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1 Ribbon Graphs and Topological expansion

1.1 Warmup. Scalar case

Gaussin (probability) measure on R :

dµ(x) =
1√
2π
e−

x2

2 dx (1)

Normalization :

∞∫
−∞

dµ(x) = 1 (2)

Definition : For any (integrable with meausre dµ) function f : R → C we
define its expectaion value 〈f〉 as :

〈f〉 =

∞∫
−∞

f(x)dµ(x) (3)

For integer n :

〈xn〉 =

{
0 n = 2k + 1

(n− 1)!! n = 2k
(4)

Exercise Check it using integration by parts.

Thats of course a very simple integral, however, let’s calculate it in a lengthy
but instructive way, introducing auxiliary ”current” j :

〈x2k〉 =

∞∫
−∞

dxx2k 1√
2π
e−

x2

2 =
d2k

dj2k

∞∫
−∞

dx
1√
2π
e−

x2

2 +jx

∣∣∣∣
j=0

(5)

=
d2k

dj2k
e
j2

2

∣∣∣∣
j=0

=
1

2kk!

d2k

dj2k
j2k (6)

One of course can immediately take derivatives and get (2k)!/2kk! = (2k− 1)!!,
however, we will go further and split 2k derivatives into k pairs and distribute
them over 2k j’s. Now let’s notice that the derivatives in any pair are inter-
changeable as well as the k pairs themselves, what gives the factor 2kk! precisely
cancelling the denominator and finally we get :

1

2kk!

d2k

dj2k
j2k =

∑
all pairings

∏
pairs

< x2 >= (2k − 1)!! (7)
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This result can be interpreted as a simple combinatorial counting : the first
pair can be chosen in 2k− 1 ways, second - 2k− 3 etc. This can be represented
graphically as a pairings of half-edges attached to 2k ordered dots (see.Fig.1.a)
or, alternatively, to one vertex of valency 2k (Fig.1.b.).

Figure 1: Graphical illustration for 〈x2k〉 with k = 2. a) pairings of 2k ordered
dots b) pairing of the ordered half-edges of the 2k-vertex c) oriented 2k-gon dual
to 2k-vertex. d) different ways to glue oriented 2k-gon. In the particular case
of square we get two spheres and one torus.

Another combinatorial/graphical interpretation comes from the dual picture,
namely let’s go from the vertex of valency 2k to the dual graph - oriented 2k-gon
(Fig.1.c.). An pairing in this case corresponds to the gluing (wrt the orientation)
of 2k edges and each particular pairing results into the oriented Riemann surface
of a certain topology. In particular case of k = 2 we get a square and three
different gluings give two spheres and one torus (Fig.1.d.).

Exercise Find the number Catk of ways to glue the sphere from a polygon
with 2k sides.

Hint : All spherical gluings come from the pairings without selfintersections,
like this:

Figure 2: Typical polygon’s gluing giving spherical topology
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Show that Catk+1 =
k∑
i=0

CatiCatk−i. Introduce generation function f(x) =

∞∑
k=0

Catkx
k and using recursion relation write an equation for f(x). Solve it.

Expand around x = 0 and get closed form for Catk. What is the radius of
convergence? Check that Catk coincide with Catalan numbers.

Now let’s consider the following exponential generation function for 〈x4k〉

I(g) =
1√
2π

∞∫
−∞

dxe−
x2

2 −gx
4

=
<(g)>0

e
1

32g

4
√
πg
K 1

4
(

1

32g
) (8)

Formal expansion gives :

I(g)→ Iseries(g) =

∞∑
k=0

(−g)k
〈x4k〉
k!

=

∞∑
k=0

(−g)k
(4k − 1)!!

k!
(9)

asymptotic series with zero radius of convergence. That’s a typical situation,
very often generation functions for combinatorial objects have just asymptotic
expansion. The same phenomena ubiquitously appear in theoretical physics
: typical perturbation series in Quantum Mechanics/QFT/Strings are asymp-
totic. Particularly I(g) can be interpreted as partition function of quartic anhar-
monic oscillator with coupling constant g. We will discuss the relation between
the resummation of asymptotic series and convergent integrals later, now let’s
just do the following numerical exercise :

Exercise (for Mathematica)
The best approximation one can get from the partial resummation Sm(g) =

m∑
k=0

akg
k of asymptotic series is up to the term k∗ with the minimal absolute

value |ak∗ |. The last can be found using Stirling’s formula :

log |ak| ∼ k(log 16n− 1− log
1

g
),

d

dk
log |ak| = 0|k=k∗ , → k∗ =

1

16g

so the optimal truncation is k∗ = 1
16g and the error can be estimated as the

absolute value of the minimal term : Error(g) = I(g)− Sk∗(g) ∼ e−k∗ = e−
1

16g

- Reproduce pictures from Fig.3.

- Does e−
1

16g give a correct scale for Error(g)? Is it getting better if one
keeps subleading terms in Stirling’s formula?

- Make (analytically/using Mathematica) Borel summation of Iseries(g) =∑
akg

k : IB(t) = B[Iseries(g)](t) =
∑
bkt

k, where bk = ak/k!. What is the pole
& cut structure of IB(t) as a function of complex variable t? Does it have any
singularity on the real positive line? Make (numerically) inverse Borel transform

f(g) =
∞∫
0

dtIB(tg)e−t, compare f(g) with original convergent integral I(g).
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Figure 3: Partial sums I(g) − Sk(g). Left: g = 0.01, k∗ = 6.25. Right :
g = 0.005, k∗ = 12.5

1.2 Multidimensional case. Wick theorem

Let’s consider the following gaussian measure:

dµ(x) =
1

Z0
e−

1
2x

TAxdNx (10)

where x = {xi} ∈ RN is N -dimensional vector, A is real symmetric in-

vertable matrix and Z0 =
∫
RN

e−
1
2x

TAxdNx.

Normalization: ∫
RN

dµ(x) = 1 (11)

Let’s calculate constant Z0. First, we introduce new variables y = O−1x
where O ∈ O(N) is orthogonal matrix diagonalising A : A = OΛO−1, Λ =
diag{λi}. Then using xTAx = yTΛy and dNx = dNy we get :

Z0 =

∫
RN

e−
1
2x

TAxdNx =

∫
RN

e
− 1

2

N∑
i=1

λiy
2
i

dNy

=

N∏
i=1

∫
R

e−
1
2λiy

2
i dyi =

N∏
i=1

√
2π

λi
=

(2π)
N
2

√
detA

(12)

Exercise For those who familiar with grassmann variables . It is instructive
to compare bosonic gaussian integral with its grassmann analogue. Check :

1)
∫
e−θ

TAηdnθdnη = detA for a complex n × n matrix A and grassmann
vector variables θ&η

2)
∫
e−

1
2 θ
TAθd2kθ = PfA for a complex skew-symmetric 2k × 2k matrix A,

and PfA is the Pfaffian of A : (PfA)2 = detA.

For the odd size (2k + 1)× (2k + 1) :
∫
e−

1
2 θ
TAθd2k+1θ = 0
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Now let’s calculate two-point function:

〈xlxm〉 =

∫
RN

xlxmdµ(x) =
1

Z0

∂2

∂jl∂jm

∫
RN

e−
1
2x

TAx+jTx

∣∣∣∣
j=0

(13)

where similarly to one-dimensional case we introduced auxiliary ”current” j ∈
RN . Completing the square in the power of exponent we get:

1

Z0

∫
RN

e−
1
2x

TAx+jTx =
1

Z0

∫
RN

e−
1
2 (x−A−1j)TA(x−A−1j)+jTx+ 1

2 j
TA−1j = e

1
2 j
TA−1j

(14)

So we can write:

〈xlxm〉 =
∂2

∂jl∂jm
e

1
2 j
TA−1j

∣∣∣∣
j=0

=

∂2

∂jl∂jm

∞∑
k=0

1

2kk!
(jTA−1j)k

∣∣∣∣
j=0

=
∂2

∂jl∂jm

1

2
jTA−1j = A−1

lm = Blm (15)

or introducing the inverse matrix B = A−1 :

〈xlxm〉 = Blm (16)

Similarly for 〈xi1 ...xi4〉 we get :

〈xi1 ...xi4〉 =
∂4

∂ji1 ...∂ji4
e

1
2 j
TA−1j

∣∣∣∣
j=0

=
∂4

∂ji1 ...∂ji4

1

222!
(jTA−1j)2

= Bi1i2Bi3i4 +Bi1i3Bi2i4 +Bi1i4Bi2i3 (17)

Now let’s turn to the general case 〈xi1 ...xin〉. Obviously it is nonzero only
when n is even.

Exercise Why?

In the general case n = 2k we get :

〈xi1 ...xin〉 =
∂l

∂ji1 ...∂jin
e

1
2 j
TA−1j

∣∣∣∣
j=0

=
∂l

∂ji1 ...∂jin

1

2kk!
(jTA−1j)k (18)

Again, just acting by all derivatives and cancelling 1
2kk!

factor (2k reflects the
symmetry of Bij while k! - permutations of k factors Bij) we arrive to the Wick’s
theorem:
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Wick’s theorem:

〈xi1 ...xin〉 =
∑

all pairings of{i1,...,in}

∏
pairs(iα,iβ)

Biα,iβ (19)

Comment: This statement can be generalised as :

〈fi1 ...fin〉 =
∑

all pairings of{i1,...,in}

∏
pairs(iα,iβ)

< fiαfiβ > (20)

where fi(x) are any linear functions of x. Indeed, let’s notice that the left and
right sides are linear wrt fi so it should be proved just for monomials what is
exactly the statement of Wick’s theorem (we remind that < xixj >= Bij)

Wick’s theorem is still valid in the case when some of indexes coincide (com-
pare with one-variable case from the previous section!), so we can reformulate
it in the following way :

〈xp1i1 ...x
pn
in
〉 =

∑
all graphs G with n vertices of valencies {pi}

∏
pairs(iα,iβ)

Biα,iβ , (21)

where
∑
pi is even, otherwise the expectation value is zero.

Example: 〈x3
1x

5
2〉

Figure 4: Two different graphs contributing to 〈x3
1x

5
2〉

As one can see from the above example, 105 terms actually groups into the
two groups of pairings related to only two graphs. The corresponding prefactors
can be obtained with help of orbit-stabilizer theorem

Orbit-Stabilizer Theorem
Let G be a finite group that acts on a finite set X, let Ox be the orbit of an

element x ∈ X and Sx - its stabilizer. Then |Ox||Sx| = |G|.
Now let’s define the graph’s automorphism :
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Defenintion : Graph automorphism (symmetry) An automorphism(symmetry)
of a graph G = (V,E) is a permutation σ of the vertex set V , such that the pair
of vertices (u, v) forms an edge if and only if the pair (σ(u), σ(v)) also forms an
edge. The set of all automorphisms of the given graph form the group Aut(G).

Comment : In the case of colored graphs the vertices of the given color
should be mapped to the vertices of the same color.

Now let’s back to the correlator 〈xp1i1 ...x
pn
in
〉 (without loss of generality we can

assume that all indexes {ik} are different) and let’s introduce a group Aut =
Aut({pi}) of all authomorphisms of the vertices {pi}, it consists only of the
product of permutations of the half-edges inside of the vertices, so its rank
is |Aut| =

∏
pi!. This group naturally acts on the set of all labelled graphs

appearing in (21) . For a given labelled graph G its stabilizer is exactly Aut(G)
while the number of times it appears in the sum is the length of this orbit |OG|
under the action of Aut, so using orbit-stabilizer theorem we get:

1

|Aut|
< xp1i1 ...x

pn
in
>=

∑
topologically different graphs G

1

|Aut(G)|
∏

(iα,iβ) edges of G

Biα,iβ ,

(22)

Exercise : reproduce factors from the previous example 〈x3
1x

5
2〉

1.3 Matrix Integrals

1.3.1 The case of complex Hermitian matrices with Gaussin poten-
tial

Let’s consider the following matrix integral:

Z0 =

∫
HN

dMe−
N
2 trM2

(23)

where the integration goes over the set HN of Hermitian matrices N ×N and
the Lebesgue measure is chosen as

dM =

N∏
i=1

dMii

∏
i<j

d<Mijd=Mij , (24)

where each of N2 = N + 2N(N−1)
2 components runs along real line (−∞,∞).

Direct calculation gives:

Z0 = 2
N
2

( π
N

)N2

2

(25)
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Exercise : Check!

The normalized measure is dµ(M) = 1
Z0
e−

N
2 trM2

dM . Expectation value :

〈f(M)〉 =

∫
HN

dµ(M)f(M) (26)

The power trM2 is a real symmetric quadratic form wrt N2 real variables
{Mii,<Mij ,=Mij} so one can use (16) to get propagator (2-point correlator) :

〈MijMkl〉 =
1

N
δilδjk (27)

Exersice Check it.
Exersice Get the same result using auxillary ”matrix current” Jij similarly

to what we did in the scalar and vector case.

Matrix elementsMij are linear combinations of real variables {Mii,<Mij ,=Mij}
so we can use Wick’s theorem (20) to calculate the expectation value of the
product of matrix elements as a sum over pairings. For example let’s consider
trM4

〈NtrM4〉 = N
∑
i,j,k,l

〈MijMjkMklMli〉 =

N
∑

(〈MijMjk〉〈MklMli〉+ 〈MijMkl〉〈MjkMli〉+ 〈MijMli〉〈MjkMkl〉)

=
1

N

∑
(δikδjjδkiδll + δilδjkδjiδkl + δiiδjlδjlδkk) =

1

N
(N3 +N +N3) = 2N2 + 1

Let’s represent this calculation graphically :

Figure 5: First line : graphical representation of the propagator and vertex.
Second line : three possible contractions for trM4 Third line : corresponding
topologies.
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Exercise Those who wants to get more experience with such calculations
can perform the similar analysis (direct calculation + graphical representation)
for 〈(NtrM3)2〉.

Exercise for Mathematica Write Mathematica function(s) WContr which
automatically performs Wick’s contractions in 〈trMp1 ...trMpk〉. The input can
be in the form of the product of several Mij : WContr[M[i,j]....M[k,l]], e.g for
〈trM4〉 : WContr[M[i1,i2]M[i2,i3]M[i3,i4]M[i4,i1]] . Or even it can be the list of
{pk}. Using this function check yourself in the previous exercise.

In the general case of the correlator built of n traces NtrMp :

〈(NtrMp1)(NtrMp2)....(NtrMpn)〉 (28)

({pi} are not necessary different) one get a sum over ribbon graphs built from
the gluing of n ribbon vertices and the contribution from the given ribbon graph
G is equal to NV−E+F = Nχ(G), where χ(G) is Euler characteristic of the graph
G. Indeed each vertex brings N , edge (propagator) - N−1 and face (closed lines
in double-line notations, corresponding to the product of delta-Kronekers) - N .
So we arrive to the Topological Expansion for correlators:

Theorem. Topological expansion for correlators

1∏
j

nj !
〈
n∏
k=1

N
trMpk

pk
〉 =

∑
G

Nχ(G)

|Aut(G)|
(29)

where sum goes over graphs G with n vertices of valency {pk}. The factor
pk in the denominator trMpk

pk
is the rank of the symmetry group of the ribbon

vertex of valency pk because only cyclic permutations are allowed. The rank of
the symmetry group of all vertices (vertex of valency pk is taken nk times) is
|Aut| =

∏
j

nj !p
nj
j

Alternatively one can think in terms of the dual graphs (=glued surfaces)
Σ.

1

|Aut|
〈
n∏
k=1

NtrMpk〉 =
∑
Σ

Nχ(Σ)

|Aut(Σ)|
(30)

where sum goes over surfaces Σ with n polygons of size {pk}. Let’s mention
that the Euler characteristic of the graph and its dual coincide : χ(G) = χ(Σ)
because the numbers of vertices and faces interchage.

Literature comment Reader interested in the formal definition of ribbon
graphs/maps, group of authomorphisms etc can take a look into [2, 3] for further
details.
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1.3.2 The case of complex Hermitian matrices with general potential

Let’s consider the general potential V (M) = 1
2M

2 −
∞∑
k=3

tk
kM

k.

Theorem. Topological expansion for partition function

1

Z0

∫
HN

dMe−NtrV (M) =
∑
G

Nχ(G)

|Aut(G)|
∏
k

t#k−veritcesk (31)

where sum goes over all ribbon graphs G built of vertices with nonzero {tk}.
Proof As usually we understand this matrix integral just as a formal ex-

pansion and sign ”=” means equality between two formal series.
Using the following expansion :

e
∑
k ak =

∑
{nk}

∏
k

ankk
nk!

(32)

we can write :

e

∞∑
k=3

tk
k NtrMk

=
∑
{nk}

∏
i

1

nk!

(
tk
k
NtrMk

)nk
(33)

and

1

Z0

∫
HN

dMe−NtrV (M) =
∑
{nk}

〈
∏
k

1

nk!

(
tk
k
NtrMk

)nk
〉0 (34)

where index 0 in the averaging 〈...〉0 reminds us that it is made wrt gaussian
quadratic potential as in the previous subsection. Let’s choose one particular
term from the rhs numerated by the finite list {nk} : 〈

∏
k

1
nk!

(
tk
k NtrMk

)nk〉0.

Assembling all numbers in one prefactor we get : 1∏
k nk!knk which is exactly

1
|Aut| where Aut is the automorphism’s group of the collection {nk} of ribbon

verteces (the vertex of valency k is taken nk times). So we can write :

〈
∏
k

1

nk!

(
tk
k
NtrMk

)nk
〉0 =

∏
i t
ni
i

|Aut|
〈
∏
k

(
NtrMk

)nk〉0 (35)

Using (29) we can write :∏
i t
ni
i

|Aut|
〈
∏
k

(
NtrMk

)nk〉0 =
∏
i

tnii
∑
G

Nχ(G)

|Aut(G)|
(36)

Plugging it into the (34) we get (31) �
Let’s stress that the sum in (31) goes over all graphs , connected and not.

The sum only over connected graphs gives ”free energy” - logarithm of the
partition function :
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Theorem. Topological expansion for free energy

log

 1

Z0

∫
HN

dMe−NtrV (M)

 =
∑
Gc

Nχ(Gc)

|Aut(Gc)|
∏
k

t#k−veritcesk (37)

where now the sum goes only over connected graphs Gc what we stressed by
the extra label ”c”.

Proof . We will exponentiate the right hand side and show that it matches
the rhs of (31). Namely we will establish one to one correspondence between
the terms from two formal series and check that their contributions are equal.
Let’s exponentiate the rhs of (37) using (32):

exp

(∑
Gc

Nχ(Gc)

|Aut(Gc)|
∏
k

t#k−veritcesk

)
=
∑
{ni}

∏
i

1

ni!

(
Nχ(Gci )

|Aut(Gci )|
∏
k

Gci
t#k−veritcesk

)ni
(38)

where index i numerates1 all connected finite graphsGci and the product
∏
k

Gci t#k−veritcesk

goes over vertices of Gci what we stressed by the extra label ”Gci”. Let’s take
a certain term uniquely numerated by {ni}, it is in one to one correspondence
with a graph G = tiniGci - disjoint union of ni copies of Gci . Using additivity
of Euler characteristic on disjoint graphs:

χ(tiniGci ) =
∑
i

niχ(Gci ) (39)

we can write: ∏
i

(
Nχ(Gci )

)ni
= Nχ(G). (40)

Now let’s notice that

|Aut(G)| =
∏
i

ni!|Aut(Gci )|ni (41)

and ∏
k

G
t#k−veritcesk =

∏
i

(∏
k

Gci
t#k−veritcesk

)ni
(42)

Finally combining (40),(41),(42) we get:

∏
i

1

ni!

(
Nχ(Gci )

|Aut(Gci )|
∏
k

Gci
t#k−veritcesk

)ni
=

Nχ(G)

|Aut(G)|
∏
k

t#k−veritcesk (43)

1E.g. one can think about i as a multi-index specifiying numbers of vertices of different
valency and an extra index numerating the connected graphs built of them. Explicit choice
of i doesn’t matter for us.
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what is exactly the term from the rhs of (31) corresponding to the graph G. �
Now let’s consider the following correlation function of n marked polygons2

{pi} {pi} with marked edges :

1

Z0

∫
HN

dMNtrMp1 ...NtrMpne−NtrV (M) = (44)

∑
n3,n4,...

〈NtrMp1 ...NtrMpn

(
Nt3

3

)n3 (trM3)n3

n3!

(
Nt4

4

)n4 (trM4)n4

n4!
....〉0 (45)

Each term here is a correlation function built of n marked polygons with marked
edges and any number of (unmarked) polygons coming from potential V (M).
Marked polygons with marked edges cann’t be permuted or rotated so thier
group of automorphisms is trivial (compare with prefactor 1∏

p
ni
i ni!)

in (30)

where polygons are unmarked) , however, unmarked polygons from V (M) come
with a standard prefactor

∏
j

1
jnjnj !

. So we get:

1

Z0

∫
HN

dMNtrMp1 ...NtrMpne−NtrV (M) = (46)

=
∑

Σ∈Σ̃µ1,...,µn

Nχ(Σ)

|Aut(Σ)|
∏
k

t#k−gonsk (47)

where the sum goes over all discrete surfaces, connected or not, with n marked
faces (with marked edges) and any number of unmarked faces (see Fig.6).

Figure 6: Graphical representation of an term from (46). Red connected com-
ponents contain at least one of the marked faces colored blue. Black connected
components are built entirely from the unmarked polygons coming from V (M)

Let’s write an surface Σ ∈ Σ̃µ1,...,µn as a disjoint union of all its marked Σm

and all its unmarked Σunm components :

Σ = Σm t Σunm (48)

2now we prefer to work with dual graphs
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so we get:

Nχ(Σ)

|Aut(Σ)|
∏
k

t#k−gonsk =

 Nχ(Σm)

|Aut(Σm)|
∏

k-gons∈Σmµ1,...,µn

t#k−gonsk

 Nχ(Σunm)

|Aut(Σunm)|
∏

k-gons∈Σunmµ1,...,µn

t#k−gonsk


(49)

This factorization immediately leads to the factorization of the whole series:∑
Σ∈Σ̃µ1,...,µn

Nχ(Σ)

|Aut(Σ)|
∏
k

t#k−gonsk =

 ∑
Σm∈Σmµ1,...,µn

Nχ(Σm)

|Aut(Σm)|
∏

k-gons∈Σmµ1,...,µn

t#k−gonsk

 ∑
Σunm∈Σunmµ1,...,µn

Nχ(Σunm)

|Aut(Σunm)|
∏

k-gons∈Σunmµ1,...,µn

t#k−gonsk


(50)

The sum in the second brackets goes over all possible unmarked surfaces giving
precisely the partition function (31): ∑

Σunm∈Σunmµ1,...,µn

Nχ(Σunm)

|Aut(Σunm)|
∏

k-gons∈Σunmµ1,...,µn

t#k−gonsk

 =
1

Z0

∫
HN

dMe−NtrV (M)

(51)

So we can divide on it, redefine the definition of the measure and expectation
value :

〈f(M)〉 =

∫
HN

dMf(M)e−NtrV (M)∫
HN

dMe−NtrV (M)
(52)

and write the following formula for the correlation function of nmarked polygons
:

〈NtrMp1 ...NtrMpn〉 =
∑

Σm∈Σmµ1,...,µn

Nχ(Σm)

|Aut(Σm)|
∏

k-gons∈Σmµ1,...,µn

t#k−gonsk (53)

Finally let’s devide both sides by Nn. On the right hand side it gives us
Nχ(Σm)−n or writing the defenition of Euler characteristic explicitly : χ(Σm)−
n = V −E+(F −n). We grouped F and n together and it can be interpreted as
erasing of n faces or in other words one can think about marked faces as holes
in the surface. Let’s notice that the Euler characteristic of a surface Σn with n
holes is exactly χ(Σn) = χ(Σ) − n. So we can present the final expression for
the correlation function:

〈trMp1 ...trMpn〉 =
∑

Σ∈Σµ1,...,µn

Nχ(Σ)

|Aut(Σ)|
∏

k-gons∈Σµ1,...,µn

t#k−gonsk (54)

14



where sum goes over all discrete surfaces (not necessary connected) whose con-
nected components contain at least one marked face with marked edges and
where marked faces are counted as holes for computing the Euler characteristic.

Defenition. Cumulants
Let’s introduce the set of trace products numerated by Young tableaux:

pµ(M) = trMµ1trMµ2 ...trMµl , µ = (µ1, ..., µl) : µ1 ≥ µ2 ≥ .... ≥ µl > 0
(55)

Now we define the cumulant 〈pµ(M)〉c through the following relations:

〈pµ1,...,µl〉 =

l∑
k=1

∑
tIj={µ1,...,µl}

k∏
j=1

〈pIj 〉c (56)

First three lines written explicitly :

〈p(µ1)〉 = 〈p(µ1)〉c, (57)

〈p(µ1,µ2)〉 = 〈p(µ1,µ2)〉c + 〈p(µ1)〉c〈p(µ2)〉c, (58)

〈p(µ1,µ2,µ3)〉 = 〈p(µ1,µ2,µ3)〉c + 〈p(µ1)〉c〈p(µ2,µ3)〉c + 〈p(µ2)〉c〈p(µ1,µ3)〉c
+ 〈p(µ3)〉c〈p(µ1,µ2)〉c + 〈p(µ1)〉c〈p(µ2)〉c〈p(µ3)〉c (59)

Equations (56) can be solved one by one giving explicit form for cumulants.

Statement

〈trMµ1 ...trMµn〉c =
∑

Σc∈Σcµ1,...,µn

Nχ(Σc)

|Aut(Σc)|
∏

k-gons∈Σcµ1,...,µn

t#k−gonsk (60)

where sum goes only over Σcµ1,...,µn - connected components of Σµ1,...,µn .

Figure 7: An discrete surface contributing to 〈pµ〉c with µ = {µ1, µ2, µ3} =
{5, 6, 4}. Picture is taken from [1]

It is useful to introduce the generation function for correlation functions
〈pµ(M)〉, 〈pµ(M)〉c:

15



Defenition. Resolvent

W (x1, ..., xn) = 〈tr 1

x1 −M
...tr

1

xn −M
〉 (61)

Correlation function 〈trMµ1trMµ2 ...trMµn〉 can be obtained from the formal
xi → ∞ expansion of W , as a coefficient in front of x−1−µ1

1 ...x−1−µn
n or alter-

natively , using dif form3:

〈pµ(M)〉 = (−1)n Res
x1→∞

... Res
xn→∞

xµ1

1 ...xµnn W (x1, ..., xn)dx1...dxn (62)

1.4 Other ensembles and Model building. Brief overview

Bicolored graphs and Ising model

Gas of colored loops

Six-vertex model on random graphs

2 Coulomb gas method

2.1 Reduction to eigenvalues

Let’s consider the convergent matrix integral with polynomial potential of even
degree

1

Z0

∫
HN

dMe−NtrV (M), V (M) =
1

2
M2 −

d∑
k=3

tk
k
Mk, td < 0 (63)

Spectral decomposition for Hermitian matrices :

M = UΛU−1 (64)

where U ∈ U(N) and Λ = diag{λ1, ..., λN} ∈ RN . All traces trMk = trΛk =
N∑
i=1

λki reduce to eigenvalues and the potential V (M) =
N∑
i=1

V (λi) is invariant

under the conjugation with U . The measure dM is also invariant : dUMU−1 =
dM .

Indeed ,one can think about the change of variables as the linear action of
UR ⊗ U−1

R : MR → URMRU
−1
R where subscript R indicates that we represent

complex matrix AC of size n × n as a real matrix4 AR =

(
Re AC −Im AC
Im AC Re AC

)
3We remind that to calculate the residue of the differential form at infinity one should

change the variable x→ 1/z, so dx = −1/z2dz
4we need the real-matrix representation because one should think about the conjugation

UMU−1 as a change of real coordinates.
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Using that detA ⊗ B = (detA)n(detB)n and detAR = |detAC|2 we conculde
that Jacobian detUR ⊗ U−1

R = 1 and dUMU−1 = dM . So it looks natural to
change the coordinates from {Mii,<Mij ,=Mij} to {Λ, U}.

One can get the volume form in the new coordinates rewriting the metric.
First let’s notice that our original volume form (24) can be read off from the
following metric:

tr(dM)2 =

N∑
i=1

(dMii)
2 + 2

N∑
i<j

(
(d<Mij)

2 + (d=Mij)
2
)

(65)

Indeed, the metric is diagonal and the corresponding volume form :

dvol(M) =

N∏
i=1

dMii

∏
i<j

2d<Mijd=Mij (66)

coincides with (24) up to a factor 2
N(N−1)

2 . So we can just rewrite the metric
in new coordinates and get the Jacobian. With this end in view let’s calculate
δM using spectral decomposition:

δM = d(UΛU−1) = d(U)ΛU−1 + Ud(Λ)U−1 + UΛd(U−1) (67)

= d(U)ΛU−1 + Ud(Λ)U−1 − UΛU−1d(U)U−1

= U
(
dΛ + U−1d(U)Λ− ΛU−1d(U)

)
U−1 = ULU−1

where we introduced L = dΛ + [Ω,Λ], Ω = U−1dU and used5 d(U−1) =
−U−1d(U)U−1 in the second line. Let’s mention that Ω is skew-hermitian ma-
trix Ωij = −Ω̄ji

So we get:

tr(dM)2 = trL2 = (λiδij + (λj − λi)Ωij) (λjδji + (λi − λj)Ωji) (68)

=

N∑
i=1

d2Λii + 2
∑
i<j

(λi − λj)2|Ωij |2

Introducing Ωij = dxij + idyij we can write |Ωij |2 = d2xij + d2yij and the
corresponding volume form :

dvol(M) =
∏
i<j

(λi − λj)2
N∏
i=1

dλi
∏
i<j

2dxijdyij

dUHaar

(69)

So we get for the partition function :

5that follows from 0 = d(Id) = dUU−1 = dUU−1 + Ud(U−1)
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Z =

∫
dΛdUHaar∆(Λ)2e−NtrV (Λ), (70)

where we introduced notation ∆(Λ) for the Vandermonde determinant ∆(Λ) =∏
i<j

(λi − λj). In this formula we didn’t specify the integration domain, to do

so let’s revisit the spectral decomposition (64). Actually this decomposition is
not unique, namely one can i) multiply matrix U by any diagonal matrix U(1)N

from the right and ii) permute eigenvalues and the corresponding lines&rows in
U so it gives us the following set of parameters :

HN
∼=
(
RN × U(N)/U(1)N

)
/SN (71)

As a small sanity check we can compare the number of continuous degrees of
freedom on both sides : on the left side we have N2 degrees of freedom and
the same number N + (N2 −N) = N2 we get on the right. Also let’s mention
that the permutation SN corresponds to the case of N different eigenvalues, in
other cases when two or more of them coincide one get’s a submanifolds of zero
Lebesgue measure which don’t contribute to the matrix integrals.

Now let’s notice that the integral over unitary group can be entirely factored
out :

Z =

∫
dUHaar

∫
dΛ∆(Λ)2e−NtrV (Λ) (72)

and looking at (71) we can immediately conclude :

Z =
vol(U)

(2π)NN !

∫
RN

dΛ∆(Λ)2e−NtrV (Λ) (73)

More accurately one could get this coefficient in the following way : let’s choose
quadratic potential V (M) = M2/2 , and perform the direct calculation on the
r.h.s (it is just gaussian integrals) and compare with (23). Dividing the latter
by the former and remembering about extra power of 2 from (69) one gets the
constant

∫
dUHaar circumventing questions about explicit parametrization of

the coset (71). Explicitly it reads as :

... (74)

Comment on β-ensembles ....

Normal Matrices as analytic continuation of Hermitian Matrices.

Let’s introduce Normal Matrices:

HN ({γi}) ≡ {M = UΛU−1 | U ∈ U(N), Λ = diag{λ1, ..., λN}, λi ∈ γi} (75)
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where γi is an continuous curve in C without self-intersections. In particular
case when γi = γ = R we get Hermitian matrices HN while in the case of
γi = γ = S1 we get unitary matrices U(N). In general case one can think about
Normal Matrices as analytic continuation of Hermitian matrices wrt eigenvalues.

The corresponding partition function will have the following form :

Z ∼
∫

∏
i
γi

dΛ∆(Λ)2e−NtrV (Λ). (76)

The motivation for this generalization is at least two-folded, first even at
the calculation of matrix integrals over Hermitian matrices one can find useful
to deform the contour into the complex plane, for example in the context of
saddle point approximation. Secondly for some potentials V (M) the integral
(73) simply doesn’t exist however the proper choice of contours {γi} can give a
sense to the integral making it convergent.

Let’s discuss the last point. Namely let’s turn to the one-dimensional case
and assume the cubic potential V (λ) = λ3 + c2λ

2 + c1λ
1 + c0. The density

e−V (λ) is entire function and the convergence of
∫
dλe−V (λ) does depend only

on asymptotic behaviour on infinity. Particularly there are three allowed and
three forbidden sectors for the asymptotic directions of the integration contour
γ defined wrt to the behaviour of e−<V (λ) , see Fig.8 and text below.

Figure 8: Red sectors (hills) are sectors of forbidden directions for
∫
e−λ

3+...dλ

with exponential growth of e−<(λ3+...). They are separated by blue punctured
lines (eiπ/6, ei(π/6+π/3), ei(π/6+2π/3), ...) from allowed sectors (valleys) of expo-

nential decrease of e−<(λ3+...). Contours {γi} corresponding to convergent in-

tegral
∫
dλe−λ

3+... are going from infinity to infinity along the valleys. They
are not independent because γ1 + γ2 + γ3 = 0 is homotopic to zero, so one can
choose two of them (up to homotopy) as a basis, e.g. {γ1, γ2}

Namely any contour giving convergent integral goes from infinity to infinity
in the directions of the exponential decrease of e−<(λ3+...). Homotopic deforma-
tions of the contour doesn’t change the holomorphic integral so all contours are
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defined up to homotopy. The last particularly imply that the sum γ1 + γ2 + γ3

can be deformed to one point and thus there are only two independent contours.
In the general case of polynomial potential of degree n there will be n − 1 in-
dependent contours and any other convergent contour can be decomposed over
them.

Now let’s consider a potential which is a sum of an polynomial P (λ) and an
pole : V (λ) = P (λ) + 1

(λ−α)m . It brings one more singularity at α and one has

to analyse the behaviour of e<(−V (λ)) in its vicinity. It will lead to m forbidden
sectors and m valleys along which contours can reach the pole. Adding one more
pole of order m brings m + 1 new contours : m are (e.g.) connecting adjacent
allowed sectors around the pole and one more goes from the new pole to one
of existing singularities. Actually the picture will be the same for any rational
potential which has one m-pole singularity at α and behaves as P (λ) at infinity.
See an example at Fig.9

Figure 9: The allowed/forbidden areas structure for a rational potential behav-
ing as λ3 at infinity and having the poles of order 3 & 4 at points α3 & α4. The
number of basis contours is equal to 11 = (3 − 1) + (3 + 1) + (4 + 1), they are
colored black

2.2 Saddle point approximation

Here we briefly remind how the saddle-point approximation works.
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2.3 Coulomb gas method and Spectral Curve

Omitting the prefactor we can rewrite the partition function (73) :

Z =

∫
RN

∏
dλie

−N2S(λ1,...,λN ), (77)

S(λ1, ..., λN ) =
1

N

N∑
i=1

V (λi)−
1

N2

N∑
i<j

log(λi − λj)2 (78)

Saddle point equation :

∂S

∂λi
= 0 : V ′(λi) =

2

N

N∑
i<j

1

λi − λj
, i ∈ {1, ..., N} (79)

Now let’s consider the real polynomial with the global minimum of <(V (λ))
on the real axe. The action S({λi}) (78) can be interpreted as the energy of
2D electrons on the line at the background potential V and the S.P.Eqn is
just the balance of forces telling us that the force induced by potential V is
precisely compensated by the force acting from all other electrons. This simple
intuitive picture can help us to imagine how the solution will look like. First

let’s introduce new auxillary parameter µ : V ′(λi) = µ 2
N

N∑
i<j

1
λi−λj . When

µ = 0 we have factorization of N -dimensional integral into the product of N
one-dimensional integrals and all eigenvalues should be placed at the global
minimum of V (λ). When µ is finite but still small eigenvalues will start to
experience the repulsion and the point corresponding to the minimum will blow
into the finite interval. As bigger we make µ as bigger the interval will be. At
some point it can be ”energetically optimal” to have two or more separated
intervals around different minima, see Fig.10

Going beyond the leading (exponential) order one can get contribution from
other saddle points in the similar manner , namely at µ = 0 one can describe all
saddle points of partition function specifying the saddles of the one dimensional
integral for every eigenvalue, in other words we can numerate all saddles and
specify the solution by the collection of numbers (N1, N2, ...),

∑
Ni = N telling

us how many eigenvalues in the given saddle point. This numbers normalised by
N are known as filling fractions Si = Ni/N . At finite µ Ni eigenvalues around
ith S.P. will blow into an interval (arc) but still filling fractions will be valid
parameters to numerate saddle points.

Now, for sake of simplicity let’s assume that we have finite number of inter-
vals around one or several minima. Let’s introduce density ρ

ρ(x) =
1

N

N∑
i=1

δ(x− λi) (80)
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Figure 10: a1) : at µ = 0 all eigenvalues seat in one global minimum a2) : at
µ > 0 eigenvalues are spreaded in an interval, b1) for more general saddle points
at µ = 0 eigenvalues can occupy several different saddles, b2) at µ > 0 they all
will be transformed into the intervals/curves

which we expect to have the support : suppρ = ∪(ai, bi) in the limit of large N .
Resolvent :

W (x) =
1

N

∑ 1

x− λi
(81)

In the case of compact support it has the following asymptotic behaviour :

W (x) −→
x→∞

1

x
(82)

Using lim 1
x±iε = p.v. 1x ∓ iπδ(x) we can restore the density :

ρ(x)|suppρ =
1

2πi
(W (x− i0))−W (x+ i0)) (83)

and rewrite S.P.Eq. (79):

V ′(x)|suppρ = W (x− i0)) +W (x+ i0) (84)
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Using the definition (81) we can derive the following equation:

W 2(x) +
1

N
W ′(x) =

1

N2

 N∑
i,j=1

1

(x− λi)(x− λj)
−

N∑
i=1

1

(x− λi)2

 =

1

N2

N∑
i 6=j

1

(x− λi)(x− λj)
=

2

N2

N∑
i=1

1

x− λi

∑
i 6=j

1

λi − λj
=

1

N

N∑
i=1

V ′(λi)

x− λi
(85)

where we used 1
(x−λi)(x−λj) = 1

λi−λj

(
1

x−λi −
1

x−λj

)
and (79) in the last line.

Introducing :

P (x) =
1

N

N∑
i=1

V ′(x)− V ′(λi)
x− λi

(86)

we get :

W 2(x) +
1

N
W ′(x) = V ′(x)W (x)− P (x) (87)

P (x) is entire function (there is no poles at {λi}) with polynomial asymptotics
at infinity and thus, by Liouville’s theorem, it is a polynomial.

Let’s notice that it is Riccati equation and can be linearised with the simple

change of variables W = 1
N (logψ) = 1

N
ψ′

ψ , ψ =
N∏
i=1

(x− λi):

1

N2
ψ′′ − 1

N
V ′ψ′ + Pψ = 0 (88)

Comment One can notice the similarity with Jaynes-Cummings-Gauden
model (a certain limit of Gauden model). Namely one can identify eigenvalues
{λi} with Bethe roots, ψ(x) with Q-function and (88) with Baxter equation.

Now let’s analyse the leading order in 1/N . At this level we can skip second
term in (87) , introduce : W̄ = lim

N→∞
W , P̄ = lim

N→∞
P and write:

W̄ (x)2 − V ′(x)W̄ (x) + P̄ (x) = 0 (89)

with solution :

W̄ (x) =
1

2
(V ′(x)−

√
V ′2 − 4P̄ ) (90)

and thus , using (83):

ρ̄(x)|supp =
1

2π

√
4P̄ − V ′2 (91)

23



Figure 11: Red points : numerical solution of (79) for V (λ) = 1
2λ

2 , blue curve:
Wigner’s semicirlce (92)

Gaussian case : V (λ) = 1
2λ

2 : P̄ = P = 1 and we get famous Wigner’s semicir-
cle:

ρ̄(x)|supp =
1

2π

√
4− x2 (92)

Let’s check ourselve numerically : Fig.11
And compare with eigenvalue distribution of random matrix: Fig.12, Fig.13

Figure 12: Histogram for eigenvalue distribution of 1000 × 1000 Hermitian en-
semble with V (λ) = 1

2λ
2

Let’s also notice that the equation (88) can be exactly solved in this case by

Hermite polynomials ψ(x) = HN (
√

N
2 x). The asymptotics of the largest zero

is ≈
√

2N so we get that x is distributed on the interval (−2, 2) in accordance
with Wigner semicircle, see Fig.14

Now let’s back to the general case. V ′2 − 4P̄ is a polynomial which we can
write as a product:

V ′2 − 4P̄ = M(x)2σ(x) (93)
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Figure 13: blue : smooth and normalized version of the same historgram; red :
Wigner semicircle.

Figure 14: Distribution of zeros of Hermite Polynomial H160(
√

160
2 x) of degree

160

of the polynomial M(x)2 accumulating all even powers of zeros and σ(x) - all
single zeros. For example, we split (x − a)(x − b)2(x − c)3 = M(x)2σ(x) as
M(x)2 = ((x − b)(x − c))2, σ(x) = (x − a)(x − c). So we can rewrite resolvent
and density :

W̄ =
1

2
(V ′ −M

√
σ(x)), (94)

ρ̄(x)|supp =
1

2π
M(x)

√
−σ(x). (95)

Let’s notice that deg(V ′2 − 4P̄ ) = deg(V ′2) = 2(d − 1) and thus deg(σ) is
even, so we can write :

σ(x) =

2s∏
j=1

(x− ai) (96)

Resolvent, actually can be written entirely through the polynomial σ(x) :
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W̄ (x)√
σ(x)

=
1

2πi

∮
x

dx′

x′ − x
W̄ (x′)√
σ(x′)

= − 1

4πi

∮
supp

dx′

x′ − x

(
V ′(x′)√
σ(x′)

−M(x′)

)
(97)

= − 1

4πi

∮
supp

dx′

x′ − x
V ′(x′)√
σ(x′)

=
1

2πi

∫
supp

dx′

x′ − x
V ′(x′)√
σ(x′)

(98)

where in the last line we used
∮

supp

dx′ f(x′)√
σ(x′)

= −2
∫

supp

dx′ f(x′)√
σ(x′)

. So finally we

get:

W̄ (x) =
1

2πi

∫
supp

dx′

√
σ(x)

σ(x′)

V ′(x′)

x′ − x
(99)

The resolvent W̄ (x) is a solution of the algebraic equation (89):

y2 − V ′(x)y + P̄ (x) = 0 (100)

and solution is a double-valued function (in (90) we choose minus sign). In-
stead one can think about it as a single-valued function defined on the compact
Riemann surface Σ by the equation (100).

Namely we define the spectral curve (Σ, x(z), y(z)) as a Riemann surface Σ
with immersion

Σ ↪→ C̄× C : (x(z), y(z)) ∈ C̄× C, z ∈ Σ (101)

The Riemann surface Σ is compact due to the asymptotic behaviour (82) of the
resolvent at infinity. All orientable compact Riemann surfaces are classified wrt
their genus g and one can introduce the canonical basis {Ai, Bi}, i ∈ {1..g} of
the first homology group H1(Σ) as depicted on Fig.15

The double-valued resolvent W̄ (x) turns into the single-valued function ω̄(z) =
W̄ (x(z)) on Σ. Particularly we can define the one-differential form ω̄(z)dz and
calculate its integral along A and B cycles.

A-periods give:

1

2πi

∮
Ai

ω̄(z)dz =

bi∫
ai

ρ̄(x)dx =
Ni
N

= Si (102)

the fractions Si = Ni/N - number of eigenvalues at the interval (ai, bi).
In order to give interpretation to integrals over B-cycles let’s introduce ef-

fective force Feff = V ′ − 2
∫

supp

ρ(x′)
x−x′ acting on an eigenvalue and its integral -

effective potential :

Veff = V − 2

∫
supp

ρ(x′) log |x− x′|+ const (103)
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Figure 15: A and B-cycles. Ai goes around interval (ai, bi) while Bi from (ai, bi)
to (ai+1, bi+1) and back.

It is equal to constant Ei on the interval (ai, bi) and changes somehow outside
of support. Also let’s notice that V ′eff = V ′− 2W̄ = M

√
σ has opposite sign on

the second sheet, so we get:

∮
Bi

ω̄(z)dz =
1

2

∮
Bi

dz(V ′(z)− V ′eff (z)) = −
ai+1∫
bi

dzV ′eff (z) = Ei − Ei+1 (104)

what can be interpreted as a change of partitian function under the move of an
eigenvalue from (ai+1, bi+1) to (ai, bi).

One-cut solution

Now let’s discuss one-cut case in more details. First, let’s introduce Joukowsky
map :

x =
a+ b

2
+ γ(z + z−1), γ =

b− a
4

(105)

and its inverse:

z =
1

2γ

x− a+ b

2
±

√(
x− a+ b

2

)2

− 4γ2

 (106)

In z-variable we rewrite
√
σ(x) as a rational function :√

σ(x) =
√

(x− a)(x− b) = γ(z − 1/z) (107)

while in x plane we define square root such that
√
σ(x) ∼ x ∼ γz at x→∞ in

the upper sheet and
√
σ(x) ∼ −x ∼ −γ/z in the lower one.
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Thus W̄ = 1
2 (V ′ −M

√
σ(x)) is also rational function in z and its leading

asymptotic behaviour (see (81)) on the first sheet is W̄ (x)→ 1/x so :

ω̄(z) =

d−1∑
k=0

vkz
−k (108)

v0 = 0, v1 = 1/γ (109)

Saddle Point Equation (84) written in z variable :

V ′(x(z)) = W̄ (x(z) + i0) + W̄ (x(z)− i0) = ω̄(z) + ω̄(1/z) (110)

or using (108) :

V ′
(
a+ b

2
+ γ(z + z−1)

)
=

d−1∑
k=0

vk(zk + z−k) (111)

what gives us d equations for d unknown parameters : {v2, ..., vd−1; a, b}.

Example Quadratic potential : V (x) = x2

2

V ′(x) = x and SPE (111) reads as :

a+ b

2
+ γ(z + z−1) =

1

γ
(z +

1

z
) (112)

what gives a = −b = −2 , ω̄(z) = z−1and we reproduce Wigner semicircle :

W̄ (x) =
1

2
(x−

√
x2 − 4) (113)

Now let’s consider general symmetric potential V (x) =
k∑

m=1

g2m
2m x2m with

real coefficients.

Due to Z2-symmetry we get a = −b and can write the resolvent :

W̄ (x) =
1

2
(V ′(x)−M(x)

√
x2 − b2) (114)

where :

M(x) =

k∑
m=1

g2m

m−1∑
n=0

(
2n

n

)(
b2

4

)n
x2m−2n−2 (115)

and b is defined through the following equation :

1

2

k∑
m=1

g2m

(
2m

m

)(
b2

4

)n
= 1 (116)
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Corresponding density : ρ(x) = 1
2πM(x)

√
b2 − x2

In the case of quartic potential : V (x) = x2

2 + g4
4 x

4 :

ρ(x) =
1

2π
(1 +

g4

2
b2 + g4x

2)
√
b2 − x2 (117)

3g4b
4 + 4b2 − 16 = 0 (118)

Free energy:

E0(g4) =

b∫
−b

dxρ(x)(
x2

2
+
g4x

4

4
)−

∫ ∫
dx1dx2ρ(x1)ρ(x2) log |x1 − x2| (119)

E0(g4)− E0(0) =
1

24
(
b2

4
− 1)(9− b2

4
)− log

b

2
(120)

Expansion at g4 → 0 :

b2 =
2

3g4

(
(1 + 12g4)

1
2 − 1

)
≈ 1− 3g4 + 18g2

4 − 135g3
4 + ... (121)

E0(g4)− E0(0) ≈ g4

2
− 9

8
g2

4 +
9

8
g3

4 −
189

8
g4

4 + ... (122)

Also one can calculate correlation functions:

〈trM2p〉 =

b∫
−b

dxρ(x)x2p =
(2p)!

p!(p+ 2)!

(
b

2

)2p

(2p+ 2− p

4
b2) (123)

Now let’s put g4 = 1 and keep g2 as a free parameter: V (x) = g2
x2

2 + x4

4 .
The density corresponding to one-cut solution should be positive :

ρ(x) =
1

2π

(
x2 + g2 + b2/2

)√
b2 − x2 ≥ 0, ∀x ∈ (−b, b) (124)

what means that g2 + b2/2 ≥ 0. Using expression for b: b2 = 2
3 (
√
g2

2 + 12− g2)
we get g2 ≥ −2. What happens for g2 < −2? Turns out that at such value
of parameter there is no one-cut solution anymore and support splits into two
disconnected intervals : supp = (−a,−b) ∪ (b, a) :

W̄ (x) =
1

2
(x3 + g2x− x

√
(x2 − a2)(x2 − b2)) (125)

a2 = 2− g2, b2 = −g2 − 2 (126)
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3 Loop Equations

3.1 Loop Equations for correlation functions.

For convergent integrals we have obvious equality :∑
i,j

∫
dM

∂

∂Mij

(
(Mk)ije

−NtrV (M)
)

= 0 (127)

Using

∂

∂Mij
(Mk)ij =

k−1∑
l=0

(M l)ii(M
k−l−1)jj , (128)

∂

∂Mij
e−NtrV (M) = V ′(M)jie

−NtrV (M) (129)

we get the simplest loop equation :

k−1∑
l=0

〈trM ltrMk−l−1〉 = N〈trMkV ′(M)〉 (130)

It is valid for finite N and provides the relation between different correlation
functions.

Similarly, one can start with∑
i,j

∫
dM

∂

∂Mij

(
(Mµ1)ijtrM

µ2 ...Mµne−NtrV (M)
)

= 0 (131)

and get more general
Loop Equations for Correlation functions :

µ1−1∑
l=0

〈trM ltrMµ1−l−1
n∏
i=2

trMµi〉+

n∑
j=2

µj〈trMµ1+µj−1
n∏

i=2,i6=j

trMµi〉

= N〈trV ′(M)Mµ1

n∏
i=2

trMµi〉 (132)

The same equation and its generalisation to general β ensembles can be
obtained from the eigenvalue representation:

Z =

∫
RN

∆(λ)βdλ1...dλNe
−N β

2

N∑
i=1

V (λi)
, (133)

1

Z

N∑
i=1

∫
RN

dλ1...dλN
∂

∂λi

∆(λ)βe
−N β

2

N∑
i=1

V (λi)
λki

 = (134)

N∑
i=1

β

2
〈
∑
j 6=i

2λki
λi − λj

−NV ′(λi)λki +
2k

β
λk−1
i 〉 = 0 (135)
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Using

N∑
i=1

∑
j 6=i

2λki
λi − λj

=

N∑
i=1

∑
j 6=i

λki − λkj
λi − λj

=

k−1∑
l=0

(
∑
i

λli)(
∑
j

λk−l−1
j )− k

∑
i

λk−1
i

(136)

We get :

〈
k−1∑
l=0

(
∑
i

λli)(
∑
j

λk−l−1
j )〉+ (

2

β
− 1)〈k

∑
i

λk−1
i 〉 = N〈

∑
i

V ′(λi)λ
k
i 〉 (137)

or rewriting it through M we get β version of (130) :

k−1∑
l=0

〈trM ltrMk−l−1〉+ (
2

β
− 1)k〈trMk−1〉 = N〈trMkV ′(M)〉 (138)

Similarly one can get more general version:

µ1−1∑
l=0

〈trM ltrMµ1−l−1
n∏
i=2

trMµi〉+
2

β

n∑
j=2

µj〈trMµ1+µj−1
n∏

i=2,i6=j

trMµi〉

+(
2

β
− 1)µ1〈trMµ1−1

n∏
i=2

trMµi〉 = N〈trV ′(M)Mµ1

n∏
i=2

trMµi〉 (139)

Comment on Loop Equations as Ward identities

Another way to think about loop equations is as a manifestation of the
symmetry. In physics such relations are called as Ward identities or Swinger-
Dyson equations. Namely let’s notice that the matrix integral

∫
dMe−NtrV (M)

is invariant under the infinytisemal transformation M → M + εMk , then the
change of variables gives the Jacobian :

d(M + εMk)

dM
= 1 + ε

∑
i,j

∂

∂Mij
(Mk)ij +O(ε2) = 1 + ε

k−1∑
l=0

trM ltrMk−l−1 +O(ε2)

(140)

while the variation of e−NtrV (M) gives εMkV ′(M)e−NtrV (M) and we get (130).
More general change of variables gives further equations, particularly it is pos-
sible to introduce dif operators Lj , j = −1, 0, 1, ... and rewrite loop equations
in the form of Virasoro - Witt algebra:

[Lk, Lj ] = (k − j)Lk+j (141)

We will return to this point later.

Comment on Loop Equations as Tutte’s recursion
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3.2 Loop Equations for resolvents and 1/N expansion. First
few orders and the glimpse of Topological Recursion

Let’s multiply (130) by x−k−1 and sum over k :

∞∑
k=0

k−1∑
l=0

〈 trM
l

xl+1

trMk−l−1

xk−l
〉 =

∞∑
k=0

N〈 trM
k

xk
V ′(M)〉 (142)

rewriting loop equation through the resolvents:

〈tr 1

x−M
tr

1

x−M
〉 −N〈trV

′(M)

x−M
〉 = 0 (143)

In what follows it will be useful to writ all equations through the connected
resolvents (56):

W (x1, ..., xn) = 〈tr 1

x1 −M
...tr

1

xn −M
〉c (144)

while for ordinary expectation value we adopt hat notation Ŵ (x1, ..., xn). Par-
ticularly for two-point resolvent we get from (56):

Ŵ (x1, x2) = W (x1, x2) +W (x1)W (x2) (145)

So we can rewrite (143):

W2(x, x) +W 2
1 (x) = N(V ′(x)W1(x)− P0(x)) (146)

where P0(x) = 〈trV
′(x)−V ′(M)
x−M 〉. We can also introduce more general polynomial

(in x) :

Pn(x, x1, ..., xn) = 〈trV
′(x)− V ′(M)

x−M

n∏
i=1

tr
1

xi −M
〉c (147)

and rewrite general loop equations (3.1) through the connected resolvents:

Wn+2(x, x, I) +
∑
J⊂I

W1+|J|(x, J)W1+n−|J|(x, I \ J)+

n∑
i=1

∂

∂xi

Wn(x, I \ {xi} −Wn(I))

x− xi
= N(V ′(x)Wn+1(x, I)− Pn(x, I)) (148)

The derivation can be found in [2].

So far we assumed finite N , now let’s turn to the limit of large N . From
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(54) we get :

Wn =

∞∑
g=0

N2−2g−nWg,n, (149)

Pn =

∞∑
g=0

N1−2g−nPg,n, (150)

W0 = F, F =

∞∑
g=0

N2−2gFg (151)

Plugging this expansion into the first Loop Equation (143) and keeping only the
first leading term we get :

W 2
0,1(x) = V ′(x)W0,1(x)− P0,0(x) (152)

which precisely coincides with the saddle point equation (89) we got in the
previous chapter! It means that solution for W0,1 can be described with spectral
curve as it was in length discussed in the ”Coulomb gas” chapter. In this chapter
we will see how to find higher orders Wg,n from loop equations using topological
recursion, but before that let’s make a quick overview of some basic results from
the theory of hyperelliptic curves.

Summary of basic facts about hyperelliptic curves

The solution for W0,1 is described by hyperelliptic curve :

y2 = (V ′ − 2W1,0)2 = M2σ (153)

Square roots are defined as :

1st (physical) sheet : x−s
√
σ(x) −−−−→

x→∞
+1, (154)

2nd sheet : x−s
√
σ(x) −−−−→

x→∞
−1 (155)

where we remind 2s = deg(σ(x)).
For any point x on the first sheet we note x̄ the corresponding point on
the second sheet :

y(x̄) = −y(x), M(x̄) = M(x),
√
σ(x̄) = −

√
σ(x), dx = dx̄ (156)

and at branch points ai:

āi = ai, i = 1, ..., 2s (157)

In the vicinity of ai we can define local coordinates x = ai+τ2
i such that

τi(x) =
√
x− ai = −τi(x̄) and dx = 2τidτi.
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Let’s notice that for any polynomial L(x) with deg(L) ≤ s−2 the differ-
ential form L(x) dx√

σ(x)
is regular on the whole surface and the following

theorem has place:
Theorem
There are s− 1 polynomials Lj(x) of deg = s− 2 such that : []

∮
[a2l−1,a2l]

Lj(x)√
σ(x)

dx = 2iπδl,j , ∀ l, j ∈ [1, ..., s− 1] (158)

{ Lj√
σ
} are normalized holomorphic differentials and Lj ’s form a basis of

deg ≤ s− 2 polynomials :

∀P (x), deg(P ) ≤ s− 2 : P (x) =

s−1∑
j=1

 1

2iπ

∮
[a2j−1,a2j

]

P (x′)√
σ(x′)

dx′

Lj(x)

(159)

Bergmann kernel (fundamental differential of the 2nd kind) is a unique
meromorphic symmetric bilinear differential form B(x1, x2) whose only
singularity is a double pole at x1 − x2 such that:

B(x1, x2) ∼
x1→x2

dx1dx2

(x1−x2)2 +O(1)

∀j = 1, ..., s− 1,
∮

x∈[a2j−1,a2j ]

B(x1, x2) = 0
(160)

with the following explicit expression:

B(x1, x2) =
1

2
dx2

∂

∂x2
(

dx1

x1 − x2
+ dS(x1, x2)), (161)

dS(x1, x2) =

√
σ(x2)√
σ(x1)

 1

x1 − x2
−
s−1∑
j=1

cj(x2)Lj(x1)

 dx1, (162)

cj(x2) =
1

2iπ

∮
x∈[a2j−1,a2j ]

dx√
σ(x)

1

x− x2
(163)

where we also introduced dS(x1, x2) - normalised differential of the 3rd
kind.
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Now let’s describe the ”boundary conditions” which will specify the solution
of Loop Equations. For the potential V (M) =

∑
k

gk
k M

k let’s introduce the

following differential operator:

∂

∂V (x)
:= −

∑
k

k

xk+1

∂

∂gk
(164)

We have :

∂

∂V (x)
Z =

∂

∂V (x)

∫
e−NtrV (M) = 〈tr 1

x−M
〉 = NW1(x) (165)

∂

∂V (x2)
W1(x) =

∂

∂V (x2)

(
1

Z

∫
tr

1

x1 −M
e−NtrV (M)

)
=

N

Z

∫
1

x1 −M
1

x2 −M
e−NtrV (M) − N

Z2

∫
1

x1 −M
e−NtrV (M)

∫
1

x2 −M
e−NtrV (M)

= NW2(x1, x2) (166)

and in general :

Wk+1(x1, ..., xk+1) =
∂

∂V (xk+1)
Wk(x1, ..., xk) (167)

We will specify the solution of loop equation fixing the fractions:

1

2πi

∮
[a2j−1,a2j

]

W1(x)dx = sj = lim
N→∞

Nj
N
, ∀j = 1, ..., s (168)

Acting by ∂
∂V (y) we get also:

1

2πi

∮
[a2j−1,a2j

]

Wk(x1, ..., xk)dx1 = 0, ∀j = 1, ..., s, k > 1 (169)

Also we assume that there are no poles outside of the cuts:∮
z

Wk(x1, ..., xk)dx1 = 0, ∀z ∈ C/ ∪ [a2j−1, a2j ] (170)

Conditions (168),(169),(170) were derived for formal matrix integrals, however
we will assume them for convergent matrix integrals as well. Now let’s get the
leading order W0,2(x1, x2) of two-point resolvent. Second loop equation (148)
for n = 1 reads as:

W3(x, x, x1) + 2W1(x)W2(x, x1) +
∂

∂x1

W1(x)−W1(x1)

x− x1
= N(V ′(x)W2(x, x1)− P1(x, x1))

(171)
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Leading order in 1/N :

2W0,1(x)W0,2(x, x1) +
∂

∂x1

W0,1(x)−W0,1(x1)

x− x1
= V ′(x)W0,2(x, x1)− P0,1(x, x1)

(172)

Using W0,1 = 1
2 (V ′ −M

√
σ) :

W0,2(x, x1) = − 1

2
√
σ(x)

∂

∂x1

(√
σ(x)−

√
σ(x1)

x− x1

)
+

R2(x, x1)

M(x)
√
σ(x)

(173)

where R2(x, x1) is a polynomial of degree ≤ d− 3 :

R2(x, x1) =
1

2

∂

∂x1

V ′(x)− V ′(x1)

x− x1
− 1

2

∂

∂x1

M(x)−M(x1)

x− x1
+ P0,1(x, x1) (174)

There should not be poles at zeros of M(x) so R2(x, x1) = M(x)R̃2(x, x1). In
turn, R̃2(x, x1) being of degree ≤ s− 2 can be expand over {Lj(x)} (159)

R̃2(x, x1) =

s−1∑
j=1

 1

2iπ

∮
[a2j−1,a2j

]

R̃2(x′, x1)√
σ(x′)

dx′

Lj(x) (175)

using (173), R̃2(x′,x1)√
σ(x′)

can be written as:

R̃2(x′, x1)√
σ(x′)

= W0,2(x, x1) +
1

2
√
σ(x)

∂

∂x1

(√
σ(x)−

√
σ(x1)

x− x1

)
(176)

∮
[a2j−1,a2j

]

W0,2(x, x1) vanishes due to (169) and we get:

W0,2 = − 1

2(x− x1)2
+

1

2

∂

∂x1

√
σ(x1)√
σ(x)

(
1

x− x1
−
∑
l

cl(x1)Lj(x)

)

= − 1

2(x− x1)2
+

∂

∂x1

dS(x, x1)

dx
(177)

or through the Bergman kernel:

W0,2(x1, x2)dx1dx2 = B(x1, x2)− dx1dx2

(x1 − x2)2
(178)

Going further one can get W1,1 from (146) in the next order:

2W0,1(x)W1,1(x) +W0,2(x, x) = V ′(x)W1,1(x)− P1,0(x), (179)

W1,1(x) =
W0,2(x, x) + P1,0(x)

M(x)
√
σ(x)

(180)
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At this point let’s restrict our consideration to the
One-cut case In the one cut case we can use Joukowsky map x(z) = a+b

2 +
a−b

4 (z + z−1) and introduce the following set of differential forms:

ωg,n(z1, ..., zn) = Wg,n(x1, ..., xn)dx1...dxn + δg,0δn,2
dx1dx2

(x1 − x2)2
(181)

Performing recursive analysis of the analytical structure of the loop equations
(see [2] for detailes) one can show :

• ωg,n(z1, ..., zn) is a rational symmetric function

• ωg,n( 1
z1
, ..., zn) = −ωg,n(z1, ..., zn) for any (g, n) with negative euler char-

acteristic χ(g, n) < 0

• there are poles at zi = ±1 only

We can write W0,2&W1,1 as differential forms :

ω0,2(z, z′) = B(z, z′) =
dzdz′

(z − z′)2
, (182)

ω1,1(z) =
−B(z, z−1) + P1,0(x(z))d2x(z)

−ω(z)dx(z)
(183)

where ω(z) = −M(x(z))
√
σ(x(z)).

Using Cauchy’s theorem, ω1,1(z−1) = −ω1,1(z) and the fact that its poles
are only at ±1 we get:

ω1,1(z) =
dz

2πi

∮
z

1

z′ − z
ω1,1(z′) =

=
∑
±

dz

2πi

∮
±

1

z − z′
ω1,1(z′) =

=
1

2

∑
±

dz

2πi

∮
±

(
1

z − z′
− 1

z − 1/z′
)ω1,1(z′) (184)

using (183) and the fact that P1,0(x(z)) doesn’t have poles at ±1 we can further
rewrite:

ω1,1(z) =
1

2

∑
±

dz

2πi

∮
±

(
1

z − z′
− 1

z − 1/z′
)
B(z′, z′−1)

ω(z′)dx(z′)
(185)

or introducing kernel K:

ω1,1(z) =
1

2

∑
±

dz

2πi

∮
±

K(z, z′)B(z′, z′−1), (186)

K(z, z′) =
1

2ω(z′)dx(z′)
(

1

z − z′
− 1

z − 1/z′
) (187)
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Explicitly, evaluating residues :

ω1,1(z) = − 1

8(a− b)
∑
η=±1

η

ω′(η)

 1

(z − η)4
+

η

(z − η)3
−

1 + η ω
′′(η)
ω′(η) + ω′′′(η)

3ω′(η)

2(z − η)2

 dz

(188)

This representation can be generalised to higher orders ωg,n :

ωg,n(z1, ..., zn) =
∑
η=±1

Res|z=ηK(z1, z)
[
ωg−1,n+1(z, z−1, z2, ..., zn) +

∑
ωh,1+|I|(z, I)ωh′,1+|I′|(z

−1, I ′)
]

(189)

where sum goes over h + h′ = g, I t I ′ = {z2, ..., zn} excluding terms (h, I) =
(0, ∅) and (h, I) = (g, {z2, ..., zn}). This formula has recursive structure and
expreses ωg,n through the ωg′,n′ with larger Euler characteristic χ(g′, n′) >
χ(g, n). It has generalisation to the multi-cut case and actually represents a
particular example of much more general construction known as Topological
Recursion.

3.3 Further comments on Topological Recursion

4 Orthogonal Polynomials

Partition function in the eigenvalue representation:

Z =
1

N !

∫
RN

dλ0...dλN−1∆(λ0, ..., λN−1)2
N−1∏
i=0

e−NV (λi) (190)

using the determinant formula for Vandermonde :

∆(λ0, ..., λN−1) = det
i,j

(λji ) =
∑
σ∈SN

(−1)σ
N−1∏
i=0

λ
σ(i)
i (191)

we can rewrite Z as a double-sum:

Z =
1

N !

∑
σ,σ′

(−1)σ(−1)σ
′
N−1∏
i=0

∫
R

dλiλ
σ(i)
i λ

σ′(i)
i e−NV (λi) (192)

Let’s define the following scalar product:

〈f |g〉 =

∫
R

dλf(λ)g(λ)e−NV (λ) (193)
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and rewrite :

Z =
1

N !

∑
σ,σ′

(−1)σ(−1)σ
′
N−1∏
i=0

〈λσ(i)
i |λσ

′(i)
i 〉

=
∑
σ

(−1)σ
N−1∏
i=0

〈λσ(i)
i |λii〉 = det

i,j
〈λi|λj〉 (194)

Let’s notice that one can consider any polynomial pi = λi + #λi−1 + ... instead
of monomials {λi} and it will not change the determinant:

Z = det
i,j
〈pi(λ)|pj(λ)〉 (195)

Now let’s choose the orthogonal basis of polynomials {pi} : 〈pk|pk′〉 = hkδ. The
existence and uniqueness of such orthogonalisation follows from the application
of Gram-Schmidt process (we assume that potential V (λ) is real so the scalar
product (193) is positive defined) to the monomials {λi}. In this basis the
partition function has very simple form :

Z =

N−1∏
k=0

hk (196)

Example 1 : V (λ) = λ2

2 Orthogonal polynomials :

pk(λ) =
1

(2N)k/2
Hk(λ

√
N

2
), (197)

where Hk - Hermite polynomials : Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 . Normalisation
coefficients :

hk =
k!
√

2π

Nk+ 1
2

(198)

what gives:

Z =
(2π)

N
2

N
N2

2

N−1∏
k=0

k! =
(2π)

N
2

N
N2

2

G(N + 1) (199)

where G(x) is Barnes G-function.
Comment : With this result one can get the volume of the unitary group :

vol(U(N)) = (2π)
N(N+1)

2

G(N+1)

Example 2 : Partition function of Chern-Simons Theory on S3 and Stieltjes-
Wigert matrix model
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The partition function of the Chern-Simons theory on S3 can be written as
Stieltjes-Wigert matrix model [4]:

ZSW =
1

vol(U(N))

∫
dMe−

1
2gs

tr(logM)2 (200)

Orthogonal Stieltjes-Wigert polynomials :

pn(x) = (−1)nqn
2+n/2

n∑
ν=0

[
n
ν

]
q
ν(ν−n)

2 −ν2

(−q− 1
2x)ν (201)

They are orthogonal wrt the measure dµ(x) = e−
1

2gs
log2 xdx and

hn =
√

2πgsq
3
4n(n+1)+ 1

2 [n]! (202)

where

q = egs , [n] = qn/2 − q−n/2,
[
n
m

]
=

[n]!

[m]![n−m]!
(203)

The Stieltjes-Wigert ensemble can be regarded as a q-deformation (in the sense
of quantum group theory) of the usual Gaussian ensemble see [5, 4] for further
details.

One of explicit expressions for orthogonal polynomials is given by
Heine’s formula

pk(λ) = 〈det(λ−M)〉k×k =

=
1

Zk

∫
Rk

dλ0...dλk−1∆(λ0, ..., λk−1)2
k−1∏
i=0

(λ− λi)e−NV (λi) (204)

That’s obviously the polynomial of degree k with coefficient 1 in the front of
λk. Let’s show that 〈pk|pj〉 = 0, ∀j < k:

Zk〈pk|pj〉 =

∫
Rk+1

dλ

[
dλ0...dλk−1∆(λ0, ..., λk−1)2

k−1∏
i=0

(λ− λi)e−NV (λi)

]
pj(λ)e−NV (λ)

(205)

Let’s notice that :

∆(λ0, ..., λk−1)

k−1∏
i=0

(λ− λi) = ∆(λ0, ..., λk−1, λ) (206)

is tottaly antisymmetric over permutations of (λ0, ..., λk−1, λ) while antisym-
metrization of ∆(λ0, ..., λk−1)pj(λ) gives zero �

Exercise : Prove that antisymmetrization of ∆(λ0, ..., λk−1)pj(λ) gives zero.
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4.1 Recursion relation

Multiplying pn(λ) by λ we get polynomial of degree n + 1 which can be again
decomposed over {p1, ..., pn+1} :

λpn(λ) =

n+1∑
k=0

akpk(λ) (207)

The leading coefficient an+1 = 1 and aj = 0 for j < n − 1 , what follows from
〈λpn|pk〉 = 〈pn|λpk〉 = 0, ∀k < n− 1 . So we can write the following:

Recursion relation :

λpn(λ) = pn+1(λ)− snpn(λ) + rnpn−1(λ) (208)

Let’s mention that for the even real potential V (−λ) = V (λ) orthogonal
polynomials have parity symmetry pn(−λ) = (−1)npn(λ) (one can explicitly
see it from the Heine’s formula) and thus coefficients sn = 0. Coefficient rn can
be expressed through hn :

hn = 〈pn|λpn−1〉 = 〈pnλ|pn−1〉 = rnhn−1 (209)

so

rn =
hn
hn−1

(210)

And we can rewrite partition function:

Z =

N−1∏
k=0

hk = hN0

N−1∏
i=1

rN−ii (211)

And Free Energy (by defenition):

F(g) = − 1

N2
log
Z(g)

Z(0)
=

= − 1

N
log

h0(g)

h0(0)
− 1

N

N−1∑
i=1

(1− i

N
) log

ri(g)

ri(0)
(212)

where g = {gi} - collection of coupling constants : V (λ) = 1
2λ

2 −
d∑
k=3

gk
k λ

k. So

zero coupling constants correspond to Gaussian ensemble :

h0(0) =

√
2π

N
, ri(0) =

i

N
(213)
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Now let’s derive the equation for rn :

nhn = 〈p′nλ|pn〉 = 〈p′n|λpn〉 = 〈p′n|pn+1 − snpn + rnpn−1〉 =

= rn〈p′n|pn−1〉 = rn

∫
R

dλe−NV (λ)
(
(pnpn−1)′ − pnp′n−1

)
= rn

∫
R

dλe−NV (λ)(pnpn−1)′

= Nrn

∫
R

dλe−NV (λ)V ′(λ)pnpn−1 (214)

where we used the recursion relation in the second line and the integration by
parts in the third. So we get ”string equation” :

nhn = Nrn

∫
R

dλe−NV (λ)V ′(λ)pnpn−1 (215)

Now let’s specialise our discussion to the quartic case : V (λ) = λ2

2 + gλ4. In
this case V ′(λ) = λ + 4gλ3 so we need to calculate 〈pnλ3pn−1〉. That’s can be
done just applying recursion relation several times to λ3pn−1:

λ3pn−1 = λ2(pn + rn−1pn−2) = λ(pn+1 + rnpn−1 + rn−1(pn−1 + rn−2pn−3))
(216)

what gives us :

〈pnλ3pn−1〉 = hn(rn+1 + rn + rn−1) (217)

and the string equation (215) reads :

n

N
= rn(g)(1 + 4g(rn+1(g) + rn(g) + rn−1(g))) (218)

4.2 Large N and Double Scaling limit

In this section we closely follow

Let’s introduce new variables sutable for the large N analysis :

ε =
1

N
, x =

n

N
, r(x, g) = rn(g) (219)

and rewrite (218) :

x = r(x, g) (1 + 4g(r(x+ ε, g) + r(x, g) + r(x− ε, g))) (220)

Now let’s assume the following ansatz :

r(x, g) = r0(x, g) + ε2r2(x, g) + ε4r4(x, g) + ... (221)
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So we can write :

r(x+ ε, g) + r(x− ε, g) = 2

∞∑
n=0

ε2n
∑

k+p=n

1

(2p)!

d2p

dx2p
r2k(x, g) (222)

and plug into the (220) :

xδs,0 = r2s(x, g) + 4g
∑

m+n=s

r2m(x, g)

r2n(x, g) + 2
∑

k+p=n

1

(2p)!

d2p

dx2p
r2k(x, g)


(223)

This formula has a recursive structure and r2s can be calculated one by one,
particularly for s = 0 and s = 1 we get :

r0(x, g) =
−1 +

√
1 + 48gx

24g
, r2(x, g) =

96g2r0(x, g)

(1 + 48gx)2
(224)

In order to calculate the free energy (212) we can use Euler-Maclaurin formula
:

1

N

N∑
n=1

f(
n

N
) =

1∫
0

dsf(x) +
1

2N
f(x)

∣∣∣∣1
0

+

p−1∑
n=1

B2n

(2n)!

1

N2n
f (2n−1)(x)

∣∣∣∣∣
1

0

+O(
1

N2p+1
)

(225)

where B2n are Bernoulli numbers and p indicates the order of the approximation.

Choosing f(x) = (1 − x) log r(x,g)
x we can use this formula to perform the

sum into the (212) (mind the (213)) :

F(g) = − 1

N
log

h0(g)

h0(0)
−

1∫
0

dx(1− x) log
r(x, g)

x
+

1

2N
lim
x→0

log
r(x, g)

x

− 1

12N2

(
(1− x) log

r(x, g)

x

)′∣∣∣∣∣
1

0

+O(
1

N4
) (226)

The coefficient h0(g) can be directly calculated :

h0(g) = 〈1|1〉 =

∞∫
−∞

dλe−N(λ2/2+gλ4) =
e
N
32g

2
√

2g
K 1

4
(
N

32g
) (227)

with regular 1/N expansion :

h0(g) ∼
√

2π

N

(
1− 3g

N
+

105g2

N2
+ ...

)
(228)
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So we get :

1

N2
F = −

1∫
0

dx(1− x) log
r(x, g)

x

− 1

N2

 1∫
0

dx(1− x)
r2(x, g)

r0(x, g)
+

1

12

(
(1− x) log

r0(x, g)

x

)′∣∣∣∣∣
1

0

− 3g

+O(
1

N4
)

(229)

As was discussed in the first section , the Free energy has the following
topological expansion (37):

F(g) =

∞∑
n=0

Fh(g)Nχ(h) (230)

The direct calculation (as presented above) gives Fh owning the same critical
point gc = − 1

48 :

F0(g) =
g→gc

#(g − gc)
5
2 (231)

F1(g) =
g→gc

# log(g − gc) (232)

Fh(g) =
g→gc

#(g − gc)
5
4χ(h) (233)

Being combined with topological expansion it gives us the following sum of the
most singular contributions :

F(g)→
∑
Fh(g)Nχ(h) →

∑
fn

(
(g − gc)

5
4N
)χ(h)

(234)

what is calling for the double scaling limit : N →∞, g− gc → 0, N(g− gc)
5
4 =

fixed.

Small comment on the intuition behind DS. As we will see in a minute such
double scaling indeed exists, but before that let’s intuitively try to understand
what it should describe. Let’s try to estimate the number of squares 〈n〉 in
the typical graph of the given topology thinking about Fh(g) =

∑
ang

n as a

probability distribution : 〈n〉 =
∑
nang

n∑
angn

= g(Fh(g))′

Fh(g)
→
g→gc

1
g−gc so the number

of vertices in the typical graph is going to infinity or in other words (making the
appropriate rescaling of the square’s area) we can see it as a very dense/smooth
approximation of 2d surface. On the other hand in the DS we ressum the whole
1/N series so it’s tempting to expect that this DS limit will describe 2d gravity
and indeed it turns out to be the case. We will discuss it later in the one of
the next sections, for the moment we will just proceed with the analysis of the
matrix model.
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In order to understand where the main contribution in the DS limit comes
from let’s write few more rs:

r4 =
#

(1 + 48gx)5
, r6 =

#

(1 + 48gx)
15
2

, r8 =
#

(1 + 48gx)10
, ... (235)

so we see that at g → gc = −1/48 the most singular contribution comes from
x→ 1. All these motivates the

DS limit :

N →∞, g − gc → 0, κ−1 = N(g − gc)
5
4 = fixed (236)

and the following change of variables :

x = 1− (g − gc)z, r(x, g) = r0(1, gc) + (g − gc)
1
2 ρ(z) (237)

Plugging it into the (220) and taking the limit we get DS-equation which ghas
the form of Painleve I:

κ2

6
ρ(z)′′ +

1

4
ρ(z)2 = z (238)

This equation has the following solution in the form of power series:

ρpert(z) = z
1
2

∑
n=0

an

(
κ

z
5
4

)2n

(239)

where coefficients satisfy recursion relation :

an+1 =
25n2 − 1

24
an +

1

4

n∑
m=1

aman+1−m, a0 = −2, n ≥ 0 (240)

with the following double-factorial asymptotics : an ∼
(

5
4
√

6

)2n−1/2

Γ(2n−1/2)

what mean that the series is asymptotic and there are non-analytic terms. In
order to find them, let’s write ρ(z) = ρpert(z) + ε(z) and get the linearized
equation for ε(z)� ρpert(z) :

κ2

6
ε′′(z) +

1

2
ρpert(z) = 0 (241)

Using WKB one gets :

ε(z) = c

(
κ

4
5

z

) 1
8

e−
4
√

6
5κ z

5
4

1 + #

(
κ

4
5

z

)
+ #

(
κ

4
5

z

)2

+ ...

 (242)
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4.2.1 Exponentially small terms and instantons

In order to understand the origin of this exponentially small term on the level
of Matrix integral, let’s consider the partition function separating explicitly the
integration over one eigenvalue :

Z =

∫
R

dλe−NV (λ)

∫
RN−1

N−1∏
i=1

dµi∆N−1(µ1, ..., µN−1)2e
−N

N−1∑
i=1

V (µi)
N−1∏
i=1

(λ− µi)2

=

∫
R

dλe−NVeff (λ) (243)

and the effective potential can be written as :

Veff (λ) = V (λ)−
a∫
−a

dµρ(µ) log(λ− µ)2 (244)

where we assume one-cut (−a, a) solution. Let’s mention that Veff = const on
the interval (−a, a) due to the equation of motion (79) : V ′eff = 0 , so its value
can be calculated e.g. at zero :

Veff (0) = V (0)−
a∫
−a

dµρ(µ) logµ2 (245)

and we can rewrite the partition function as :

Z =

∫
R

dλe−NVeff (λ) = 2ae−NVeff (0)

1 +
1

2a

 −a∫
−∞

+

∞∫
a

 dλe−N(Veff (λ)−Veff (0))


(246)

The integral outside the interval (−a, a) can be calculated by saddle point ap-
proximation and the saddle point is given by the same equation : V ′eff (λ∗) = 0.
In the case of quartic potential g ∈ (gc, 0) one gets :

λ± = ±

√
− 1

6g
−
√

1 + 48g

12g
, (247)

Veff (λ±)− Veff (0) =
√

3

√
2 +
√
y

1− y
y

1
4 − 2arctanh

√
2 +
√
y

√
3y

1
4

(248)

where y = 1− g/gc and in the limit y → 0 :

Veff (λ±)− Veff (0) =
4

5

√
6y

5
4 +

2

7

√
3

2
y

7
4 + ... (249)

N(Veff (λ±)− Veff (0)) =
4

5

√
6(y

5
4N) (250)
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The term surviving in the DS limit is the contribution streaming from exponen-
tial correction (242). So the origin of the exponentially small corrections is a
”tunneling” of an eigenvalue from the cut to the other extremum. In principle
one can move several eigenvalues and get next sublidding corrections. The spec-
tral curve correspondiing to such ”instanton” configuration is drawn at Fig.16 :

Figure 16: Spectral curve with the singular point corresponding to the tunneled
eigenvalue

And the value of the exponentially small correction is given by B-cyrcle :

∮
B

ω̄(z)dz =
1

2

∮
B

(V ′(z)− V ′eff (z))dz = −
b∫
a

V ′eff = Veff (a)− Veff (b) (251)

Further comments on Painleve I
After a proper rescaling, the DS equation (238) can be brought to the stan-

dard Painleve I form :

−1

6
u′′ + u2 = z (252)

One-parametric solution has the following form :

u(z, c) =
∑
k≥0

ckuk(z), (253)

uk(z) = z
1
2 e−kAz

5
4 φk(z), φk(z) = z−

5k
8

∑
n≥0

un,kz
− 5n

4 , A =
8
√

3

5
(254)
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Asymptotics of un,k know about each other, e.g. :

un,0 ∼
n→∞

A−2n+ 1
2 Γ(2n− 1

2
)
S1

iπ
(1 +

∞∑
l=1

ul,1A
l

l∏
k=1

(2n− 1
2 − k)

) (255)

where S1 = −i 3
1
4

2
√
π

is a Stokes constant, see [6] for further details.
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