
percolation on Z%, where d > 3. For all p > p,, the unique infinite cluster is a.s.
transient.

Proof. It follows from Theorem 11.1 and Proposition 11.2 that the infinite cluster is
transient if p is close enough to 1.

Recall that a set of graphs B is called increasing if for any graph G that contains
a subgraph in B, necessarily G must also be in B.

Consider now percolation with any parameter p > p, in Z?. Following Pisztora
(1996), call an open cluster C contained in some cube Q a crossing cluster for @ if
for all d directions there is an open path contained in C joining the left face of @ to
the right face. For each v in the lattice NZ?, denote by Oy(v) the cube of side-length
5N/4 in Z4, centered at v. Let A,(N) be the set of v € NZ? with the following
property:  The cube Oy (v) contains a crossing cluster C such that any open cluster
in Oy (v) of diameter greater than N/10 is connected to C by an open path in Oy (v).

Proposition 2.1 in Antal and Pisztora (1996), which relies on the work of Grimmett
and Marstrand (1990), implies that A,(N) stochastically dominates site percolation
with parameter p,(NN) on the stretched lattice NZ?, where p,(N) — 1 as N — oo. By
Liggett, Schonmann and Stacey (1996), it follows that A,(N) stochastically dominates
bond percolation with parameter p*(N) on NZ¢, where p*(N) — 1 as N — oo. This
domination means that for any increasing Borel set of graphs B, the probability
that the subgraph of open sites under independent bond percolation with parameter
p*(N) lies in B, is at most P[A,(N) € B]. If N is sufficiently large, then the infinite
cluster determined by bond percolation with parameter p*(NN) on the lattice NZ<,
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is a.s. transient. The set of subgraphs of NZ? that contain a transient subgraph is
increasing, so A,(N) contains a transient subgraph A,(N) with probability 1. Observe
that A,(N) is isomorphic to a subgraph of the “3N?fuzz” of the infinite cluster C,
in the original lattice, so by Rayleigh’s monotonicity principle, we conclude that C, is
also transient a.s. (See Ex. 9.5, or §8.4 in Doyle and Snell (1984) for the definition and
properties of the k-fuzz of a graph.) Alternatively, it can be verified that A,(N) is
“roughly isometric” to a subgraph of C,, and therefore C, is transient a.s. (see Soardi
1994). O
Remark. Hiemer (1998) proved a renormalization theorem for oriented percolation,
that allowed him to extend the result of [6] on transience of oriented percolation
clusters in Z¢ for d > 3, from the case of high p to the whole supercritical phase for
oriented percolation.

Recall that a collection of edges I1 is a cutset separating vy from oo if any infinite
self-avoiding path emanating from vy, must intersect II. Nash-Williams proved that
if {I1,,}5°, is a sequence of disjoint cutsets separating vg from infinity in a connected
transient graph, then 3, |II,|™! < oco.

The following extension of Theorem 11.3 provides finer information about the
permissible growth rates of cutsets on supercritical infinite percolation clusters.

Exercise 11.4 Show that for d > 2,

inf{g:3 a flow f # 0 from 0 to co on Z¢ with Z|f(e)|q<oo}:d;‘ll.

Theorem 11.5 (Levin and Peres 1998) Let Coo(Z4,p) be the infinite cluster of
Bernoulli(p) percolation on Z. Then for d > 3 and p > p.(Z%), a.s.,

d

inf{g : 3 a flow f # 0 from 0 to 0o on Coo(Z?,p) with > |f(e)|* < o0} = 1

Corollary 11.6 Let d > 3 and p > p.(Z*). With probability one, if {IL,} is a

sequence of disjoint cutsets in the infinite cluster Coo(Z%, p) that separate a fived vertex
vy from oo, then ¥, |T,|7F < oo for all > 715.

Proof. Pick § > &=, and let f be a unit flow on Co(Z, p) with | f(e)|*™* < oo,

which exists by Theorem 11.5. Observe first that

Eivs(f) = 2 1F (7 =30 > [f(e),

e€Eqg n e€ll,

since the {II,} are disjoint. By Jensen’s inequality, for all n > 1,

1 1 1+8 1
o O = (g X @) = M7
nil eell, nl eell,
Multiplying by |IT,,| and summing over n establishes the Corollary. O

Remark. Theorem 11.5 was recently sharpened by Hoffman and Mossel.
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12 Subperiodic Trees

For a tree I, let I'" denote the subtree of I' rooted at vertex v that contains all
descendants of v. I' is N-subperiodic if for any vertex v € [' there exists a 1-1
adjacency preserving map f: TV — I'/®) with |f(v)| < N.

Example 12.1 Ezamples of subperiodic trees.

e b-ary trees for any integer b > 2.
e The Fibonacci tree I'gy, described in Exercise 5.6.
e The tree of all self-avoiding walks in Z¢.

e Directed covers of finite connected directed graphs: to every directed path of
length n in the graph corresponds v € T" with |v| = n; extensions of the path
correspond to descendants of v.

e Universal covers of undirected graphs: to every non-backtracking path of length
n in the graph corresponds v € I' with |v| = n; extensions correspond to de-
scendants, as above.

A
Suppose that b > 2 is an integer. For a closed nonempty set A C [0,1], define a
tree I'(A, b) as follows. Consider the system of b-adic subintervals of [0, 1]; those which
have a non-empty intersection with A form the vertices of the tree. Two vertices are
connected by an edge if one of the corresponding intervals is contained in the other
and their orders differ by one (i.e., the ratio of lengths is b). The root of this tree is
[0,1]. Clearly, I'(]0, 1], b) is the usual b-ary tree. If bA(mod 1) C A, i.e., A is invariant
under the transformation x — bx(mod 1), then T'(A, b) is 0-subperiodic.

Theorem 12.2 (Furstenberg 1967) For I' which is subperiodic, gr(T') exists and
gr(T') = br(T). Furthermore,

i%f S(br(T"),II) > 0,

where S\, I1) = S A1 for a cutset I1.

vell

Corollary 12.3 (Furstenberg’s formulation) Let A C [0, 1] be a compact set. If
bA(mod 1) C A, then

for some 3, and moreover, H?(A) > 0, where H? denotes 3-dimensional Hausdorff
measure.
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Proof of Theorem 12.2. We will give the proof for I' 0-subperiodic. The N-
subperiodic case can be reduced to the O-subperiodic case; this reduction is left as an
exercise. Assume first that I has no leaves.

Suppose that for some finite cutset II,

SO < 1. (32)

Denote d = max |v|. By 0-subperiodicity, for any v € II, there exists a cutset II(v) of
veE

[ such that
Z A (wl=lh) 1
weT(v)
In other words,
Z Al <\ =Tl
well(v)
Replace v in TT by the vertices in TI(v) to obtain a new cutset IT in T with S(\, IT) < 1.
Given n, repeat this kind of replacement for every vertex v in the current cutset with
|v] < n to get a cutset IT* such that all vertices u € IT* satisfy n < |u| < n+d. Then

T, A" < S\ IT*) < 1.

This inequality depends on the assumption of no leaves. Thus |T,| < A"*? for all
n, whence gr(I') < A. Since (32) holds for any A > br(I"), we infer that gr(I') < A.
Therefore

gx(D) < br(D) < (D).

Finally, consider A\; = br(I'). If S(\,II) < 1 for some finite cutset II, then we
could find A < A; such that S(A\,II) < 1, and the preceding argument would yield
that gr(I") < A < Ay, a contradiction. Thus for all cutsets II,

S(br(T"), IT) > 1.

If I" has leaves, create a modified tree [V by attaching to each leaf an infinite path.
[ is periodic as well, and so the theorem can be applied to it, yielding br(I'") = gr(I”).
But since br(I') = br(I") and gr(I") < gr(I”), we have

be(T) < gr(T) < gr(T) < gi() = br(") = ba(T),
and hence gr(I") = br(I"). O

Exercise 12.4 Construct a subperiodic tree with superlinear polynomial growth (more
precisely, construct a subperiodic tree T such that |T, |toco as n — oo, but |T,| =
O(n?) for some d < .

(Hint: build a subtree of the binary tree where all finite paths are labeled by words
in the Morse sequence 0110100110010110. ... This sequence is obtained by iterating
the substitution 0 — 01, 1 — 10. Alternatively, use a lexicographic spanning tree in
Z?, as described in the next chapter.)
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Exercise 12.5 Does every subperiodic tree with exponential growth have a subtree
without leaves that has bounded pipes?

(Hint: Consider the subtree T of the binary tree T3, containing all self-avoiding paths
from the root in Ty with the property that for every n > 100, any n? consecutive
edges on the path contain a run of n consecutive left turns.)

13 The Random Walks RW,

For a graph G, fix an origin o, and define |e| as the length of a shortest path from o to
an end-vertex of e. We will define a family of processes RW, as weighted random walks
on G. Specifically, each edge e is assigned conductance A=l We will mostly consider
the case where I' is a tree and o is the root p, although we will also consider these
processes defined on Cayley graphs of groups. By fine tuning A\, we obtain random
walks that explore the graph better than the simple random walk. The following
result is stronger than Theorem 2.9 mentioned in Chapter 2.

Theorem 13.1 (R. Lyons 1990) RW, is transient on a tree T' if A < br(T'), and
recurrent if A > br(T).

Proof. If A\ > br(T), then for any ¢ there exists a cutset IT such that 3,cq APl < e.
By Nash-Williams (for just one cutset)
1 1

vell
Letting € | 0 shows that R(p <> o) is infinite, and hence the walk is recurrent.
If A < br(T) choose A < A, < br(T') so that there exists a unit flow 6 from p to oo

with f(e) < CA ' Then

E0)=>"rJo(e))> <> A" |z_: Ble)ON =Y (%) |Z f(e) < o,

e n * e‘:n

since 6 is a unit flow. O

Let G be a countable group with a finite set of generators S = (g1, ... ¢,,). With
every generator we include its inverse, so S = S~!. The Cayley graph of G has as
vertices the elements of the group, and contains an (unoriented) edge between u and
v if u = g;v for some g; € S. Each element g € G can be represented as a word in the
generators, g = gi(1) - Yim); let |g| be the minimal length of words which represent
g, and let G, = {g € G : |g| = n}. The growth gr(G) := lim, |G,|'/™ exists for such
groups, and the group is of exponential growth if gr(G) > 1.

Corollary 13.2 (R. Lyons 1995) RW, on the Cayley graph of a group G of expo-
nential growth is transient for A\ < gr(G) and recurrent for A > gr(G).
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Proof. The second statement follows from the Nash-Williams inequality. For the first,
we will show that random walk on a subgraph is transient; by Rayleigh’s Monotonicity
Principle, this is enough. We will use the lexicographic spanning tree I in G. Assign
g its lexicographically minimal representation ¢ = g1y - - gi(m) Where m = |g| and
if g = gj) - gjom) is another representation of g, then at the smallest k& such that
i(k) # j(k) we have i(k) < j(k). The edge gh is in ['if | |g| — |h| | = 1 and either ¢
is an initial segment of h or h is an initial segment of ¢g. Let the identity be the root.
Since there is a unique path from the root to any element in I', and I' contains all
elements of (G, it is indeed a spanning tree. One can check that it is O—subperiodic.
Observe that |I',| = |G,|, so gr(I") = gr(G). Since I is subperiodic, Theorem 12.2
implies that br(I') = gr(G). By Theorem 13.1, for A < gr(G) the biased walk RW, is
transient on I', hence also on G. O

Open Problem 1 For 1 < A < gr(G), is it true that

Xn
speed(RW),) := lim X >0, a.s. ?

n—oo
Here |v| denotes the distance of v from the identity.

We remark that there exist groups of exponential growth where the speed of simple
random walk is 0 a.s. An example is the simple random walk on the lamplighter
group; see Lyons, Pemantle and Peres (1996).

14 Capacity

In Chapter 6 we considered capacity on the boundary of a tree. We now generalize
the definition to any metric space X equipped with the Borel o-field B. A kernel F
is a measurable function F': X x X — [0, 00]. For a measure x on (X, B), the energy
of 1 in the kernel F'is defined as

erm = [ [ Fmdp(@)inty).

We will mostly consider F' of the form F(x,y) = f(|x — y|) for f non-negative and
non-increasing; we write £y for £ in this case. Define the capacity of a set A in the
kernel F' as

Cave(h) = | i 5F<u>]1.

mp(A)=1

The first occurrence of capacity in probability theory was the following result.

Theorem 14.1 (Kakutani 1944a, 1944b) If A C R? is compact with 0 ¢ A and
B is a Brownian motion, then

Po(B hits A) > 0 if and only if Capg(A) >0,
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where G is the Green kernel

_ |x_y|2_d dZ3a
Glay) = {log+<|x—y|1> d=2.

R. Lyons discovered connections between capacity and percolation on trees, already
discussed in Chapter 6. Let {p.} be a set of probabilities indexed by the edges of
a tree I'. Let path(v) denote the unique path from the root to v, and let F' be the
kernel

Flz,y) = I »*- (33)

e€path(zAy)

If p. = p, then F(x,y) = p~1*". More generally, if P is the probability measure
corresponding to independent {p.} percolation, then F(z,y) = [P(p < x A y)]~"
A. H. Fan proved that on an infinite tree of bounded degree, P(p < 9I') > 0 iff
Capp(9T') > 0. This was sharpened by R. Lyons to a quantitative estimate.

Theorem 14.2 (R. Lyons 1992) Let P be the probability measure corresponding to
independent {p.} percolation on a tree T' and F the kernel defined in (33). Then

Capp(T') < P(p < ') < 2Cap,(ar). (34)

Consider Brownian motion in dimension d > 3. One obstacle to obtaining quanti-
tative estimates for Brownian hitting probabilities with capacity in Green’s kernel is
translation invariance of that kernel: If B is a Brownian motion started at the origin,
then P(Bhits A + ) becomes small as * — oo. If we had a scale invariant kernel
instead, we would have more hope, as P(B hits cA) = P(B hits A) for any ¢ > 0.
Hence we use capacity in the Martin kernel

K(zy) = S8 _ ( ] )H (35)

|z —y]

for d > 3.

Theorem 14.3 (Benjamini, Pemantle, and Peres 1995) Let B be a Brownian
motion in R? for d > 3, started at the origin. Let K be the Martin kernel defined in
(35). Then for any closed set A in R,

1

Remark. An analogous statement holds for planar Brownian motion, provided it is
killed at an appropriate finite stopping time (e.g., an independent exponential time, or
the first exit from a bounded domain) and the corresponding Green function G(x,y)
is used to define the Martin Kernel.
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Theorem 14.4 (BPP 1995) Let {X,} be a transient Markov chain on a countable
state space S with initial state p € S, and set

Glra) = B2 |3 1006 | and Kz =
n=0
Then for any initial state p and any subset A of S,
1
icapK(A> < P,({X,} hits A) < Capye(A).

Exercise 14.5 Verify the analogous result for the Stable—% subordinator and the kernel

[ t=s)? 0<s<t,
G(S’t)'_{o s>1>0.

Problem: Find the class of Markov processes for which the above estimate (for
suitable kernel G and resulting K') holds.

Proof of Theorem 14.4. To prove the right-hand inequality, we may assume that
the hitting probability is positive. Let 7 = inf{n : X, € A} and let v be the measure
v(A) = P,(7 < oo and X, € A). In general, v is a sub-probability measure, as 7
may be infinite. By the Markov property, for y € A,

/Ga:ydu = Y P,(X, = 2)G(z.y) = G(p.y).

rEA

whence [, K(z,y)dv(z) = 1. Therefore Ex(v) = v(A), Ex(v/v(A)) = [v(A)]7!; con-
sequently, since v/v(A) is a probability measure,

Capg(A) > v(A) = P,({X,} hits A).

This yields one inequality. Note that the Markov property was used here.
For the reverse inequality, we use the second moment method. Given a probability
measure . on A, set

Z:/Ai]l{y}(xn)gé‘(w .

0:Y)

E,[Z] =1, and the second moment satisfies

E,[7’] = E / / ZOZLM} m) Ly (X )Gcé/;,(gd(;é(py,)y)
<[ [ Zjl{x} m) 14} (X )Gcé/;,(gdeé(p%L)'
Observe that

Z E, Z Loy (X)L (X)) = Y- Po(X = 2)G(2,y) = G(p, 2)G(x,y) .
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Hence

and therefore

- (E,[7])" 1
P,({X,} hits A) > P,(Z > 0) > B, 7] > TR

We conclude that P,({X,} hits A) > $Capg(A). O

The upper bound on P(p < 9ITI') obtained by the first moment method (8) is
not sharp enough to prove Theorem 14.2. For example, take the binary tree with
Bernoulli(p) percolation for p = %; if I, = {v: |v| < n}, then the first-moment method
yields an upper bound of 1 for any n, while Capp(dT',) = 2(n + 2)~!. However, we
can use Theorem 14.4 to give a short proof of Theorem 14.2.

Proof of Theorem 14.2. The first inequality was already proven in Proposition 7.1.

It remains to prove the right-hand inequality in (34). Assume first that ' is finite.
There is a Markov chain {V;} hiding here: Embed T in the lower half-plane, with
the root at the origin. The random set of » > 0 leaves that survive the percolation
may be enumerated from left to right as Vi, V5, ..., V,. The key observation is that
the random sequence p, Vi, Vo, ... V., AV A, ... is a Markov chain on the state space
ol U {p, A}, where p is the root and A is a formal absorbing cemetery.

Indeed, given that V;, = x, all the edges on the unique path from p to x are retained,
so that survival of leaves to the right of = is determined by the edges strictly to the
right of the path from p to x, and is thus conditionally independent of Vi,..., Vi_;.
This verifies the Markov property, so Theorem 14.4 may be applied.

The transition probabilities for the Markov chain above are complicated, but it is
easy to write down the Green kernel. Clearly, G(p,y) equals the probability that y

survives percolation, so
Glpy)= II ».-

e€path(y)

If x is to the left of y, then G(x,y) is equal to the probability that the range of the
Markov chain contains y given that it contains z, which is just the probability of y
surviving given that o survives. Therefore,

G(z,y) = II Pe
e€path(y)\path(z)

and hence

K(z,y) = = II »"

G(p’ y) e€path(zAy)

Now G(z,y) = 0 for = on the right of y; thus (keeping the diagonal in mind)

F(z,y) < K(z,y) + K(y, v)
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for all x,y € OT', and therefore

Er(OT) < 2Ek(OT).
Now apply Theorem 14.4 to A = OI":

1 1
Capp(dl') > iCapK(aF) > —P({Vi} hits 9T") = §P(p — JI).

DO | —

This establishes the upper bound for finite I'.
The inequality for general I' follows from the finite case by taking limits. O
Remark. The inequality (34) was recently sharpened by Marchal [68].

The notation £ has appeared twice, once as a functional on flows and once as a
functional on measures. As discussed following Lemma 2.10, measures on the bound-
ary of a tree correspond to flows on the tree; we shall see that the energy of a measure
on JI' is (up to an additive constant) the same as the energy of the corresponding flow
on I': Given a measure ;. on 9T, let # be the corresponding flow: #(uv) = u(§ : v € &),
where u is the parent of v. Observe that

= S r0)? = S 7. /{9F . LeseyLmzeydp(€)dp(n) -

Moving the sum inside the integral, the above equals

Lpocerm redpn(€)du / / A (€)dul
/(9F /(91_‘2 {Gfﬁn}r M M or Jor Z ! M M )

e<&EAn
By the series law for resistances, we are left with
£0) = [ [ RipEAndu(©dntn). (36)
or Jor
Now if
1/C(p = v) +1=1/P(p < v), (37)
then substituting in (36) yields
Ex(p) =1+E&(0), (38)

where K(§,n) = 1/P(p < £ A n). By taking infimum on both sides of (38) and
applying Thomson’s Principle, we can rewrite Theorem 14.2: If the correspondence
(37) holds for resistances {r.} and an independent {p.} percolation P, then

1 2

<P < .
1+ R(p < o0) — (po0) < 1+ R(p < o0)

(39)

It is easily checked that in the case of Bernoulli(p) percolation, the correspondence
(37) is preserved by taking ¢, = (1 — p)~'p/’l, where e is the edge connecting v to its
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parent. In this case the weighted random walk on the resulting network is RWy,.
Thus, (39) implies that percolation occurs at p if and only if RW, is transient.

Consider a Cantor set A in the unit interval and the corresponding tree T'(A, D).
We shall see that simple random walk on this tree is transient iff A, considered as a
subset, of R?, is non-polar for Brownian motion. In particular, transience of I'(A, b) is
independent of b. The following theorem can be found in Benjamini and Peres (1992)
in a special case, and in Pemantle and Peres (1995b) in general.

Theorem 14.6 Let T' be a subtree of the b%-adic tree and let f : (0,00) — (0,00)
be a non-increasing function with f(0+) = oco. Let ¥ be the canonical map from the
boundary of the b-adic tree to [0,1]%; U=t is base-b representation of points in [0,1]%.
Let dist(v,w) = b7 1""l for v,w € T and let dist(z,y) be Euclidean distance for
x,y € [0,1]%. Then
Cap;(dT") =< Cap (¥ (al)),

where Cap; stands for capacity in the kernel F(x,y) = f(dist(x,y)). This means
there exist constants ¢ and C, depending on b and d only, such that

cCap;(W(9T)) < Cap;(ar) < C Cap(¥(aAT)).
Exercise 14.7 Consider Bernoulli(p) percolation on an infinite tree T'. Prove that
P, (component of p is transient) > 0 iff Py, (p < ') >0,
where p, = kLHp when |e| = k.
Hint: An infinite tree 7' is transient iff Capy,,,(0T") > 0. The kernel [z Ay| is obtained

by applying f(r) = —log, r to the distance between = and y.

Proof of Theorem 14.6 For v € T, let p(v) = pu(§ : £ > v). We will prove that
Er(p) < E(n¥h), e, e
(b, d) < —L) < cp.a 40
() < 5 s < Clbud) (40)
for some constants 0 < ¢(b,d) < C(b,d) < oo, depending on b and d only. This will
yield Cap(dI') =< Cap,(¥(dI')), proving the theorem.

Let
FOTF) = fO'), k>1
k) = { 7). k=0,

In the following, write v < w if w is a descendant of w. Then

lzAy|

£ = [, [, T M0 dute)int) =S 0w [ [ dutruty)

' 1o
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Breaking up the region of integration and observing that x Ay > v iff x > v and
y > v, the above is equal to

Sh) S [ [ duwyint) =3 b T ) = 3 A0S

o=k Ay>” k=0 |v]=k

where S, = S.(1) = ¥ [u(v)]*. Note that
|v|=k

> P < X @) <0t 3 [w@)],

|v|=k+1 lv|=k |v|=k+1

Le., Spp1 < Sk < Sk
We claim that in [0, 1]¢,

£ qf—1</ / S B L tor = () (y)
f(# ) < w(or) Wr)kg (k) {k:bl=F>|z—y|} CH (z)dp (y)

This holds because for the largest k yielding a non-zero term in the sum above,
b~% < |x — y| and thus the sum is bounded below by f(|x — y]).

For vertices v, w at the same level of T', set (v, w) =1 iff ¥(v) and ¥(w) are the
same or adjacent subcubes of [0,1]¢, and y(v,w) = 0 otherwise. Then

o p{(Em): [T =T << > > pwlo)u(w)x(v,w). (41)

[v|=k—1 |w|=k—1

Now use the standard inequality 2u(v)p(w) < [u(v)]? + [(w)]* and the fact that the
number of cubes adjacent to a given cube is bounded above by 3%, to deduce that

o p{(Em): [W(E) — W(n)| < b7 <375,y < 375,
It follows that

Er(pP™") < (3b)" 3 h(k) S, = (30) E4(1) -

For the reverse inequality, choose [ so that b* > v/d. Then |lv Aw| =k + [ implies
that |¥(v) — ¥(w)| < b~* and consequently

Er(poh) > Zf ) < p{lo Awl =k +1}
= Zf ) [Ski(1) = Sk ()] -

Using summation-by-parts shows that the right-hand side above is equal to

Zh )Ski(p bdth = b & ().
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15 Intersection-Equivalence

This Chapter follows Peres (1996). Throughout this chapter we work in [0, 1]¢ and all
processes considered are started according to the uniform measure on [0, 1]¢, unless
otherwise indicated.

Lemma 15.1 If B is a Brownian path (killed at an exponential time for d = 2), then
P(BNA#0) = Cap,(A)

for any Borel set A, where

N L
o= ELT TS (12)

Proof. (for d > 3). Denote by K the Martin kernel, see (35). By Theorem 14.3,

1
P(B hits A) = /PO(BhitsA—x)dx > 5 / Capy (A —x)dx.

[0,1]¢ [0,1]¢

Because Ex(n) < Cy&,(n) for any measure g on [0, 1]¢, the right-hand side above is
bounded below by

1

/Capg(A—az)da: e

[0,1]¢

1
— Cap (A).
5 ap,(A)

The upper-bound is a consequence of the probabilistic potential theory developed
by Hunt and Doob. There exists a finite measure v such that

P, (B hits A) = / gl —yl)dv(y)  and  w(A) = Cap,(A).
A
(see, e.g., Chung (1973).) Then

P(B hits A) = / P, (B hits A)dx = / (| — y)dzdv(y) < Cav(A),

[0,1] Ao,

where (Y is a constant depending only on d. Note that this proof extends to any initial
distribution 7 for B(0) with a bounded density; more generally a bounded Greenian
potential suffices. O

Shizuo Kakutani, generalizing a question of Paul Lévy, asked which compact sets
A satisfty P(A N By N By # 0) > 0, where By, B, are independent Brownian paths in
R? (d =2 or 3)?

Evans (1987) and Tongring (1988) gave a partial answer:

If Cap,2(A) > 0, then P(AN By N B, # 0) > 0. (43)
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They also found a necessary condition involving the Hausdorff measure of A. Later
Fitzsimmons and Salisbury (1989) gave the full answer: Cap,:(A) > 0 is necessary as
well as sufficient in (43). Furthermore, in dimension 2, their very general results yield
the equivalence

Cap(A) >0 & PANBiN...NBy #0)>0. (44)
This led Chris Bishop to make the following insightful conjecture:

Conjecture 2 (Bishop) Let B denote a Brownian path. Then for any nonincreasing
gauge f and any closed set A, the event that Cap (AN B) > 0 has positive probability
iff Capy,(A) > 0.

We will present a proof of this below. Applying Kakutani’s Theorem 14.1 to A’ =
AN By and B, shows that

P(ANBNB, #0)>0 < Cap,(ANB;) >0 with positive probability. — (45)
Bishop’s Conjecture (with f = ¢) along with (45) imply that
Cap.(A) >0 & PANB NBy #0)>0.
Hence Bishop’s Conjecture and Kakutani’s Theorem together give (44).

Theorem 15.2 Let f be a non-negative and non-increasing function. Consider in-
dependent {p.} percolation on the 2%-ary tree, with p, = py whenever |e| =k and with
pro..pe = 1/f(27F). Let Qa(f) C [0,1]¢ be the set corresponding to OT' in [0, 1]¢,
where T is the component of the root in this percolation. (This component may be
finite, whence Qq(f) =0.) Then, for any closed set A C [0, 1],

Cap;(A) < P(ANQa(f) #0). (46)
For f = g in particular, Qu(f) is intersection-equivalent to Brownian motion, i.e.,
P(ANQa(g) #0) <P(ANB #10). (47)
Proof. By Theorem 14.2,
P(ANQa(f) #0) = Pp(p < dT(A,2)) < Capy(dr'(A,2)), (48)

where the constants in < are universal, namely 1 and 2. Theorem 14.6 with b = 2
yields
Cap, (AT(A,2)) = Cap,(A), (49)

where the constants in < depend on d. Combining (48) and (49) establishes (46).
Finally, use (46) and Lemma 15.1 to prove (47). O
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Corollary 15.3 Let f and h be non-negative and non-increasing functions. If a
random closed set A in [0,1]% satisfies

P(ANA #0) < Cap,(A) (50)
for all closed A C [0,1]¢, then
P(Cap;(ANA)>0)>0 if and only if Capg,(A) >0 (51)
for all closed A C [0,1]. In particular, Bishop’s conjecture is true.

Proof. Enlarge the probability space where A is defined to include independent limit
sets of fractal percolations Qq(f) and Qq(h). By Theorem 15.2

P(ANANQa(f)#0|A) >0 if and only if Cap,(ANA)>0,
it follows that
P(Cap;(ANA)>0)>0 ifand only if P(ANANQ(f)#0) >0. (52)
Conditioning on Qq(f) and then using (50) with A N Qu(f) in place of A gives
P(ANANQ4f)#0) >0 if and only if P( Cap,(ANQq(f))>0)>0. (53)
Conditioning on Qq(f) and applying Theorem 15.2 yields
P( Cap,(ANQu(f)) >0) >0 if and only if P(ANQu(f) N Qu(h) #0) >0. (54)
Since Qq(f) N @d(h) has the same distribution as Qq(fh), Theorem 15.2 implies that
P(ANQa(f) N Qa(h) #0) >0 if and only if Cap,,(A) > 0. (55)
Combining (52),(53),(54), and (55) proves (51). 0
Corollary 15.4 Suppose {A;} are independent random closed sets in [0, 1] satisfying
P(A, N A#0) < Cap,(A)
for all closed A C [0,1] and some g; non-negative and non-increasing. Then
PAN..NnANA#D)>0 & Cap, ,(A)>0.

Example 15.5 A.s., two independent Brownian paths in R* do not intersect.
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This is a well-known result of Dvoretsky, Erdés and Kakutani (1950); we will show
how it follows from intersection-equivalence. Let B; and B; be two independent
Brownian paths in R?, started uniformly in the cube [0, 1]* and intersected with that
cube. Each is intersection-equivalent to Q4(g), and thus

P((0,1]' N Bi N By # 0) = P(Qa(g) N Qulg) #0). (56)

where Q4(g) is an independent copy of Q4(r2). Because Q4(¢) N Q4(g) has the same
distribution as Q4(¢?),

P([0,1]* N B, N By # 0) < P(Q4(g*) #0). (57)

Since the edge probabilities in the percolation corresponding to ¢?(r) = r~* are all

pr = 1/16, the tree corresponding to Q4(g¢?) is a critical branching process and thus
dies out almost surely:

P(Qu(g*) #0) =0. (58)
Putting together (57) and (58) shows that the two paths never intersect. A

Corollary 15.6 (Lawler (1982, 1985), Aizenman (1985)) Let By and Bs be in-
dependent Brownian paths intersected with [0,1]%, considered as sets in [0,1]¢. Then

1 d<3

1 _
P(dlSt(Bl, BQ) < 6) = —log ¢ d=4
=t d>4

Proof. We will prove the cases d > 4; the other cases are handled similarly. Let g be
the Greenian potential (42), and write Qq(p) instead of Q,(g), where p = 224, For a
closed set C' and € > 0, let C° be the set of points within distance € from a point in
C'. Conditioning on Bj and applying Theorem 15.2 gives

Now conditioning on [Q4(p)]* and again applying Theorem 15.2 yields
P(Qa(p) N B; #0) = P([Qu(p)) N By #0) = P([Qu(»)]° N Qulp) #0),  (60)

where Q4(p) is an independent, copy of Qu(p).
Combining (59) and (60) shows that

P(dist(By, By) <€) < P([Qua(p)]° N Qulp) # 0). (61)

Next let ¢/2 < 27 < € and choose € so that 2 > v/d. Then P([Qa(p)] N Qu(p) # 0) is
at most the probability that Qq(p) and Qu(p) both intersect the interior of the same
binary cube of side-length 2-*+9 and this is bounded below by

¢* - P(the construction leading to Qu(p*) survives for k 4 ¢ generations),  (62)
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where ¢ = 1 — ¢ > 0 is the probability of survival of the (supercritical) branching
process associated to the construction of Q4(p).

The probability in (62) may be estimated via standard branching process argu-
ments, but we use percolation instead. Consider Bernoulli(p?) percolation on the
2%-ary tree T and write the probability as P,2(p <> Ti4(). Since the minimal energy
measure on J7} is the uniform measure p, Theorem 14.2 yields that

1 1

= =& ,
P, T) - Capp(dy o

where F(v,w) = p~"*|. We have
Er(p) = 1+ 3> > (7 —p' Du)p(w) = 1+3 > (7 —p u@)pu(w).
’U,’UJETk j:1 jil ‘v/\'w‘>2j
Since |v Aw| > j if and only if |v| > j and |w| > j,
k . . 2 k . . .
Er(p) = 1+ (7 =p' ) | Dopv)| = 14+3 (77 —p' )27,
=i o1 =1

where the last equality holds because p is the uniform measure. We conclude that
Er(u) =< T5_1(p27)77 and

1 _ { k if p=2-1
P,(p < Ty) (24p)=F ifp <279,

Recall that p = 227 and hence the probability in (62) is equal to
(k+0)7! < |loge|™" if d = 4, because p? =2~ for d = 4,
P2(p & Tiye) X
QU (k+D)  d—4 if d>4.
For the reverse inequality, recall (61):
P(dist(B1, By) < €) < P([Qa(p)]" N Qulp) # 0).

Let Q%"(p) denote the union of all binary cubes of side-length 2'* in the (k — 1)th
step of the construction of Qq(p), and recall that €¢/2 < 27% < e. Then [Qq(p)]
is contained in the union of 3% translates Q% '(p) + z of Q% !(p) and therefore the
probability P([Qa(p)]° N @d(p) # () is bounded above by

37P(the construction leading to Q4(p*) survives to the (k — 1)th generation).

The proof is now concluded by using the previous calculation for this probability. O
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Figure 4: Tree with 4+,— spins at the vertices.

16 Reconstruction for the Ising Model on a Tree

This chapter follows Evans, Kenyon, Peres and Schulman (1998).

Consider the following broadcast process. At the root p of a tree T, a random
+1 valued “spin” o, is chosen uniformly. This spin is then propagated, with error,
throughout the tree as follows: For a fixed € € (0,1/2], each vertex receives the spin
at its parent with probability 1 — ¢, and the opposite spin with probability €. These
events at the vertices are statistically independent. This model has been studied in
information theory, mathematical genetics and statistical physics; some of the history
is described below.

Suppose we are given the spins that arrived at some fixed set of vertices W of the
tree. Using the optimal reconstruction strategy (maximum likelihood), the probability
of correctly reconstructing the original spin at the root is clearly at least 1/2; denote
this probability by %. We will establish a lower bound for A = A(T, W, €) in terms
of the the effective electrical conductance from the root p to W (Theorem 16.2), and an
upper bound for A which is the maximum flow from p to W for certain edge capacities
(Theorem 16.3.) When T is an infinite tree, these bounds allow us to determine (in
Theorem 16.1) the critical parameter €. so that, denoting the nth level of T by T,
we have

lim A(T,T,,€)

n—0o0

(63)

>0 if e<e.
=0 if e>e.

As we explain below, vanishing of the above limit is equivalent to extremality of
the “free boundary” limiting Gibbs state for the ferromagnetic Ising model. For the
special case of regular trees, the problem of determining €. was open for two decades,
and was finally solved in 1995 by Bleher, Ruiz and Zagrebnov [12].

The random spins {o,} that label the vertices of T as described above, can be
constructed from independent variables {7.} labeling the edges of T, as follows. For
each edge e, let P[n. = —1] = e =1 — P[n. = 1]. Let 0, be a uniformly chosen spin,
and for any other vertex v let

oo =0, [ 7, (64)



16. Reconstruction for the Ising Model on a Tree 53

where the product is over all edges e on the path from p to v. Given oy = {0, : v € W},
the strategy which maximizes the probability of correctly reconstructing o, is to de-
cide according to the sign of E(o, | ow); with this strategy, the difference between
the probabilities of correct and incorrect reconstruction is

A(T, W, ) =E[P(0, = 1| ow) — P(o, = 1| ow)|. (65)

Alternatively, A(T,W,¢€) can be interpreted as the total variation distance between
the conditional distributions of ow given o, = 1 and given o, = —1; see below. The
dependence between o, and oy is also captured by the mutual information

Plo,=z,0wp =
I(o,;0w) == ZP[U,, =z, 0w =Y logP[[ P w =y
@y

Op = z|Plow =y .

Theorem 16.1 Let T be an infinite tree with root p, and suppose its vertices are
assigned random spins {o,}, using the flip probability ¢ < 1/2 as in (64). Consider
the problem of reconstructing o, from the spins at the n'th level T, of T.

(i) If 1 — 2¢ > br(T)~Y2 then inf,>1 A(T, T, €) > 0 and inf,>, I(0,;07,) > 0.
(ii) If 1 — 2¢ < br(T)~Y2 then inf,>1 A(T, T, €) = 0 and inf,>, [(0,;07,) =0,

The tail field of the random wvariables {o,},cr contains events with probability strictly
between 0 and 1 in case (i), but not in case (ii).

Thus in the notation of (63), ¢, = (1—br(T)~'/?)/2. As mentioned above, this was
already known when 7T is a b+1-regular tree (for which br(7T") = b). Theorem 16.1 is
considerably more general. Simple examples show that at criticality, when 1 — 2¢ =
br(T)~'/2, asymptotic solvability of the reconstruction problem is not determined by
the branching number; in this case there is a sharp capacity criterion, proved in [75],
that we will not develop here. To see the relevance of the quantity 1 —2¢ appearing in
Theorem 16.1, note the following equivalent construction of the random variables {o, }:
Perform independent bond percolation on 7' with parameter v = 1—2¢ (the probability
of open bonds), and independently assign to each of the resulting percolation clusters
a uniform random spin (the same spin is assigned to all vertices in each cluster). This
is a special case of the Fortuin-Kasteleyn random cluster representation of the Ising
model (see, e.g., [32]); on a tree, it is elementary to verify the equivalence of this
representation with the construction (64).

The following two theorems contain estimates of reconstruction probability and
mutual information, that imply Theorem 16.1.

Theorem 16.2 Let T be a tree with root p, and let W be a finite set of vertices in T
Given € € (0,1/2], denote v := 1 —2¢, and consider the electrical network obtained by
assigning to each edge e of T the resistance (1 — ~?)y~2I€l. Then
A(T, We) 1
Iopow) | T 1+R(p=W)’

where R denotes effective resistance.

(66)
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Figure 5: Majority vote can disagree with maximum likelihood.

The proof of this theorem is based on reconstruction by weighted majority vote, i.e.,
reconstruction according to the sign of an unbiased linear estimator of the root spin.
We relate the variance of such an estimator to the energy of a corresponding unit flow
from p to W. We find it quite surprising that on any infinite tree, reconstruction using
such linear estimators has the same threshold as maximum-likelihood reconstruction.

Next, we present an upper bound on A and I(o,;ow). Say that a set of vertices
W, separates p from W if any path from p to W intersects W;. For a vertex v of
T, denote by |v| the number of edges on the path from v to p.

Theorem 16.3 Let W be a finite set of vertices in the tree T. For any set of vertices
W1 that separates the root p from W, we have

AT W e <2(1— J[ y1-721) <23 42 (67)

vEW] veW;
and
I(o,0w) < Z I(o,;0,) < Z A2 (68)
veEWq veEW]

In view of the mincut-maxflow theorem, (68) is an upper bound on mutual information
in terms of the maximum flow in a capacitated network. Theorem 16.3 is proved by
comparing the given tree T' to a “stringy tree” T which has an isomorphic set of paths
from the root to the vertices of W, but these paths are pairwise edge-disjoint. We
show that A(T,We) < A(f, Wi, €) by constructing a noisy channel that maps the
spins on Wy in T to the spins on W in T'.

Symmetric trees: Recall that a tree T is spherically symmetric if for every
n > 1, all vertices in T}, have the same degree. For such a tree, the effective resistance
from the root to level n is easily computed, and we infer from Theorems 16.1-16.3

that
Y

n -1
(2+2(1 -7 kz_jl Tm ) <I(oyion) < jnf [Ty (69)
and (1 — 2¢.)~% = liminf, |T,|"/™.

The example in Figure 5 shows that even on a regular tree, majority vote can
disagree with maximum likelihood when the spin configuration o, is given.

Given the boundary data in Figure 5, the root spin o, is more likely to be —1
than 41 provided that € is sufficiently small, since o, = +1 requires 4 spin flips, while
o, = —1 requires only 3 spin flips.
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Organization of the rest of the chapter.

Next, we present background on the Ising model and some references to the statis-
tical mechanics and genetics literatures. Then we infer Theorem 16.1 from Theorems
16.2-16.3. After collecting some facts about mutual information and distances between
probability measures, we prove the conductance lower bound for reconstruction, The-
orem 16.2, and the upper bound, Theorem 16.3. Extensions and unsolved problems
are discussed at the end of the chapter.

Background

Let GG be a finite graph with vertex set V. In the ferromagnetic Ising model with
no external field on G, the interaction strength J > 0 and the temperature t > 0
determine a Gibbs distribution G = G;, on {£1}V which is defined by

Glo)=Z(t) " exp(d_ Jouo,/t), (70)

u~v

where the normalizing factor Z(t) is called the partition function. If the graph G is a
tree, then this is equivalent to the Markovian propagation description in the beginning
of the chapter, for an appropriate choice of the error parameter €. Indeed, if u ~ v
are adjacent vertices in a finite tree with o, = o,, then flipping all the spins on one
side of the edge connecting u and v will multiply the probability in (70) by e=2//.
Thus if we define € by ]
—2J/t
el
then the distributions defined by (64) and (70) coincide. For an infinite graph G, a
weak limit point of the Gibbs distributions (70) on finite subgraphs {G,} exhaust-
ing G, (possibly with boundary conditions imposed on osg, ), is called a (limiting)
Gibbs state on G. See Georgii [30] for more complete definitions, using the notion
of specification.
For any infinite graph with bounded degrees, the limiting Gibbs state is unique
at sufficiently high temperatures, i.e., the limit from finite subgraphs exists and does
not depend on boundary conditions. When G =T is a tree, this means that

(71)

Jim Elo, |or, =1]=0 (72)
at high temperatures. Some graphs admit a phase transition: below a certain critical
temperature, multiple Gibbs states appear and the limit in (72) is strictly positive.
The critical temperature ¢ for this transition on a regular tree T" was determined in
1974 by Preston [79]; his result was generalized in 1989 by Lyons [59] who showed that
tanh(J/t}) = br(T)~!; in the equivalent Markovian description, the critical parameter
e/ for an all + boundary to affect o, in the limit, satisfies 1 — 2} = br(T) .

In general, a Gibbs state is extremal (or “pure”) iff it has a trivial tail, see Georgii
([30], Theorem 7.7). The tree-indexed Markov chain (64) on an infinite tree T is the
limit of the Gibbs distributions (70) on finite subtrees, with no boundary conditions
imposed; hence it is called the free boundary Gibbs state on 7. In 1975 Spitzer
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([82], Theorem 4) claimed that on a b+1-regular tree T®), the free boundary Gibbs
states are extremal at any temperature. A counterexample, due to T. Kamae, was
published in 1977 (see Higuchi [42]). Kamae showed that the sum of spins on T/,
normalized by its L? norm, converges to a non-constant tail-measurable function,
provided that 1—2¢ > b~'/2. In 1978, this result was put in a broader context by Moore
and Snell [69], who showed it followed from the 1966 results of Kesten and Stigum [51]
on multi-type branching processes. Moore and Snell noted that it was open whether
the free boundary Gibbs state on T(*) is extremal when b~ < 1 —2¢ < b1/, Chayes,
Chayes, Sethna and Thouless [14] successfully analyzed a closely related spin-glass
model on T}; by a gauge transformation, this is equivalent to the Ising model with i.i.d.
uniform {£1} boundary conditions. Although these boundary conditions are quite
different from a free boundary, they turn out to have the same critical temperature.
Bleher, Ruiz and Zagrebnov [12] adapted the recursive methods of Chayes et al [14]
to the extremality problem, and showed that the free boundary Gibbs state on T® is
extremal whenever 1 — 2¢ < b~'/2. Shortly thereafter, a more streamlined argument
was found by loffe [44]. Theorem 16.1 was first established in [24]. After learning of
that result, Toffe [45] found an elegant alternative proof for the upper bound.

Genetic reconstruction and parsimony

Tree-indexed Markov chains as in the introduction have been studied in the Mathe-
matical Biology literature by Cavender [13], by Steel and Charleston [84], and others.
In that literature the two “spins” are often called “colors”, and correspond to traits
of individuals, species, or DNA sequences. The “broadcasting errors” (color changes
along edges) represent mutations, and one attempts to infer traits of ancestors from
those of an observable population.

Proof of Theorem 16.1
(i) From v = 1 — 2¢ > br(T)~"/2 it follows that
R(p < o0):=supR(p < T,) < 00
when each edge e is assigned conductance 7%/ see (39) and Theorem 2.8. There-

fore by (66),

1 1
inf A(T,T,,¢) > inf > >0
AT T e 2 W T Ty 2 T R & )

and similarly inf,> I(0,; 07,) > 0, as asserted. In particular, o, is not indepen-
dent of the tail field of {o,}, so this tail field is not trivial.

(ii) If v = 1 —2¢ < br(T)~ /2 then infy ¥,cn v?1*! = 0, so Theorem 16.3 implies that
inf,>1 A(T,T,,€) =0 and inf, > I(0,;01,) = 0.

Next, fix a finite set of vertices Wy. For each w € Wy and n > |w|, denote by
T, (w) the set of vertices in T;, which connect to p via w. Then Lemma 16.4(iii)
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implies that for sufficiently large n,

[(OWO;OTn) < Z [(OWO?UTn(w)) = Z [(O'w,O'Tn(w)), (73)

weWy weWp

since the conditional distribution of o7, () given o, is the same as its condi-
tional distribution given o,,.

For any finite Wy, the right-hand side of (73) tends to 0 as n — oo; It follows
that the tail of {o,} is trivial.

O

Mutual Information: Definition and Properties

Let X,Y be random variables defined on the same probability space which take
finitely many values. The entropy of X is defined by

H(X):=-> P[X =2|logP[X = z]

and the mutual information /(X;Y’) between X and Y is defined to be

PX =2,V =y
PX =z|P[Y =y

I(X;Y):=HX)+H(Y)-HX,Y)=Y PX ==zY =y]log

We collect a few basic properties of mutual information in the following lemma. See,
e.g., Cover and Thomas [15] §2.

Lemma 16.4 (i) I[(X;Y) > 0, with equality iff X and Y are independent;

(ii) Data processing inequality: If X — Y — Z form a Markov chain (i.e., X and
Z are conditionally independent given Y ), then I(X;Y) > I(X; 7).

(iii) Subadditivity: If Y1,...,Y, are conditionally independent given X, then

The assumption of conditional independence in part (iii) cannot be omitted, as is
shown by standard examples of 3 dependent random variables which are pairwise
independent (e.g., Boolean variables satisfying X = Y7 + Y, mod 2). Nevertheless,
inequality (68) in Theorem 16.3 extends (iii) to a setting where this conditional inde-
pendence need not hold.

Distances between probability measures

Let v, and v_ be two probability measures on the same space Q. (In our applica-
tion 2 is finite, but it is convenient to use notation that applies more generally.) Set
V= % and denote f = CZ’—;, g= dcll’—lj, so that f+ ¢ = 2 identically. Suppose that &
is uniform in {£1}, and X has distribution v¢. Inferring £ from X is a basic problem
of Bayesian hypothesis testing. (In our application, £ will be the root spin ¢,, and X
will be some function of the spin configuration oy on a finite vertex set W.)

There are several important notions of distance between v, and v_, that can be

related to this inference problem:
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e Total variation distance Dy (vy,v_) := 1 [|f — g|dv can be interpreted
as the difference between the probabilities of correct and erroneous inference.
Indeed, among all functions E of the observations, the probability of error P[E #*
¢] is minimized by taking & = 1 if f(X) > ¢(X), and £ = —1 otherwise. We
then have

A=PE=¢|-PE£G = ([Erdv— [Egdv) = [If ~gldv. (1)

o \? distance D, (v;,v_) := 3{[(f — g)*dv}'/* represents the L? norm of the
conditional expectation E(¢|X) = L(f(X) — g(X)).

e Mutual information between ¢ and X,

1
Di(vy,v) = 1€ X) = 5 [ (flog f + glog g) dv (75)
is a symmetrized version of the Kullback-Leibler divergence (see Vajda [36]).

e The Hellinger distance

Dy(vy,v_): /[ V) z/_2 1—/@(11/ (76)

derives its importance from the simple behavior of the Hellinger integrals

Inty(vy, v /\/ fgdv

for product measures:
Inty(vy X py, vo X p ) =Inty(vy, v )Intg(pe, u ). (77)

These distances appear in different sources under different names and with different
normalizations. We collect here some well known inequalities between them, that will
be useful below. For more on this topic, see, e.g., Le Cam [56] or Vajda [86].

Lemma 16.5 With the notation above,
(i) D} < Dy < D, < /Dy
(i) Di < D; < 2D>2<

(iii) If vy and v_ are measures on IR, then
{/Id(l/+ - 1/_)}2 = {/x[f(a:) — g(x)] dl/}2 < 4/172 dv - D} .

Proof.
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(i) The left-hand inequality follows from |f(z)—g(x)| < 2, and the middle inequality
from Cauchy-Schwarz. The right-hand inequality follows from the identity f —

g=KF—-v9) - (VFf+/9) and the concavity relation @ <=1
(ii) Setting ¥ = (f — g)/2, the assertion follows from the pointwise inequalities

w_2<1+¢1 1—
- 2

4 log(1 — 1) < . (78)

og(l+1) +

Here the left-hand inequality is verified for ¢ € [0,1) by comparing second
derivatives, and the right-hand inequality follows from log(1 + y) < y.

(iii) This is just the Cauchy-Schwarz inequality.

(I

Finally, we interpret the data processing inequality in terms of distances. Suppose

that we are given transition probabilities on the state space, i.e., a stochastic matrix

M (the entries of M are nonnegative and the row sums are all 1). Write M*u(y) :=
>o M(x,y)u(x). Then Lemma 16.4 (ii) implies that

Dy(M*'vy,M*v_) < Di(vy,v_).

An analogous inequality holds for total variation:

Dy(Mw Mov) = 53 | Mui(y) = Mv(y)
< SE T M ylie) v (@)

_ %Z|y+(x) — v (2)| = Dy (vs, ). (79)

Conductance lower bounds: Proof of Theorem 16.2
Recall that each edge e was assigned the resistance
R(e) := (1 —~%)y 2. (80)

Say that a set of vertices W is an antichain if no vertex in W is a descendant of
another.

Lemma 16.6 Let W be a finite antichain in T. For any unit flow p from p to W,
the weighted sum

Sy=Y G (81)

veW /y|v|
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satisfies B[S, |o,] =0, and

E[S)] = E[S} |0, =14+ R(e)u(e)’. (82)

Consequently,
minB[S2] = 1+ R(p = W), (83)

and the minimum is attained precisely when p is the unit current flow from p to W.

Proof. From the product representation (64), we infer that

|

Elo, |Up] =0p7

for any vertex v. The formula for E[S, |o,] follows by linearity. For any two ver-
tices v,w in T, denote by path(v,w) the path from v to w. Also, write path(v) for
path(p,v). Clearly,

E[O_vo_w] — /Y\path(v,w)\ — /Y\v\+|w\—2\v/\w\, (84)

where v A w, the meeting point of v and w, is the vertex farthest from the root p
on path(v) N path(w). The percolation representation can also be invoked to justify
(84).

It is now easy to determine the second moment of S,,:

E[Sz]: Z ME[%%}]: Z w, (85)

|~/ |w 2|l vAw
v,weW 7‘ ‘7‘ | v,weW ”7‘ |

Next, insert the identity
A2l =1 4 > R(e)

e€path(u)

with w = v A w, into (85). Changing the order of summation, and using the fact that
W is an antichain, we obtain

E[S]|=1+> R(e) > liecpanwrwpi(v)u(w). (86)

v,weW

Since path(v A w) = path(v) N path(w) and

> Leepasnruwpi(v)u(w) = ( > 1{eepath(u)}u(v))( > l{eepath(w)}u(w)) = u(e)?,

v, weW veW weWw

(86) is equivalent to (82). Finally, (83) follows from Thomson’s principle. O

Proof of Theorem 16.2: We may assume that W is an antichain. (Otherwise,
remove from W all vertices which have an ancestor in W.) Let p be the unit current
flow from p to W for the resistances R(e) as in the preceding lemma, and let S, be
the weighted sum (81). In order to apply Lemma 16.5, denote by v, the conditional
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~)

T

Figure 6: A tree T" and the corresponding stringy tree T.

distribution of S, given that o, = 1; define v_ analogously by conditioning that
0, = —1, so that v = (v4 + v_)/2 is the unconditioned distribution of S,. We then
have by Lemma 16.5(iii) that

: {J2dv, =v)}  (B[S,|0, = 1]~ B[S, |0, = ~1])"
R e A IE[S?] ‘

Applying Lemma 16.6, we deduce that

1

D? ) > .
(o) 2 1+ R(p—W)

(87)

By Lemma 16.5, the difference A = A(T, W, ¢) between the probabilities of correct
and incorrect reconstruction, satisfies A = Dy (v, v ) > Di(mr, v_), and the mutual
information between o, and oy also satisfies I(0,; 0w ) = Dr(vy,v_) > Di(vy,v_).
In conjunction with (87), this completes the proof. O

Mincut upper bound: Proof of Theorem 16.3

Definition. A noisy tree is a tree with flip probabilities labeling the edges. The
stringy tree T associated with a finite noisy tree 71" is the tree which has the same set
of root-leaf paths as T" but in which these paths act as independent channels. More
precisely, for every root-leaf path in T', there exists an identical (in terms of length and
flip probabilities on the edges) root-leaf path in f, and in addition, all the root-leaf
paths in T are edge-disjoint.

Theorem 16.7 Given a finite noisy tree T with leaves W, let f, with leaves W and
root p, be the stringy tree associated with T. There is a channel which, for & € {£+1},

transforms the conditional distribution o, | (0, = §) into the conditional distribution

ow | (0, =&). Equivalently, we say that T dominates T.
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g1 g2 g1 g2

A~

Figure 7: T is dominated by Y.

Remark A channel is formally defined as a stochastic matrix describing the con-
ditional distribution P(Y | X) of the output variable Y given the input X, see [15].
Often a channel is realized by a relation of the form Y = f(X, 7), where f is a de-
terministic function and 7 is a random variable (representing the “noise”) which is
independent of X.

Proof: We only establish a key special case of the theorem: namely, that the tree
T shown in Figure 7, is dominated by the corresponding stringy tree Y. The general
case is derived from it by first allowing the flip probabilities to vary from edge to edge,
and then applying an inductive argument; see [25] for details.

Given 0 < a0 < 1, to be specified below, we define the channel as follows:

0.1 — &1
o = 0y, with probability o
2 o1 with probability 1 — «

To prove that (7,, 07, 05) has the same distribution as (o, 01, 03), it suffices to show
that the means of corresponding products are equal. (This is a special case of the fact
that the characters on any finite Abelian group G form a basis for the vector space of
complex functions on G.) By symmetry

E(0,) = E(01) = E(02) = E(0,0102) = E(G,) = E(07) = E(03) = E(G,0703) =0
and thus we only need to check pair correlations. Clearly, E(7,07) = E(0,07) and
E(G,01) = 7%, whence E(G,05) = 7* = E(0,0,) for any choice of . Finally, since
E(0752) = v* < v* = E(0y0,) and

E(af(’il) =1> ’}/2,

we can choose a € [0,1] so that E(cjo}) = E(0y02); explicitly,

a=(1-7")/(1-9"). (88)
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This proves that T dominates Y. O

Proof of Theorem 16.3: We first prove (68). Since W, separates p from W, the
data processing inequality (Lemma 16.4 (ii)) yields I(o,; ow) < I(0,; ow,). Let T} be
the tree obtained from 7" by retaining only W; and ancestors of nodes in Wy. Let T
be the stringy tree associated with 77. From Theorem 16.7 applied to 77 and the data
processing inequality, we obtain I(o,;ow,) < I(0;; 05 ) Since the spins on leaves of

T, are conditionally independent given Tp, subaddltlwty (Lemma 16.4 (iii)) gives

[(ap, ) < Z I(op;0) .

v€W1

But due to the definition of the stringy tree, the mutual information between o, and
o; is identical to the mutual information between o, and o, in Tj, hence the left
inequality in (68).

Since E(o,0,) = 7! for each v, the right-hand inequality in (68) follows from the
right-hand inequality in (78).

We now turn to the total variation inequality (67). Recall that A(T, W, e¢), the
difference between the probabilities of correct and incorrect reconstruction, equals
Dy (v}, v"), the total variation distance between the two distributions of the spins
on W given o, = £1.

By (79), Theorem 16.7, and Lemma 16.5,

Dy (v v¥) < Dy (V1,01 < DV(UJ: ,1/_ 1< \/DH(I/_: ,l/Wl)

Now, DH(I/+ ,v) on the stringy tree T, is easily calculated using the mul-

1

tiplicative property of Hellinger integrals: UJVFV is just the product over w € Wi

of v{, the distribution of o, given o, = 1, and similarly " = I, v". Since

Inty(vy,v?”) = /1 —~2wl, the left-hand inequality in (67) follows; the right-hand
inequality there is a consequence of the standard inequality (1 —x;) > 1— Y x;. O

Remarks and unsolved problems

1. Reconstruction at criticality. It is shown in [12, 44] that on infinite regular
trees, lim, A(T,T,,e.) = 0. On general trees, Theorem 16.2 implies that finite
effective resistance from the root to infinity (when each edge at level ¢ is assigned
the resistance (1—2¢)~2%) is sufficient for lim,, A(T, T,,, €) > 0. In [75], a recursive
method is used to show this condition is also necessary.

2. Multi-colored trees and the Potts model. The most natural generaliza-
tion of the two-state tree-indexed Markov chain model studied in this chapter
involves multicolored trees, where the coloring propagates according to any finite
state tree-indexed Markov chain. For instance, if this Markov chain is defined
by a ¢ x ¢ stochastic matrix where all entries off the main diagonal equal €, then
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the ¢-state Potts model arises. The proof of Theorem 16.2 extends to general
Markov chains, and shows that the tail of the tree-indexed chain is nontrivial
if br(T) > \;?, where )\, is the second eigenvalue of the transition matrix (e.g.
for the g-state Potts model, \y =1 — ¢¢). However, unpublished calculations of
E. Mossel indicate that this lower bound is not sharp in general. Furthermore,
we do not know a reasonable upper bound on mutual information between root
and boundary variables. In particular, it seems that the critical parameter for
tail triviality in the Potts model on a regular tree is not known.

3. An information inequality. @ Theorem 16.3 implies that the spins in the
ferromagnetic Ising model on a tree satisfy

Howow) < D I(ow0w),

weWw

for any vertex v and any finite set of vertices W. Does this inequality hold on

other graphs as well?

More generally, are there natural assumptions (e.g., positive association) on

random variables X,Y7,...Y, that imply the inequality I(X;(Y7,...,Y},))
I(X,Y)) 7

IN

17 Unpredictable Paths in Z and EIT in Z°

The goal of this chapter is to complete the proof of Theorem 11.1, by exhibiting a
probability measure on directed paths in Z* that has exponential intersection tails.
We construct the required measure in three dimensions from certain nearest-neighbor
stochastic processes on Z that are “less predictable than simple random walk”.

For a sequence of random variables S = {S,,},,>o taking values in a countable set
V', we define its predictability profile {PREg(k)}i>1 by

PREs(k) = sup P[Spyr =2 | So,...,Sn], (89)

where the supremum is over all x € V', all n > 0, and all histories Sy, ..., S,.

Thus PREg(k) is the maximal chance of guessing S correctly k steps into the
future, given the past of S. Clearly, the predictability profile of simple random walk
on Z is asymptotic to Ck~'/2 for some C' > 0.

Theorem 17.1 (Benjamini, Pemantle, and Peres 1998) For any o < 1 there
exists an integer-valued stochastic process {S,}n>o0 such that |S, — S,_1| =1 a.s. for
all n >1 and

PREs(k) < Cok™  for some C, < oo, forall k> 1. (90)

After Theorem 17.1 was proven in BPP (1998), Higgstrom and Mossel (1998) con-
structed processes with lower predictability profile. They showed that if f is non-
decreasing and ¥, (f(k)k)™" < oo, then there is a nearest-neighbor process S on Z
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with PREg(k) < C'f(k)k~'. (For example, f(k) = log'™(k) satisfies this summability
condition.)

Hoffman (1998) proved that this result is sharp: if a nondecreasing function f
satisfies 3, (f(k)k)™! = oo, then there is no nearest-neighbor process on Z with
predictability profile bounded by O(f(k)k™").

We prove Theorem 17.1 using the Ising model on a tree. We follow Haggstrom and
Mossel (1998), who improved the original argument from BPP (1998). The following
lemma is the engine behind the proof. Let T be the b—adic tree of depth N, and fix
0 < e < 1/4. We will assign to the vertices of T £1 labels {o(v)},er according to an
I[sing model (see Chapter 16). For the root p, set o(p) = 1, and for a vertex w with
parent v, let

o (w) = { o(v)  with probability 1 — ¢
—o(v) with probability €

Lemma 17.2 Denote by Yy := Y, cr, 0(v) the sum of the spins at level N. There
exists Cy < oo such that for all N > 1 and all x € 7Z,

Ch
PYy=2|< ———.
Yv=1ls Zasgm
Proof. By decomposing the sum Y),,; into b parts corresponding to the subtrees of
depth M rooted at the first level, we get

b .
Y = Z U(Uj)Yz\(j) )

J=1

b

where {o(v;)}7_; are b i.i.d. spins with

)

o(v;) = +1 with probability 1 — ¢
77771 =1 with probability e

and {Yi\(j)};’-:l are i.i.d. variables with the distribution of Y}, independent of these
spins. Consequently, the characteristic functions

A~

Y (\) = E(e)
satisfy the recursion

V(A = (1=Yu(A) + eV (=N)
= (RYu(N) +i(1 —26)IY(N)° (91)

where R denotes real part, and & imaginary part. For 6,,(\) := arg 17”()\), define

() < —

Jn::{ogAg o

T k:O,---,n—l}
2

and

L= T\ Joss .
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We will evaluate the integral of Yy (\) over (0,7 /2] by using the decomposition
- N-1
0.7 - (U 1k> Ui
k=0
Rewrite (91) as
- - b . :
Varsi(A) = [Yar(\)| [cos Oar(N) +i(1 — 2¢) sin O,(N)]°, (92)
and infer, for 0 < 0;,(A\) < g, that
Orr11(N) = barctan ((1 — 2¢) tan 0M()\)).
Since arctan is concave in [0, 00) and arctan 0 = 0,
arctan ((1 - 26)&) > (1 — 2¢) arctan(«)
for any o > 0. Therefore

If 0<6p(N\)<—, then

o

> by (N) > Oa (V) > b(1 =200 (). (93)

&=

If A € I, then applying (93) for M = n — 1 shows that

> 0,(A) > o (94)

0o | =
&=

Using (92) with M = n together with (94), we find that for A € I,,,

b

U T . T 2 . T % —p€
Vi1 (V)] < (6082(%)+(1—26)231n2(%)) < (1—2651112(%)) <e 0 (95)

where ¢ := sin*(Z). Inductive use of (92) for A € I, and N > n gives
(V] < e o™ (96)

Since p(A) = A, (93) implies that 0,(\) > b*(1 — 2¢)*|\| for A € J, and k < n.

Therefore
T

LI< || <—, 97
By (96),
LM volan=2 [ R an < 2( X (e +y))
o S Tah UV TN D § M-

Inserting (97) yields

1 T 1 N1 N—k
— Y| d\ < ——— hFe—ech b=N). 98
o | TV < e (™ ) (98)
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In order to evaluate the sum in the right hand side of (98), we define
r=max{k : oeb™ " >1}.

Separating the contributions of £ > r and k£ < r, we obtain that

N-1 N [
S bkeme ™ g N <SR < Sk (99)
k=r k=r k=0
and
- k bN =k - k ,—br =k o 1k b
> o breme <> b Re™T <Y b (100)
k=0 k=0 k=0

Furthermore, since oeb™ 7! < 1, we have that

. 1
b < T (101)

Combining (98), (99), (100), and (101) we see that

1 TS Cy

— Yv M| d\ < —i———
27 /77r| vOIA < bNe(1 — 2e)N 7

where .
SRz b7 + SR be™)
0
and ¢ was defined after (95). Using the inversion formula we conclude that

¢, =2

1 T . 1 T
PlYy =] = - /_ Py (e ™ dA < —/_ ITx(V)] dA <

2T

&
bNe(1 —2e)N°
O

Proof of Theorem 17.1. For all N > 0, we will define a process S up to time
M = 2" with the required properties. A process defined for all times will then exist
by consistency of the finite dimensional distributions.

Fix a small € > 0. We assign spins {o,} to the vertices of the binary tree T of
depth N, according to the Ising model (described before Lemma 17.2) with error rate
e, but we take o, to be random uniform in {£1}, rather than fixing it. Enumerate
the vertices at depth N from left to right as vy, vy, ..., vy, and set

Sn = ki O'(Uk).

We claim that {S,,} has the desired predictability profile. To see this, fix 0 < n < M
and 0 < k < M — n. Observe that S,.x = S, + E?;’,’fﬂ o(v;). If we now take the

unique h satisfying 21 < k < 2#+2 there will exist a vertex w at level N — h for
which all of the descendants at depth N are in the set {v, 1,..., v,k }. It follows (by
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conditioning on the spins of all v; which are not descendants of w and on the spin of
w) that

sup P[S, 1 = z|So, . .., S| < supP[Y}, = z]. (102)
x€Z z€Z

Applying Lemma 17.2 and (102) we get

Ch

PREg(k) < — %
s(k) < 2he(1 — 2e)h”

(103)

and the proof is complete. O

The process S serves as a building block for Z?-valued processes whose predictabil-
ity profiles are controlled.

Corollary 17.3 For each % < a < 1, there is a Z%valued process ® = ®*¢ such that
the random edge sequence {®,_1 P, },>1 is in Yy, and

Vk>1 PREg(k) < Cla,d)k~ (@D, (104)

Proof. Let W7 = (S 4+ k)/2 forr =1,...,d— 1, where S are independent copies
of the process described in Theorem 17.1. For r =1,...,d — 1, define clocks

n+d—1-—r

to(n):=| 71

I,

and let D(n) :=n — 241 W -
Write ®,, = (thl(n), WA D(n)). Tt is then easy to see that

ta—1(n)’

Cok
d—1

-1 —a(d—1)
PRE, () < PRESQ%J)] s( ) < Cla ke

O

The last ingredient we need to prove that Z* admits paths with exponential inter-
section tails is the following.

Lemma 17.4 Let {T',} be a sequence of random variables taking values in a countable
set V. If the predictability profile (defined in (89)) of T satisfies Y32 PREp(k) < oo,
then there exist C' < oo and 0 < 8 < 1 such that for any sequence {v,}n>o in V and
all 0 > 1,

Pl#{n>0:T,=v,}>( <C". (105)

Proof. Choose m large enough so that Y32, PREr(km) = 3 < 1, whence for any
sequence {vy, }n>o ,

Pk >1: Dy = vn+km‘F0,...,Fn] <3 forall n>0. (106)

If n is replaced by a stopping time 7 and the o-field generated by T'y,...,T[, is
replaced by the usual stopping time o-field, then (106) remains valid. This can be
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seen by decomposing the probability according to the value of 7, and checking that
the bound holds in each case. Hence, it follows by induction on r > 1 that for all
j€{0,1,...,m—1},

PH#{E>1 : Tjikm = Vjkm) > 1] < G (107)
It #{n >0 : T, =v,} > ¢ then there must be some j € {0,1,...,m — 1} such that
#{k>1:Tjipm=Vjthm} > /m—1.

Thus the inequality (105), with # = 3™ and C' = mA3~', follows from (107). O

Proof of Theorem 11.1 for d = 3: The process ® constructed in Corollary 17.3
with o > 1/2 and d = 3 satisfies 3, PRE¢(k) < oo, and hence by Lemma 17.4, the
distribution g of the edge sequence {®, 1®,}5°, has exponential intersection tails.
]

18 Tree-Indexed Processes

Label the vertices of a tree I' by a collection of i.i.d. real random variables {X,},cr-
Given T' and the collection {X,},er, we define the tree-indexed random walk

{Sv}UEF by
Se=> Xu,
w<v

where w < v means that v is a descendant of w.

The simple case where I' is a binary tree and X, = 4+1 with probabilities p and
1 — p was considered by Dubins and Freedman (1967).

We want to determine the speed of tree-indexed random walks, or at least recognize
when the speed is positive.

There are several ways to define speed for tree-indexed walks and the answers
depend on the definition used. Here are three notions of speed.

Definitions of Speed
e Cloud Speed

e Burst Speed

¢ Sustainable Speed

Ssust = sup lim —;
cedr vee |V
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These speeds are a.s. constant by Kolmogorov’s zero-one law. The first two were
studied by Benjamini and Peres (1994b), while the third was studied earlier by Lyons
and Pemantle (1992).

Assumptions. Throughout this chapter we will assume that each variable
X, is not a.s. constant, E[X,] =0 and E[e***] < oo for all A > 0. (108)

These assumptions can be relaxed, but they make the ideas of the proofs more trans-
parent.

In general, Scouq = Shurst = Ssust - Lhe following examples shows that the inequali-
ties may be strict.

Example 18.1 Consider the 3-1 tree I' in Example 2.6. It follows from Theorem
18.4 below that on this tree

Scloud > 0 but Sburst = Ssust — 0.

Example 18.2 Let n; < my < ... be a sequence of positive integers. Construct a
tree I' as follows: The first n; levels of I' are as in the 3-1 tree. To each vertex v in
the nq-th level of I', attach a copy of the first ny — ny levels of the 3—1 tree, with v
as its root. Continue by attaching a copy of the first ng, 1 — ng levels of the 3-1 tree
to each vertex at level n; of I'. For any choice {n;}, the tree I" has positive packing
dimension; in particular, dimy,(0') = dimp(9l') = log2. However, if the n; increase
sufficiently fast, then the Hausdorff dimension of OI" is 0, as in the 3-1 tree. Thus in
this case Theorem 18.4 yields that scioua = Shurst > 0, but sgust = 0.

Notation. Denote by {S,},>0 the ordinary random walk indexed by the non-negative
integers with ii.d. increments distributed like X,. Let I(:) be the rate function for
the random walk {S,,}, defined by

1 .
I(a) = lim —logP(S, >na) (a>0).

n—oo n,

Theorem 18.3 (Hammersley (1974), Kingman (1975), Biggins (1977)) Let
[ be a GW tree with mean m > 1. Suppose that the vertices of I' are labeled by random
variables X, that satisfy (108). On the event that T' survives, a.s. all speeds coincide
and equal s* :=sup{s : I(s) <logm}.

Proof. The inequality sqouq < s* is easy: By the definition of s*, for any € > 0 there
is 6 > 0 such that I(s* 4 €) > logm + 6. Therefore,

P(S«n > n(s* + 6)) < e—n(logm-i-é) — m—ne—né )

Consequently,

P(S, > n(s* + ¢€) for some v € T',, | non-extinction ) <
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where ¢ is the probability of extinction. The proof is concluded by invoking the
Borel-Cantelli Lemma.

For the reverse inequality, let @ < s* be given. Using the strict monotonicity of
the rate function and the definition of s*, choose € so that I(a)+2¢ < logm. For each
k>1and M € [1, 0], we define a new embedded branching process as follows: start
from the root of I', and take the set of offspring I'(v, k, M) of a vertex v to consist of
all its descendants w in I' that satisfy

o lw=v|+kinl;
e S, >S5, + ka.
e S, > S, — M for all u on the path from v to w.

(Here M = oo means the last requirement holds automatically.) Since E|I'(v, k, 0o)| =
mFP[S;, > ka), the definition of I yields that for sufficiently large ,

E[L(v, k,00)| > mFe*I@+d 5 o

By choosing M large, we can ensure that the embedded process has mean offspring
L
E|F(v,k,M)|Z§me >1.

Thus for large k, M, the embedded process is supercritical. Therefore sg,s > a with
positive probability. Since

{T":T finite or sgs < @ on I'}

is an inherited property, Proposition 3.2 implies that P[sgs > a| survival | = 1.
Hence, given survival, we have that a.s.,

* *
S Z Scloud Z Sburst Z Ssust Z S . U

We have already encountered two of the following definitions:
e The upper Minkowski dimension of dT, written dim (9T, is log g¥(T).
e The Hausdorff dimension of dT', written dimy(9T), is logbr(T).

e The Packing dimension of OI', is defined by

dimp(21) = inf {sup dimys (O1) )

where the infimum extends over all countable collections {I'”} of subtrees of T’
such that oI' C UOF(i).
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Theorem 18.4 Suppose that T' is an infinite tree without leaves, and the vertices of
[ are labeled by random variables X, that satisfy (108). Then

(1) Scloud > 0 & dl—mM(aF) > 0.
(il) Spurst > 0 < dimp(AT) > 0.
(iil) Ssust > 0 < dimpy(0T) > 0.

Proof. (i) The implication “=" is easy: By Cramér’s theorem on large deviations,
(108) implies that I(a) > 0 for any a > 0. Therefore

> P(S, > na for some v € ') < >[I, P(S, > an) < S0 p—nia)
which is finite since dim,;(d') = 0 means that I' has subexponential growth. Thus

by Borel-Cantelli
P({S, > na for some v € I',,} i.0. ) = 0

for any a > 0.

For the implication “<", observe that because we assumed [' has no leaves, there
exists at least one descendant in I'y, for each v € I',. Denote the leftmost such
descendant by w(v). The |T',| paths from vertices v € T',, to the corresponding w(v)

are disjoint. Since dimy, (9T') > 0, if we choose € sufficiently small, then
T, > el C9+2d for infinitely many n (109)

By Cramér’s theorem, P(S, > 2ne) > e 29+ for large n.
Write I'!, = {v € I';: S, > —ne}. By the Weak Law of Large Numbers,

T, "Bl =P(S, > —ne) — 1
and therefore P(|I",| < |T',,|/2) — 0. Denote
A, ={3w €Ty, : S, > ne}.
Then
PA] < P(IT| < [Tal/2) + P(T| > [Tal/2 and Sy — Su < 2ne Yo €T
The right-hand side is at most
P(I,| < [Ta]/2) + (1 — enireasa) 2,

which tends to zero along a subsequence of n values by (109). Taking stock, we infer
that P(A, i.0.) > lim, P(A,) =1, SO Scoud > €/2 a.s.
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(ii) The implication “=" is easy again: if dimp(JI') = 0, then given € > 0 we can
find a cover JOI'™ of O with dim,(OI'”)) < € for all i. As in the proof of (i),

Scloud(F(i)) < EI

for some € and all i. Whence
Sbhurst (F(l)) S Scloud(r(i)> S EI

for all i and so Spurst(I') < €. Here ¢ can be made arbitrarily small because ¢ may be
taken arbitrarily small.
For the reverse implication “<", let d = dimp(9") > 0. Pick ¢ > 0 small and let

" = {v € I:dimp (I'(v)) > d — €} ;

here I'(v) = {w € T:w < v or w > v}.
Now p € T, so IV # 0 and dimp(9T") > d — €. Actually, it is easy to see from the
definition of packing dimension that

dim (0T (v)) > d —¢ forallv el”.

By (i) and the definition of cloud-speed, with probability one we can find for each
v el avertex w = f(v) € I'"(v) with w > v and S,, > |w|f for some fixed § > 0.
The sequence p, f(p), f(f(p)),... is a sequence of vertices {v;};>¢ along a ray of T’

such that
Sa;

|vi]

> 3, forall i >1.

(iii) was proved by Lyons and Pemantle (1992) in the following sharp form:
I(sgust) = logbr(T") = dimy (9T) .

(For the other speed notions there is no analogous exact formula.)

The inequality I(sgs) < logbr(T) is proved using the first-moment method (see
the proof of Theorem 5.4). For the other inequality, fix a so that I(a) < dimg(JT)
and then choose k such that P(Sk > ka) > br(I')*. Consider a compressed tree T'[k]
whose (th level is the kfth level of I', with the induced partial order. It is easy to
see that dimy (OT'[k]) = k dimy(OT). Define a general percolation on T'[k] in which
the edge vw is retained if S, — S, > ka. This general percolation process is not
independent; however, for each fixed k, it is quasi-independent. By proposition 7.1,
this percolation survives with positive probability, whence sq.¢ > a. It follows that
I(Squst) > log br(T). a

Exercise 18.5 Suppose that T" is an infinite tree without leaves, and its vertices are
labeled by i.i.d. variables X, ~ N(0,1). Denote d = dim;(9T"). Prove that

\/ d/2 S Scloud S \/ﬁ

and both bounds can be achieved.
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Hint: Use the ideas in the proof of (i) and optimize, or see [9]. These bounds were
sharpened by Benassi (1996).

Consider an infinite tree [ again, label its vertices by i.i.d. real-valued random
variables {X,},er, and let {S,},cr be the corresponding tree-indexed random walk.
The following question is mostly open.

Open Problem 2 (Bouncing Rays) Suppose that there a.s. exists a ray £ € OT
such that lim i{nf S, > —o0. Must there a.s. exist a ray &' € OI' with ling Sy = +00?
veE veg!

The only cases for which the answer is known (Pemantle and Peres 1995a) are when
e X, = +1 with probability 1/2 each, or when
e X, ~N(0,1).

In these cases there is an exact capacity criterion on the tree for the property to hold.
Even in these special cases the proofs are complicated.

19 Recurrence for Tree-Indexed Markov Chains

This chapter is based on Benjamini and Peres (1994a). For a tree I' and a vertex
v, denote by I'" the subtree consisting of v and its descendants. We are given a
countable state-space G and a set of transition probabilities {p(x,y):x,y € G}. the
induced I'-indexed Markov chain is a collection of G-valued random variables {S, },er,
with some initial state S, := xy € G and finite-dimensional distributions specified by
the following requirement: if w € I' and v is the parent of w, then

P(Sw:y|SU:a:, Suforugéf‘v):P(Sw:y|57j:m):p(a:,y).

We may think of the state-space G as a graph, with vertices the elements of G' and
an edge between x and y iff p(z,y) > 0. If p = {p(z,y): 2,y € G} is irreducible, i.e.,
for any x,y € G there exists an n such that p™(x,y) > 0, then the associated graph is
connected.

Definitions. A tree-indexed Markov chain is recurrent if it returns infinitely often
to its starting point with positive probability:

P(S, = S, for infinitely many v € ') > 0.
A stronger requirement is ray-recurrence: {S,},cr is ray-recurrent if
P(3&e€dl: S, =S, for infinitely many v € £) > 0.

In general, recurrence does not imply ray-recurrence (even when G' = Z?). Indeed,
the 3-1 tree has exponential growth (which yields recurrence for G = Z<), yet it has
a countable boundary (which precludes ray-recurrence on any transient G).
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The probabilities in the definitions of recurrence and ray-recurrence may lie strictly
between 0 and 1, even when the indexing tree is a binary tree. If GG is a group and the
transition probabilities are G-invariant, then there are zero—one laws for both notions
of recurrence.

Given a state space G, an irreducible stochastic matrix p = {p(z,y): x,y € G}
and a finite subset F' of G, write p(pp) for the spectral radius of the substochastic
matrix pr = {p(z,y):z,y € F'}. We then define

p(G,p) = sup p(pr).
F finite

Then
1

p(G,p)’
Simple random walk on Z has spectral radius 1, but we can make a quantitative

statement on rays with bounded trajectories: For the ['-indexed simple random walk
on 7,

P(3 ¢ € 9T with bounded trajectory) >0 < br(T) >

1
br(I') >
0> o+ 1)
is sufficient for the existence of a ray with trajectory in {0, 1,...,b—1} to have positive
probability, and
1
br(T") >

~ cos(m/(b+1))
is necessary.

Finally, we note that recurrence of a I'-indexed Markov chain on G is related to
a comparison of the Minkowski dimension of I' and the spectral radius of G, while
ray-recurrence is related to a comparison of packing dimension and spectral radius.
In particular, dimy (0I') < —log[p(G,p)] implies non-recurrence and dimp(9T') <
—log[p(G, p)] implies non-ray-recurrence.

More details on the notions described in this chapter, and some amusing examples,
can be found in [8, 9]. Benjamini and Schramm [10] give an application of tree-indexed
Markov chains to a problem in discrete geometry.

20 Dynamical Percolation

This chapter is based on Haggstrom, Peres, and Steif (1997).

Consider Bernoulli(p) percolation on an infinite graph G. Recall that each edge is,
independently, open with probability p. As before, P, = P, will denote this product
measure. Write C for the event that there exists an infinite open cluster. Recall that
by Kolmogorov’s 0-1 law, the probability of C is, for fixed G and p, either 0 or 1. As
remarked previously, there exists a critical probability p. = p.(G) € [0, 1] such that

0 forp < p.
1 for p > p..

P,(C) = {



76

At p = p. we can have either P,(C) = 0 or P,(C) = 1, depending on G.

In this chapter we consider a dynamical variant of percolation. Given p € (0, 1), we
want the set of open edges to evolve so that at any fixed time ¢ > 0, the distribution
of this set is P,,. The most natural way to accomplish this is to let the distribution
at time 0 be given by P,, and to let each edge change its status (open or closed)
according to a continuous time, stationary 2-state Markov chain, independently of all
other edges. For an edge e of G, write n;(e) = 1 if e is open at time ¢, and n(e) = 0
otherwise. The entire configuration of open and closed edges at time ¢, denoted n;,
can then be regarded as an element of X = {0,1}¥ (where E is the edge set of G).
The evolution of 7, is a Markov process, and can be viewed as the simplest type of
particle system. FEach edge flips (changes its value) at rate

B if m(e) =0
A, €) = { Ilj—p if Zt(e) =1

and the probability that two edges flip simultaneously is 0. Write ¥, (or ¥,) for
the underlying probability measure of this Markov process, and write C; for the event
that there is an infinite cluster of open edges in 7,. Since P, is a stationary measure
for this Markov process, Fubini’s theorem implies that

1 1
1 if P,(C)=0

W, ( C; occurs for Lebesgue a.e. t) =
W, (=C; occurs for Lebesgue a.e. t) =

where —C; denotes the complement of C;. The main question studied here is the
following,

Question 20.1 For which graphs can the quantifier “for a.e. t” in the above state-
ments be replaced by “for every t”?

For p # p., the answer is all graphs.
Proposition 20.2 For any graph G we have
W,(Cy occurs for every t) =1 if p>p.(G)
{ 1 if p<p(G).

Notation: For 0 < a < b < oo and any edge e of a graph G, we abbreviate

inf n(e) := inf n(e).

[a,b] t€[a,b]

(110)
W, (=C; occurs for every t) =

and write C[mf} for the event that there is an infinite cluster of edges with infj, s n(e) =
1. Analogously, define supy,; 7, and let C[SUP] be the event that there is an infinite
cluster of edges with supy, n(e) = 1.

Proof. (i) Suppose p > p.. Let 0 < € < p — p. and observe that for every edge e,

\Ilp{ [iglef}n(e) = 1} =pexp(—(1 —p)e) >p—€> p..
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Since the events {inf[g,e} n(e) = 1} are mutually independent as e ranges over the

edges of G, it follows from the definition of p. that ¥, [Cfgi]] = 1 and therefore

v, (Ct occurs for all t € [0, 6]) =1.

Repeating the argument for the intervals [ke, (k+ 1)e] with integer & and using count-
able additivity, we obtain the supercritical part of the proposition.

(ii) A similar argument proves that for p < p. there is never an infinite open cluster.
We take € € (0,p. — p) and find that

\Ilp{ EE(l)l];}) n(e) = 1} =1—(1—p)exp(—pe) < p+ pe < pe. (111)

Therefore W, (C[Sgtf}) = 0, whence there is a.s. no infinite cluster for any t € [0, ¢€].
Countable additivity concludes the argument. a

At the critical value p.(G) the situation is more delicate.

Theorem 20.3 There exists a graph G with the property that at p = p.(G) we have
Pq,(C) =0 but ‘Ilc;’p( Utso0 Ct) = 1. (The latter probability is 0 or 1 for any graph.)
There also exists a graph G such that for p = p.(G2) we have Pg, ,(C) = 1, yet
‘I’Gz,p(mt>06t> = 0.

The graphs for which percolation problems have been studied most extensively are
the lattices Z?, and trees. On Z?, the critical value p,. is 1/2 and P, (C) = 0 (see
Kesten (1980)); for d > 2 the precise value of p.(Z?) is not known. Hara and Slade
(1994) showed that P,_(C) = 0 for Z¢ if d > 19, and it is certainly believed that this
holds for all d.

Theorem 20.4 Let G be either the integer lattice Z% with d > 19 or a reqular tree.
Then W, (—Cy occurs for every t) = 1.

Remark. It is not known whether G = Z? can be included in Theorem 20.4. Let 6(p)
denote the P,-probability that the origin is in an infinite open cluster. The proof of
Theorem 20.4 for G = Z¢ with d > 19 uses more information than just 6(p.) = 0; it
also uses that # has a finite right derivative at p.. In Z? it is known that 6(p.) = 0,
but Kesten and Zhang proved that the right derivative of f is infinite at p..

Next, we consider dynamical percolation on general trees. In Chapter 14, we proved
R. Lyons’ criterion for P,(C) > 0 in terms of effective electrical resistance (see (39));
effective resistance is easy to calculate on trees using the parallel and series laws. Here
we obtain such a criterion for dynamical percolation.

For an infinite tree I' with root p, as before we write I',, for the set of vertices
at distance exactly n from p, the nth level of I'. Recall that a tree is spherically
symmetric if all vertices on the same level have equally many children.
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Theorem 20.5 Let {n;} be a dynamical percolation process with parameter 0 < p <1
on an infinite tree I'. Assign each edge between levels n — 1 and n of I' the resistance
p " /n. If in the resulting resistor network the effective resistance from the root to
infinity is finite, then Wr ,-a.s. there exist times t > 0 such that I' has an infinite
open cluster, while if this resistance is infinite, then a.s. there are no such times. In
particular, if T s spherically symmetric, then

7"’1,

Wr,(U=0C) = 1 if and only if Z T < 00. (112)

Recall R. Lyons’ criterion for the percolation probability on a general tree I' to be
positive: Suppose that 0 < p < 1 and assign each edge between levels n — 1 and n
resistance p~". Then Pr,(C) > 0 iff the resulting effective resistance from the root
to infinity is finite. Thus a spherically symmetric tree I' with p = p.(T') € (0,1), has
Wr,(U=0Ct) = 1 but Pr,(C) = 0 iff the series in (112) converges but >.0°, ‘Fn‘ = 0.

In the course of the proof of Theorem 20.5, we obtain bounds for the probability
that there exists a time ¢ € [0, 1] for which there is an open path in 7, from the root to
the nth level I',,. For example, on the regular tree T* with p = 1/k, this probability is
bounded between constant multiples of 1/logn. (The probability under P, that an
open path exists from p to the nth level of T*, is bounded between constant multiples
of 1/n; this follows from Kolmogorov’s theorem on critical branching processes, see
Athreya and Ney (1972).) For a general tree these bounds, given in Theorem 20.9,
can be expressed in terms of the effective resistance from the root to I',,, and the ratio
of the upper and lower bounds is an absolute constant.

For a graph with W ,(Ui=oC:) = 1 but Pg ,(C) = 0, the set of percolating times
at criticality has zero Lebesgue measure, so it is natural to ask for its Hausdorff
dimension. For spherically symmetric trees there is a complete answer.

Theorem 20.6 Let p € (0,1) and let T' be a spherically symmetric tree. If the set of
times {t € [0,00) : C; occurs} is a.s. nonempty, then W,-a.s. this set has Hausdorff
dimension

—n a—1

sup{aE[O,l] : i% <oo}.

n=1

(Note that this series converges for a =0 by (112). )
Here are some interesting trees with Wy ,(Up~oC;) = 1 but Pr,(C) = 0:

Example 20.7 Let I' be the spherically symmetric tree where each vertex on level
n has 4 children if n = 1,2,4... is a power of 2, and 2 children otherwise. Then it is
easily seen that n2" < |T,| < 2n2" for all n > 0. Combining Theorem 20.6 with the
result of R. Lyons quoted after Theorem 20.5, we see that Wy -a.s. the set of times
for which percolation occurs on I' has Hausdorff dimension 1 but Lebesgue measure
0. A
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Example 20.8 Let 0 < p, # < 1, and suppose that [' is a spherically symmetric tree
with |I',,| = p~"n/*°() as n — oo. Then Theorem 20.6 implies that W,-a.s. the set of
times for which percolation occurs on I' has Hausdorff dimension (. JAN

Since we will introduce an auxiliary random killing time 7, we denote the under-
lying probability measure P rather than ¥,. The event that there is an open path

from the root to L in 7, is denoted {p <> OT'}.

Theorem 20.9 Consider dynamical percolation {n,} with parameter 0 < p <1 on a
tree I' which is either finite or infinite with Pr,(C) = 0. Let 7 be a random variable

with an exponential distribution of mean 1, which is independent of the process {n;}.

Let
-n 1 — pn+1

h(n) = L

n+1 1—p

forn > 0. (113)

Then the event A = {3t € [0,7] : p < AT} satisfies for some constant C

1
iCaph(OF) < P(A) <2CCap, ("), (114)

Remarks:

(1) Tt is easy to verify that h is increasing and h(n) < p~™ for all n. These properties
also follow from the interpretation of h given in Lemma 20.10(iii) below. In the
sequel, we will sometimes write h(v) instead of h(|v|) when v is a vertex.

(ii) The event A is easier to work with than the perhaps more natural event
B={3te[0,1] : p <& Ar}. Noting that P(B) < P(A|r > 1) < P(A4)/e ! and
P(A) <2 ,e *P(B) =P(B)/(1—e!), we obtain

1—e!

Cap,(0T') < P(B) < 2eCCap,(dT) .

We will only prove the lower bound in Theorem 20.9; consult [37] for the other
inequality. We will need a lemma concerning the behavior of a pair of paths.
Notation: Denote by {v <> w} the event that there is an open path in 7, between
the vertices v and w. Similarly, when x is a ray of the tree, {p & x} means that x is

s

open at time ¢. Thus {p <> o'} = U {» &2} For s > 0 let T,(s) := / l{pé }dt
zedl 0 !

be the amount of time in [0, s] when the path from the root to v is open.

Lemma 20.10 Let u and w be vertices of I'. With the notation of Theorem 20.9 in
force,

(i) E[Tu(r)]=p"
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(i) P(Ty(r) > 0) = h(w)"

(iv) E[T,(7)Ty(7)] = 2h(u A w)pHivl
Proof: Let ¢=1—-p

(i) This is immediate from Fubini’s Theorem.

(i) The first equality follows from the lack of memory of the exponential distribution.
Verifying the second equality requires a calculation:

BITu(r) [ p&w] = [TP(pwlpdw)P(r> 1)t

o —(p+qe™")" o

= + geHvle Tt dt = .

Jy o) Gl +1g o
(iii) The required probability is the ratio of the expectations in (i) and (ii).

(iv) Since the process {m;} is reversible,

E[T,(7)T,(1)] = E/o/o 1{p&u}1{p$w}dtd8

= 2// (p < u) (p@w|p@>u)e‘tdtds. (115)
Observe that for ¢t > s,
P(p&w | péu) :p|w‘_|“Aw‘P(p@>u/\w | p<i>u/\w).
Change variables f =t — s in (115) to get that E[T,(7)T,(7)] equals

— Qp\wl \U/\wl// pHu e 5 tP(pHu/\w|pHu/\w)dtdS

= 2p‘w| ‘u/\w|E[ ( )] E[ u/\w( >|p£>U/\w]

Substituting parts (i) and (ii) of the lemma into the last equation proves (iv).
O

Proof of lower bound in Theorem 20.9. We prove the theorem when I is a
finite tree; the general case then follows by an appropriate limiting procedure. The
lower bound on P(A) is proved via the second moment method. Let ;1 be a probability
measure on JI', and consider the random variable

=Y Tu(r)p "lu(v). (116)

vedl
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Lemma 20.10(i) implies that E(Z) = 1. Part (iv) of the same lemma gives

E[Z] = Y Y BIL()Tu(n)lp " lu(v)u(w) = 264(n). (117)

vedll wedl

Using the Cauchy-Schwarz inequality we find that

EZ? 1
E[Z?]  2&(n)

P(4) > P(Z>0)

Taking the supremum of the right-hand side over all probability measures p on oT'
proves the lower bound on P[A] in (114). O
We include the statement of one result from Peres and Steif (1998).

Theorem 20.11 Let T' be an infinite spherically symmetric tree, p = p.(T') € (0,1)
and T* denote the set of times in [0,00) when there are at least k infinite clusters.
Suppose that P,(C) = 0. Let

00 p—nna—l
. ::sup{ae [0,1] : ZT <oo}.
n=1 n
Then for all k, the Hausdorff dimension of T* is
max{0,1 — k(1 —a.)} W,-as.. (118)

21 Stochastic Domination Between Trees

For a tree I' with total height N < oo, label its vertices by i.i.d. random variables
{X,}ver. If BC RN is a Borel set, we write

P(B;I)=P(3¢€al: (X,)e € B).

For two such trees I' and T of height N < oo, labeled by {X,},er and {X]},er
respectively, we say that I'” stochastically dominates I if for any Borel set B C RV,

P(B;T) < P(B:T").

To verify that one tree dominates another, it suffices to consider the case where the
X, are i.i.d. uniform random variables in [0, 1], since other random variables can be
written as functions of these.

Recall that a tree I' is spherically symmetric if all vertices in I',, have the same
number of offspring.

Theorem 21.1 (Pemantle and Peres 1994) Let [ be a spherically symmetric tree
and T' another (arbitrary) tree. Then T stochastically dominates T iff |T,,| < |T%| for
alln > 1.
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r I
Figure 8: " is dominated by I".

Example 21.2 Two trees of height 2.

Let I" be the tree of height 2 in which the root has two offspring and each of these
three offspring. Let IV be the tree for which the root has three offspring and and each
of these two offspring.

Then it is not clear a priori which tree dominates. The result above yields that I'
is dominated by I". A

Stochastic domination between trees is well understood only for trees which are
either spherically symmetric or have height two. Already for trees of height three, the
domination order is somewhat mysterious, as the following example from Pemantle
and Peres (1994) demonstrates.

Example 21.3 Comparison between a tree T and T with vertices glued.

Consider the trees T and 7" in the next figure, where 7" is obtained from 7" by gluing
together the vertices in the first generation.

T T
Intuitively, it seems that 7" should dominate 7", but this is not the case. If

B¢ = (]0,1/2] x [0,1] x [0,2/3]) U ([1/2,1] x [0,1/2] x [0,1])

and the X, are uniform on [0, 1], then the probability that (X,,, X,,, X,,) € B¢ for
all paths (p, vy, v, v3) in T is 1075/7776, while the corresponding probability for 7" is
only 998/7776. A

A consequence of Theorem 21.1 is that, among all trees of height n with |[',,| =
k, the tree T'(n,k) consisting of k disjoint paths joined at the root is maximal in
the stochastic order. If the common law of the X, is © and B C R", then 1 —
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P(B;T(n,k)) = (1 — pu*(B))", where u" is n-fold product measure; thus for any tree
[' of height n,
1-P(B;T) > (1 p"(B))".

The definition of P(B;T') extends naturally to any graded graph T', a finite graph
whose vertices are partitioned into levels 1,...,n and oriented edges allowed only
between vertices in adjacent levels. The following is a natural conjecture.

Conjecture 3 For any graded graph T of height n, let K(T') be the number of oriented
paths that pass through every level of I and let X, be i.i.d. random wvariables with
common law . Then for any B C R",

L-P(B:T) = (1 - u"(B)*D.

If B is upwardly closed (that is, x€ B and y>x coordinate-wise imply y€B), then the
conjecture is an easy consequence of the FKG inequality. The case n = 2 corresponds
to a bipartite graph; Conjecture 3 for this case is due to Sidorenko (1994), who stated
it (and proved it in many special cases) in the following analytic form:

Sidorenko’s Conjecture: Let f : [0,1]* — [0, 00) be a nonnegative bounded measur-
able function and consider the bipartite graph with vertices X1,..., X, and Y1,...,Y,,.
If E is the edge-set of this graph, then

/. . ./Xl:[Y [z, y))dey ... depdy; ... dyy, > <// f(x, y)dxdy)E . (119)

For the bipartite graph consisting of three vertices X,Y, 7 and two edges XY and
X7, the conjecture reads

/// flz,y) f(x, z)dedydz > <// f(l",y)da:dyy

and can be easily proved using the Cauchy-Schwarz inequality.

Exercise 21.4 Prove Sidorenko’s conjecture for the bipartite graph with four vertices
and three edges, XY, X7, and WZ. (Hint: use Hélder’s inequality with p = 3 and

q=3/2.)

Sidorenko proved his conjecture for bipartite graphs with at most one cycle, and for
bipartite graphs where one side has at most four vertices. For general finite bipartite
graphs, it is still open whether (119) always holds.

We conclude with yet another problem: In the statement of Theorem 16.7 we
defined an information-theoretic domination relation between trees. It would be quite
interesting to compare that relation with the stochastic domination relation studied
in this chapter.
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