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mathematical text written by mathematical physicist

Andrey Losev

Abstract.

The text is devoted to explanation of the concept of Topological
Quantum Field Theory (TQFT), its application to homological algebra
and to the relation with the theory of good section from K.Saito’s the-
ory of Primitive forms. TQFT is explained in Dirac-Segal framework,
1 dimensional examples are explained in detail. As a first application
we show how it can be used in explicit construction of reduction of
∞-structure after contraction of a subcomplex. Then we explain as-
sociativity and Commutativity equations using this language. We use
these results to construct solutions to Commutativity equations and
find a new proof of for the fact that tree level BCOV theory solved
oriented associativity equations.

§1. Preface for mathematicians: please do not be afraid to try
to read this text

Nowdays it is clear that what people are calling modern mathe-
matical physics (some people are calling it mathematical quantum field
theory) is a draft of a future chapter of pure mathematics. It is a very
preliminary heuristic draft full of heuristic ideas and unproven conjec-
tures. Moreover, it is a bad habit in mathematical physics texts to omit
definitions and not to distinguish conjectures and theorems. Therefore,
such texts are unreadable by normal mathematicians. These texts are
mostly considered as a source of heuristic ideas that should be properly
formulated, studied and turned into mathematics. This work of trans-
lating heuristics into mathematics is an extra skill that mathematicians
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may not have. Moreover, such translation can be done only if mathe-
matician already spent a lot of time reading this heuristics and thinking
about it. Therefore, even mathematicians that have this skill prefer
to save their time and wait until someone translates the mathematical
physics text for them.

It is quite logical to expect that mathematical physicists would some-
time write texts that are readable by mathematicians. Due to the cur-
rent reputation of mathematical physicists the potential readability of
the texts should be mentioned in the title. Here I present an attempt to
write such a text.

At the first glance the text contains many ”mathematical physics
wording”, like quantum mechanics, quantum field theory, amplitudes
and so on. However, I will try to define everything that I will use keeping
for these objects their standard names.

This may be compared with text on homological algebra that is using
names like differential, cycles and boundaries. In order to understand
such text the reader does not need to know differential geometry. All
object are defined in terms of linear algebra, they are just keeping names
from the differential geometric realization.

The text is devoted to explanation of the concept of Topological
Quantum Field Theory (TQFT), its application to homological algebra
and to the relation with the theory of good section from K.Saito’s the-
ory of Primitive forms. TQFT is explained in Dirac-Segal framework,
1 dimensional examples are explained in detail. As a first application
we show how it can be used in explicit construction of reduction of
∞-structure after contraction of a subcomplex. Then we explain as-
sociativity and Commutativity equations using this language. We use
these results to construct solutions to Commutativity equations and find
a new proof of for the fact that tree level BCOV theory solved oriented
associativity equations.

§2. TQFT for mathematicians

2.1. Dirac-Segal Quantum Field Theory

Definition. A D-dimensional quantum field theory according to
Segal [1] may be considered as monoidal functor I between monoidal
category of decorated smooth oriented D-dimensional cobordisms and
monoidal category of vector spaces. By decorated cobordism we mean
that the oriented D-dimensional smooth manifold is equipped with some
kind of geometrical data, such as metric, complex or almost complex
structure etc. When manifold is cut along the D − 1 dimensional sub-
manifold the geometrical data is induced on the result of the cutting.
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Explanation of the definition.
The functor was motivated by functional integral that is why it is

called I.
The objects are D − 1 oriented dimensional manifolds Γ and I(Γ)

are vector spaces, such that if we change orientation of Γ to Γopp the
image is the dual space:

(1) I(Γopp) = I(Γ)∗

Let us call the D dimensional manifolds by Σ, and geometrical data on
it by g. The functor sends the pair (Σ, g) to I(Σ, g) that for each fixed
g belongs to I(∂Σ), so the functor I may be considered as an element
of the tensor product of I(∂Σ) and the space of functions on the space
GeomΣ of possible geometric data on Σ:

(2) I ∈ I(∂Σ)⊗ Fun(GeomΣ)

The functoriality condition means the following. Suppose that Σ is cut
by not self-intersecting Γ into ΣΓ. The geometrical data on a cut mani-
fold is induced from the original manifold, so we have a map:

(3) Cut : Geom(Σ)→ Geom(ΣΓ)

Its inverse image Cut∗ is a linear map

(4) Cut∗ : Fun(Geom(ΣΓ)→ Fun(Geom(Σ))

The boundary of ΣΓ is a disjoint union of the boundary of Σ and
two copies of Γ with opposite orientation, therefore

(5) I(∂ΣΓ) = I(∂Σ ∪ Γ ∪ Γopp) = I(∂Σ)⊗ I(Γ)⊗ I(Γ)∗

where we use monoidal nature of the functor that takes disjoint union
into a tensor product. Note, that there is a natural map GlueΓ

(6) GlueΓ : I(∂ΣΓ)→ I(∂Σ)

induced by a canonical contraction between I(Γ) and I(Γ)∗.
The functoriality means that

(7) GlueΓ ⊗ Cut∗(I(ΣΓ)) = I(Σ)

One dimensional example – Quantum Mechanics
If this still looks to abstract I will give an example for D = 1.

Let Σ be an interval, and let geometric data be a metric. Then the
space of geometric data is the space of positive numbers mathbbR+.
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The boundary of an interval is a set of two points. If we denote by
V = I(point) for positive orientation of the point, then

(8) I(∂Σ) = I(point ∪ pointopp) = V ⊗ V ∗

and

(9) I(Σ) ∈ V ⊗ V ∗ ⊗ Fun(R+) = Maps(R+, End(V ))

Then, the equation (7) means that this map is a representation of the
semigroup R+ in End(V ).

To see this, let us denote by It the evaluation of I at t :

It = evtI(Σ)

If we cut an interval of length t by a point P into two intervals with the
lengths t1 and t2, then, due to monoidal functoriality

(10) It(Σ
P ) = It1 ⊗ It2

and the main equation (7) reads

(11) It1+t2 = It1 ◦ It2

where ◦ stands for composition in End(V ). So, it is the semigroup
representation condition. The universal solution to this condition is

(12) It = exp(−tH)

where H ∈ End(V ) is called Hamiltonian operator in physics. This
formulation of quantum mechanics (1-dimensional QFT) was discovered
by Dirac around 1930. That is why I often call Segal formulation of
QFT the Dirac-Segal formulation.

2.2. Quantum mechanics on oriented graphs

It is quite interesting that although Dirac-Segal formulation was
originally about manifolds, the one-dimensional quantum field theory
may be generalized to include graphs. This generalization can be made
by applying the cutting axiom (7) to oriented graphs equipped with
lenghts of their edges.

Motivation for the definition. Vertices of the graph may be
decomposed into the 1-valent that we will call external and the rest that
we will call internal. Cutting out neighborhoods of internal vertices we
are cutting the graph into intervals and ”p-corollas” (by corolla we mean
a connected tree with p 1-valent vertices and p edges that link these
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vertcies to a single p-valent vertices). Depending on the orientation of
the graph p-corollas should be represented as

(13) Corp ∈ V ∗⊗(p−q) ⊗ V ⊗q ⊗ Fun(Rp+)

Taking the limit when lengths of all edges of the corolla are tending
to zero we get PROR - multilinear operation with p − q inputs and q
outputs:

(14) mq
p−q = lim

t1,...,tp→0
Corp ∈ V ∗⊗(p−q) ⊗ V ⊗q

Definition The generalization of monoidal functor associates to the
oriented graph γ the tensor-valued function on the space of lengths of
edges that we call Iγ :

(15) Iγ =< ⊗nei=1I(ti),⊗ncα=1mα >γ∈ Fun(Rne+ ),

where ne is the number of edges of the graph, nc - the number of inter-
nal vertices(corollas), <,>γ is the pairing determined by the incidence
relations of the graph.

Example 2.2.1.
For the Y-shaped graph with two inputs and one output the IY ∈

V ∗⊗2 ⊗ V , and its value on v1 ⊗ v2 is equal to:

(16) IY (v1, v2) = exp(−t3H)(m1
2(exp(−t1H)v1, exp(−t2H)v2))

Example 2.2.2. For a graph that is an interval consisting of 3 inter-
vals of lengths t1, t2, t3 the corollas are linear operators φ and operator
corresponding to such graph is

(17) I3int = exp(−t3H)φ exp(−t2H)φ exp(−t1H)

Definition of preamplitude
Suppose that H is semipositive defined. In such case it is possible to

consider so-called preamplitudes PA that are limits of Iγ when lengths
of all external edges (edges that connect external vertices to the rest of
the graph) tend to +∞. In this case operators corresponding to these
edges turn into projectors on the kernel of H that we will denote by Π.
Thus, amplitude corresponding to the Y graph equals

(18) PAY = Π(m1
2(Π,Π)) ∈ KerH ⊗KerH → KerH

and amplitude corresponding to the 3-interval graph is a linear operator
on KerH that equals to

(19) PA3int = Πφ exp(−t2H)φΠ
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Comment. Physicists are studying amplitudes. I think it is more
appropriate to introduce preamplitudes such that amplitudes are ob-
tained from them by integration over the space of geometrical data, see
below. In particular, in string theory the measures on the moduli space
are the most known examples of preamplitudes.

2.3. Topological quantum theory in Segal formulation

The notion of topological quantum field theory (TQFT) can be ob-
tained by the following ”supersymmetrization” of Dirac-Segal formula-
tion of quantum field theory.

The first ”supersymmetrization” is the replacement the vector s-
paces by complexes. We will denote differentials in these complexes by
letter Q that is traditional in mathematical physics literature.

The second ”supersymmetrization” is the replacement of the space
Geom of geometrical data by a superspace Π(T )Geom, that stands for
a tangent bundle to the space Geom with inversed parity of the fiber-
s. The space of functions on Π(T )Geom is just the supercommutative
DeRham superalgebra Ω∗(Geom). Thus, the functor of TQFT belongs
to differential form valued element of the tensor algebra of complexes:

(20) I(Σ) ∈ V (∂Σ)⊗ Ω∗(Geom(Σ))

Note, that supermanifold is not a set of points, so the above definition
cannot be stricly speaking considered as a specialization of the definition
of QFT but rather its generalization. The functoriality axiom (7) has
exactly the same form.

Closeness Axom of TQFT. However, topological QFT have an
additional axiom, the axiom of total closeness of the functor. Namely,

(21) (d+Q)I(Σ) = 0

where d is a DeRham differential acting on Ω∗(Geom).
Comment. The closeness axiom means that the differential form

I(Σ) becomes closed after restriction to the closed subspace in V (∂). If
we further specialize to degree zero forms in Ω∗(Geom) it would mean
that such functions are constant on connected components, i.e. they
do not depend on geometrical data, thus, they are topological invari-
ants. This property gave the name ”topological” to such QFT, and
replacement functions by differential forms and condition of being lo-
cally constant by condition of being just closed is standard in derived
mathematics.
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2.4. Universal TQFT in dimension 1

Similarly to QFT is dimension 1, it is easy to find the unversal
TQFT in dimension 1. Namely, this TQFT is governed by a complex V
with differential Q and additional differential G, and

I(t, dt) = exp({d+Q,−tG}) =

= exp(−t{Q,G} − dtG) = exp(−t{Q,G})(1− dtG)(22)

From the first equality above it is clear that such I satisfies the closeness
axiom.

It follows from the (22) that after restriction to function we have a
1-dimensional quantum field theory with a very special Hamiltonian

(23) H = {Q,G}

Such Hamiltonians are known as supersymmetric Hamiltonians. Such
Hamiltonians were known in differential geometry.

2.5. Examples of supersymmetric Hamiltonians

Example 2.5.1. The first example is Laplacian ∆ acting on the
complex Ω∗(X) of differential forms on Riemanian manifold X with
differential Q being the DeRham differential on X:

(24) ∆ = {d, d∗}

where

(25) G = d∗ = − ∗ d∗

is the Hodge conjugated operator.
Example 2.5.2. The second example of such Hamiltonian acting

on the same complex Ω∗(X) is the Lie derivative Liev along the vector
field v on X:

(26) Liev = {d, ιv}

where

(27) G = ιv

is the operator of contraction of differential form with the vector field v.
Example 2.5.3. The third example comes from the homological

algebra. Consider a complex V together with its decomposition into a
direct sum of contractable subcomplex Vc and residual subcomplex Vr:

(28) V = Vr ⊕ Vc
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so that we have inclusion and projection operators

(29) i : Vr → V , π : V → Vr

and also an odd homotopy operator (that inverts differential on con-
tractable subcomplex Vc)

(30) h : V → V , h◦h = h◦i = π◦h = 0, {Q, h} = ProjVc = id−i◦π,

here ProjVr stands for the projection operator on a contractable sub-
complex.

This data means that we have a topological quantum mechanics
with

(31) G = h, H = ProjVc

The I of this example has another important property that we will
use below, namely, it has a limit when t turns to +∞:

(32) lim
t→+∞

exp(−tH) = π ◦ i = ProjVr

2.6. Local observables in QFT

By Segal’s definition the main object I in QFT corresponds to mani-
folds with boundaries. Now we define the notion of observables in QFT.
Consider the following construction - take a submanifold C in Σ and
consider its small tubular neighborhood TubCε, i.e. the space of points
in Σ such that their distance to C is not greater than ε. Let ΓC,ε be the
boundary of TubCε. Consider the space ΣTubCε obtained by cutting the
tubular neighborhood TubCε out of Σ:

(33) ΣTubCε = Σ− TubCε

The boundary of ΣTubCε is a disjoint union of the boundary of Σ and
ΓC,ε. Therefore

(34) IΣTubCε ∈ V∂Σ ⊗ VΓC,ε

Definition of observables. We will call the family of vectors
vε ∈ V ∗ΓC,ε good if there is a limit

lim
ε→0

< vε, IΣTubCε >

The good family of vectors is called null if this limit equals to zero. We
define the space of observables ObsC associated to C as the coset of
good families over the space of null families. The limit mentioned above
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is defined on the space of observables, and we will call the value of this
limit the correlator of an observable associated with the submanifold C:

(35) I(OC) = lim
ε→0

< vε, IΣTubCε >

If C is point we will call such observables local observables.
Example. Consider the one-dimensional example. The only ob-

servables are local observables. The tubular neighborhood of a point
on an interval is also an interval, so local observables are just linear
operators:

ObsP = End(V )

and correlator of an observable in topological quantum mechanics equals
to

(36) I(OP )(t1, t2) = exp(−t1H − dt1G)O exp(−t2H − dt2G)

where t1 and t2 are the distances between the point P and the left and
right ends of the interval respectively. We see that in 1-dimensional
theory the observable corresponds to the 2-valent internal vertex.

Remark. Local observables as tangent vectors to space of
theories. It is important to note that local observables correspond to
tangent space to the space deformations of QFT that do not change
the vector spaces associated to boundaries. It is a general statement,
but we may illustrate it in topological quantum mechanics. Actually, if
we change Q by δQ, the I corresponding to the interval of length t is
changing according to:

(37) δI =

∫
t1+t2=t,ti≥0

exp(−t1H − dt1G)δQ exp(−t2H − dt2G)

§3. Topological quantum mechanics on trees and constructive
induction of operations after contraction of the subcomplex

Here I will explain how topological quantum mechanics (another
name of 1-dimensional TQFT) of Example 2.5.3 on a tree may be used
to give a constructive proof of the Kadeishvili-type theorems [2] about
induction of ∞-structures on residual subcomplexes ( like subcomplex
Vr in (28)).

3.1. Amplitudes and Kadeishvili theorem.

Consider preamplitudes in topological quantum mechanics on rooted
oriented trees. To define such theory we need a triple consisting of Q,G,,
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and a set of operations m1, . . . ,mk ,where Q and G will be as in Example
2.5.3 and mn ∈ V ∗⊗n ⊗ V .

In the case from example 2.5.3 the projector Π associated to leaves
may be considered as operator i of inclusion of Vr into V , and projector
Π associated to the root may be considered as a projection π from V to
Vr. Let nl be the number of leaves of the rooted tree and nc the number
of internal vertexes (corollas) . The preamplitude associated to tree γ is
a nl-operation on Vr taking value in differential forms on the lengths of
edges. It has the following form:

(38) PAγ =< ⊗nei=1I(ti),⊗ncα=1mα⊗i⊗nl⊗π >γ∈ Ω∗(Rne+ )⊗V ∗⊗nlr ⊗Vr,

where contraction of tensors are made according to the tree.
For example, for the Y tree the preamplitude is just the restriction

of the binary operation on Vr, while for the 3-interval tree ( that tree
has only m1 operation φ), the preamplitude equals

(39) PA3int = πφ exp(−tProjVc − dth)φi

Definition of a tree amplitude. Let as define a tree amplitude
Anl ∈ V ∗⊗nlr ⊗ Vr as a sum over all rooted trees with nl leaves of the
integrals of preamplitudes over spaces of lengths of edges (and we will
divide each integral over the number nγ of elements of the symmetry
group of the tree):

(40) Anl =
∑
γ

1/nγ

∫
Rne+

PA

Such integral can be easily calculated, since

(41)

∫
R+

exp(−tProjVc − dth) = −h,

and we are coming to the following formula for the amplitude:

(42) Anl =
∑
γ

(−1)ne/nγ < h⊗ne ,⊗ncα=1mα ⊗ i⊗nl ⊗ π >γ ,

One leaf example. In particular, if the only operation is m1 (that
we still denote by π) the amplitude for one leaf equals to

(43) A1 = πφi− πφhφi+ πφhφhφi− . . .

Kadeishvili Theorem.
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Suppose that operations Q + m1,m2,m3 . . . form an L∞ algebra,
then operations constructed from Q and amplitudes Q + A1, A2, A3 . . .
also form an L∞ algebra. This algebra is called the algebra obtained by
the contraction of the subcomplex.

3.2. Kadeishvili theorem in one leaf case.

Before we proceed to discussion of the proof it is instructive to look
at the particular case, namely, the case where the only nonzero operation
is m1 = φ. Then the theorem actually states that if φ is a solution to
Maurer-Cartan equation

(44) {Q,φ}+ φ2 = 0

then

(45) {Q,A1}+A2
1 = 0

Remark. We may specialize even further, and consider Q-closed φ
and take Vr to be cohomology of Q, so the input of the construction is
a bicomplex. Terms in (43) look like differentials in spectral sequence
construction. However, there is an important difference. In spectral
sequence construction differentials act on different spaces, each of these
spaces are cohomology of the previous differential, while all summands
of (43) act on the same space, namely, cohomology of Q (the first d-
ifferential of the spectral sequence). Moreover, differentials in spectral
sequence construction are defined canonically while operators in (43) de-
pend on the choice of the direct decomposition of the space V into coho-
mology and contractable complex , and also on the choice of homotopy.
So, differential A1 seem to contain more information than differentials
of spectral sequence, however, one can show that all information that is
invariant under the choice of decomposition and homotopy is contained
in spectral sequence differentials. On the other hand, construction (43)
provides an explicit answer to the question: how to construct a differen-
tial on the cohomology of Q, such that cohomology of the constructed
differential would be equal to cohomology of the total differential ( if
the sum in (43) contains finite number of terms). We will later see the
similar phenomena in discussion of Massey operations.

Now let us discuss how to prove a theorem.

3.3. Outline of the direct proof of Kadeishvili theorem

The subtle issue in the one leaf case is that φ has grading zero, so
the sum (43) may diverge. Thus, we have to consider it as a formal one,
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namely, we take

(46) φ =

∞∑
k=1

φkε
k

and consider ε as formal parameter. From Maurer-Cartan equation we
get

(47) {Q,φ1} = 0, {Q,φ2} = −φ2
1, . . .

In the first order in ε statement of the theorem is Q-closeness of πφ1i
that follows from Q-closeness of φ1. In the second order the substitution
of expression (43) into (45) gives

{Q, πφ2i− πφ1hφ1i}+ πφ1iπφ1i =

π{Q,φ2}i+ πφ1{Q, h}φ1i+ πφ1(1− {Q, h})φ1i = 0(48)

where we used (47)
One may show that similar cancelletions happen at higher orders.
The multileaf case can be treated similarly, by direct computation

and combinatorics of trees. The composition of amplitudes would pro-
duce iπ term that can be relaced by (1 − {Q, h}). The contribution
coming from 1 being combined with the action of Q on the operation mn

would lead to the Maurer-Cartan expressions, while {Q, h} terms would
be cancelled by the action of Q on homotopy. This may be considered
as a combinatoric trick. It is reasonable to look for more conceptual
explanation, that we will give in the next subsection. It is remarkable
that the more conceptual explanation has generalizations in dimensions
higher than 1.

3.4. Proof of the induction theorem based on the prop-
erties of the preamplitude

In order to explain main ideas we will first give the proof in the sim-
plest case when Vr is the space of cohomology of Q and when both terms
in Maurer-Carttan equation are equal to zero separately, i.e. when all
operations mk are Q-closed and when these operation form the infinity
algebra. Later we will comment on how this proof may be modified to
include the general case.

The proof that we are going to present here is based on two proper-
ties - closeness and factorization. Closeness means that each preampli-
tude is closed as a form on the space of lengths of edges. It follows from
d+Q closeness of the evolution operator I(t, dt) associated to intervals
and from Q-closeness of operations mi, projection π and inclusion i.



TQFT, Homological Algebra and elements of K.Saito’s Theory of Primitive Form: an attempt of mathematical text written by mathematical physicist13

Factorization means that when length of one of the edges goes to
infinity, the preamplitude factorizes into composition of preamplitudes
corresponding to trees obtained by cutting the original tree along such
an edge. This follows from

(49) lim
t→+∞

exp(−tProjVc)(1− dth) = ProjVr = i ◦ π

The idea of the proof is to compactify the space of lengths of the
tree to a ne hypercube, to take a ne − 1-form component of the pream-
plitude and to integrate it along the boundary of the hypercube. Since
the preamplitude is closed its ne − 1-form component is also closed.
Thus, the integral will be equal to zero. Contributions from the faces
corresponding to infinite lengths trees would form compositions of am-
plitudes. Contributions from zero length faces would form an amplitude
corresponding to the tree that has a composition of operations in one
of its internal vertices. When we sum over all trees contribution of such
vertices would cancel due to infinity algebra conditions on the opera-
tions. For the one leaf trees this derivation was published by Lysov
[3].

It is important to mention that the space of lengths for the one leaf
case may be considered as a moduli space RMn: for points on a real line
moduli common shifts:

(50) RMn = Rn/R

In the next section we will study the complex version of such moduli
space.

Remark 1. This idea was used by Kontsevitch[4] in his proof of
∞-morphism theorem in the work on deformation quantization. He
used the moduli space of complex structures on a disk with marked
points in the bulk of the disk and on the boundary of the disk. The
two-dimensional topological theory he constructed produced closed dif-
ferential form on the moduli space. The boundary contribution turn out
to be exactly the ∞-morphism statement.

Remark 2. If Vr equals to cohomology of Q then the amplitudes for
the multileaf case may be considered as generalizations of Massey oper-
ations in the same way in which A1 is the generalization of the spectral
sequence differentials. While Massey operations are conventionally un-
derstood as a partly defined canonical operations (when some products
in cohomology are zero) the amplitudes are always defined but depend
on the choice of decomposition of the complex and the choice of homo-
topy. The amplitudes form an L∞ structure, and changes of axillary
data just change this structure into an equivalent one.
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§4. Configuration spaces in two dimensional theories

In the previous section we observed that it is useful to consider
preamplitudes in one dimensional quantum field theories. These pream-
plitudes are closed forms on moduli spaces (that sometimes are configu-
ration spaces). Integrals of preamplitudes over moduli spaces turn out to
satisfy interesting quadratic equations. In one-dimensional case ampli-
tudes turn out to be induced operations on cohomology, while quadratic
equations become infinity structure equations.

Now we would like to play similar game for 2-dimensional conformal
field theories.

4.1. WDVV equations

Consider moduli Deligne-Mumford compactification M̄0,n+1 of the

moduli space of CP1 with n + 1 marked points .Let us take n points
with one orientation (we will call these points input points) and one
point with the opposite orientation (we will call this point an output
point). Due to general properties of TQFT explained in the previous
sections,the preamplitude in topological theory associates vector spaces
W to input points, vector space W ∗ to an output point (where W is
the space of cohomology of Q in the space of local observables).QFT
associates to CP1 with n marked points a preamplitude

(51) PAn ∈ Ω∗(M̄0,n+1)⊗Hom(W⊗n,W )

This preamplitude satisfies two main properties:
1.Symmetric under permutations of inputs
2.Closeness, i.e.

(52) dPAn = 0

where d is De Rham differential on M̄0,n+1.
3.Factorization. Consider the compactification divisor Dn1,n2

of the
moduli space M̄0,n+1 where projective space degenerates into two pro-
jective spaces with n1 + 1 on the component that does not contain an
output point and with n2 + 1 points on a component that has an output
point. Being restricted to such a divisor the preamplitude factorizes:

(53) PAn|Dn1,n2
= PAn2

◦ PAn1

Therefore we can get quadratic relations on amplitudes by inte-
grating preamplitude against boundary divisors that equal to zero in
homology of moduli space.
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The simplest case is provided by M̄0,4 where we will label input
points as 1,2 and 3. This moduli space is just CP 1. Compactification
divisor represents surfaces that are two projective spaces intersecting
by a point with two input points belonging to first CP1 and the third
input point and the output point belonging to the second CP1. Since the
moduli space is connected the difference of divisors ( that we will call
Da) equals to zero in homology of moduli space.W e call it Da because
evaluation of amplitudes on this divisor leads to associativity of two to
one amplitudes.

This relation leads to relations in other moduli spaces (known as
Keel’s relations [5]). Consider a forgetful map

(54) f : M̄0,4+k → M̄0,4

The divisors f∗(Da) are compactification divisors. They correspond to
surpaces that are two copies of CP1 intersecting at a point with input
points spread among components (such that there are at least two input
points on a component that does not contain an output point, and at
least one input point on the component that has an output point).

Consider the total amplitude TA that is a sum over all amplitudes
and, therefore, the map

(55) TA ∈ ⊕+∞
n=2S

nW →W,

as a formal vector field v on W .
In terms of the vector field v the Keel’s relations take the following

form. Let T a, a = 1, . . . , µ be linear coordinates on W . Consider second
partial derivatives fabc :

(56) fabc =
∂2va

∂T b∂T c

The Keel’s relation state that fabc form structure constants of associative
commutative algebra - the oriented associativity equation:

(57)

µ∑
a=1

fabcf
e
ad =

µ∑
a=1

facdf
e
ba

Suppose, that the space W has a non degenerate scalar product η,
such that after identification of W and W ∗ the n to one amplitudes
become symmetric in all n + 1 arguments. In this case the vector field
has a potential form, namely

(58) va =

µ∑
b=1

ηab
∂F

∂T b
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The oriented associativity equations for potential vector field are known
as WDVV or simply associativity equations.

4.2. Losev-Manin moduli spaces, simplest space and Com-
mutativity equations

In [6] Losev and Manin introduced a new moduli space for Riemann
surfaces with marked points.

Definition of Losev-Manin moduli spaces. The marked points
are colored into to colors - black and white. When a handle degenerates
or a surface is decoupled into two surfaces glued by a point the degen-
eration is described by white points (one input and one output). White
points behave exactly like marked points in Deligne-Mumford compact-
ification of the moduli space. Black points are distinguished from the
white points because they can collide with other black points. However,
black points cannot collide with white points.

In construction of the amplitudes vector spaces associated to black
points are different from that associated to white points - I will denote
these spaces by V .

The simplest example of Losev-Manin moduli space is the moduli
space Lk of projective space with two white points (one input and one
output) and k black points (for stability k should be positive) .

The space Lk may be described as a compactification of a coset
(C∗)k/C∗, where C∗ is acting diagonally by multiplication. Really, input
white point may be placed at zero, output point - at infinity, (C∗)k is the
space of positions of black points and C∗ is the action of automorphism
of the CP1 with two marked white points.

The non-compact directions in complex codimension 1 are formed
when a group of k1 points tends to zero (or, equivalently, a group of
k− k1 points tends to infinity. Such limits are compactified by two CP1

such that infinity of the first CP1 is identified with the zero of the second
CP1. First CP1 carries k1 black points while second CP1 carries k − k1

black points. We will call such divisors Dk1,k2 .
The moduli space restricted to divisor Dk1,k2 is Lk1 × Lk2 .
The preamplitudes are closed differential forms on Lk with values in

SkV ∗⊗End(W ), and similarly to the Deligne-Mumford case we should
have a factorization condition:

(59) PAk|Dk1,k2 = PAk2 ◦ PAk1

where composition is a composition in End(W ).
Like in the case of Keel’s relations there is a fundamental compact-

ification divisor that equals to zero in homology. Consider L2, it may
be parametrized by ratio of coordinates of two black points: w = z1/z2.
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Since L2 is connected the divisor

Dc = {w = 0} − {w =∞}

is zero in homology of L2. This mean that if we consider PA1 as a map
from V to End(W ) then

(60) [PA1(u1), PA1(u2)] = 0

Due to this commutativity we call divisor Dc commutative divisor.
Like in the Deligne-Mumford case there are forgetful maps

(61) f : Lk+2 → L2

Therefore, preimages of commutative divisor f∗(Dc) also equal to
zero in homology. It turns out that these equations may be written as
follows. Let us consider An as a n-th coefficient of Teylor seria of the
End(W ) valued function Atot on V . Let us denote as dv the De Rham
operator on V . Then equations, that we would call Commutativity
equations, look as follows:

(62) dvAtot ◦ dvAtot = 0,

where composition implies simultaneous composition as elements of End(W )
and external multiplication as 1-forms on V . Quite remarkably, this e-
quation first appeared in the Theory of Primitive Form of K.Saito.

4.3. Construction of solutions to Commutativity equation
from bicomplexes with strong Hodge property

In this subsection I will explicitly construct preamplitudes on s-
paces Lk in terms of linear algebra data. I will give explicite construc-
tion in simplest case and briefly explain how it may be generalized to
more general case. Moreover, I will concentrate on linear data with
strong Hodge condition, for generalization to Hodge condition in terms
of Khoroshkin,Markarian and Shadrin, see their paper [7].

Definition of strong Hodge property. Consider Z2 graded bi-
complex V with differentials Q and G−. Let W be cohomology of Q,
G-homotopy, and let iW and πW be inclusion of cohomology and pro-
jection to cohomology respectively. By strong Hodge property I mean
the following conditions:

(63) G−iW = πWG− = 0 {G,G−} = 0

In order to construct solution to Commutativity equation we need
a commutative family.
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Definition of simplified commutative family A simplified com-
mutative family is an even formal map U from V to commutative subal-
gebra of End(W ). We demand that this map has the simplified Maurer-
Cartan property:

(64) [Q,U ] = 0; [[G−, U ], U ] = 0

Construction of preamplitude for Lk spaces.
We construct a differential form on Lk as follows. Let us parametrize

points on Ck by their coordinates

za = exp(ta + iφa)

and denote
taa−1 = ta − ta−1, φaa−1 = φa − φa−1

Then the preamplitude PAk has the following form:

PAk = πWU exp(−tkk−1{G,Q} − dtkk−1G+ idφkk−1G−)U . . .

. . . U exp(−t21{G,Q} − dt21G+ idφ21G−)UiW(65)

Now consider dvPAk. It follows from the properties described above
that dvPAk is closed differential form on the space Lk.Actually, we need
to check that this form has no jumps when taa−1 reaches zero, and that
it can be continued to compactification. The second property follows
from the fact that G− annihilates cohomology W . The first property is
more tricky, it follows from commutativity of the algebra and from

(66) {dV U, [G−, U ]} = 0

that can be derived from the simplified Maurer-Cartan conditions (to-
gether with the commutativity of the target algebra). Factorization
property of PAk is obvious, therefore by integrating over spaces Lk and
summing over k we obtain that

(67) A = dV (

+∞∑
k=0

πW (U(−GG−U)k)iW )

squares to zero, i.e. A solves commutativity equation. In the proof
presented above it is clear that G− is an operator of contraction with
vector field of the circle action, and K.Saito differential (see last section):

(68) QS = Q+ zG−

is an equivariant differential with respect to the circle action.
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Purely homological proof
It is also instructive to give another proof of the formula (67), that

belongs purely to standard homological algebra. Consider the bicom-
plex V ⊗ Ω∗(V ), where the first differential equals to Q and the second
differential φ is given by

(69) φ = dV U + [G−, U ]

The φ squares to zero due to (66).
Now we induce the action of φ on cohomology of Q, i.e. on W

according to (43). We get A1 that contains differential forms on V of
different degrees. Since G− annihilates W the degree zero form is absent.
The relation A2

1 = 0 starts with equations on one forms, that we will
denote a simply A. From explicite form of φ we deduce that A actually
has the form as in (67), that completes the proof. Despite the simplicity
of this proof, it hides the two-dimensional origin of the formulas.

Both proofs may be generalized to the nonsimplified Maurer-Cartan
case, i.e. that is

(70) [Q,U ] + [[G−, U ], U ] = 0

4.4. Tree level BCOV theory as a solution to oriented
associativity equations

In the previous section we constructed solution to Commutativity
equation in terms of linear algebra. Recall, that moduli space M̄0,k may
be obtained from spaces Lk−2 by blowing up diagonal in the configura-
tion space of black points. Therefore, one may conjecture that construc-
tion similar to construction of solution to commutativity equation may
be obtained by replacing line with points by a trivalent trees.

Another argument that supports this idea is the concept of tropical-
ization of Riemann surfaces, that replaces general surfaces by trivalent
graphs. One may think that cohomology of the moduli space of tropical
surfaces are equal to cohomology of M̄0,k.

Based on this heuristic arguments we will construct the solution to
associativity equations in terms of algebraic data. Such construction
was known as BCOV theory, however, it was only in the work of Losev
and Shadrin [8] when it was proven that this construction actually gives
solution to associativity equations. Proof in that paper was combinatoric
and quite involved. Here we will outline the simple proof based on the
construction of solution to commutativity equation.

I will explain here oriented version, however, all arguments may be
generalized to nonoriented one.
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Construction of the solution to oriented associativity equa-
tion.

Suppose we are given the following data:
1. A supercommutative associative differential Z2-graded algebra B with
multiplication m and differential Q.
2. A second order odd differential operator G− that squares to zero,
anticommutes with Q and annihilates Q-cohomology
3. A homotopy G that contracts an algebra to its cohomology W and
that anticommutes with G−.

Let for a rooted oriented tree γ with nl leaves we construct an op-
eration Aγ :

(71) Aγ : W⊗nl →W,

just like in the theory of induced operations, with the only change -
edges correspond not just to homotopy but to a product GG− like in
construction of solution to commutativity equations.

Losev-Shadrin theorem:

(72) A =
∑
γ

1/nγAγ

is a formal vector field on V that satisfies oriented associativity equation
(57).

Outline of the new proof that uses commutativity equation:
1. Pick up a leaf of graph and connect it to the root. We get a line with
various trees attached to it at points, that are acting on the line as linear
operators of End(B) (roots of trees are inserted at one of the entrances
of multiplication operator). Sum over all trees and consider it as an
element X of End(W ).
2.Check that these operators (after summing up trees) satisfy Maurer-
Cartan equation.
3. Therefore, the element X satisfies commutativity equation and also is
symmetric under interchange of two W - one that corresponds to distin-
guished leaf and a typical leaf of an original tree. Thus, it is a solution
to oriented associativity equation.

Remark. The expression (72) was defined as an amplitude in the
BCOV theory [9]. However, authors did not pay attention to the fact
that it actually solves associativity equations.
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§5. Good sections and commutativity equation in K.Saito the-
ory of Primitive form

ConsiderW - the quasihomogenious polynomial of n variablesX1, . . . , XN .
Consider the ideal I generated by partial derivatives ∂W

∂Xi
and the Milnor

ring:

(73) R = C[X1, . . . , XN ]/I

Assume that the Milnor ring is finite dimensional and its dimension as
a vector space over complex number is µ. Consider a basis in this ring
and pick up polynomials Φa that represent classes of I. Then we can
form a family

(74) Wt = W +

µ∑
k=1

tkΦk

This family is called a versal deformation of the singularity. In what
follows we will consider it only over a formal disk in t variables, i.e. over
the SpecC[[t1, . . . , tµ]].

For example, for N = 1, W = Xn (we omit the subscript 1 in
the one-dimensional case), the µ = n − 1. If we take the lowest order
representatives of the elements of the Milnor ring we will get

(75) Wt = Xn +

n−1∑
k=1

tkX
k−1

Consider the DeRham complex Ω of polynomial differential forms
on CN with differential d. Define

(76) Ωt = Ω⊗ C[[t1, . . . , tµ]]

We consider Ωt as a complex with the same differential d - that is just
DeRham differential in X direction.

All above was kind of standard and well-known. However, based on
the study of periods of the hypersurafces

Wt = 0

and later on the study of exponential integrals of the form∫
exp(W/z)ω
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K.Saito [10] extended the complex to

(77) Ωt,z = Ωt ⊗ C[[z]]

and introduced the differential

(78) dSt,z = zd+ dWt

Let Ht,z denote the cohomology of dSt,z in Ωt,z.

Note, that multiplication by Φk commutes with dSt,0, therefore, it
acts on cohomology Ht,0 by a linear operator that we will denote by Ck:

(79) Ci : Ht,0 → Ht,0

This operator will be very important in what follows.
The cohomology Ht,z form a vector bundle over SpecC[[t1, . . . , tµ]],

but this bundle does not have a natural flat connection.
However, if we localize at z = 0, i.e. consider

(80) Ω̂t,z = Ωt ⊗ C << z >>

and corresponding cohomology Ĥt,z, there is a canonical flat connection
called by K.Saito Gauss-Manin connection. This connection is given by
its covariantly flat sections

(81) SGM = [exp(−1/z

µ∑
k=1

tkΦk)ω]dSt,z

where ω is t-independent differential form, and [, ]ds stand for a class
in corresponding cohomology. The name Gauss-Manin means that in
the interpretation of connection on periods of the hypersurface this is
actually a Gauss-Manin connection.

One flat connection over the contractible base contains no interesting
information. However, K.Saito invented another connection that I will
call K.Saito’s connection. Its definition is a bit involved and goes in
several steps.

Step 1. Consider projection π - evaluation at z = 0:

(82) π : Ht,z → Ht,0

Let us take S - a section that inverts projection:

(83) S : Ht,0 → Ht,z; π ◦ S = id

Step 2. Let h ∈ Ht,z, let ω be a dSt,0 closed representative of this
class, [ω] = h. We will define the connection along the tangent vector



TQFT, Homological Algebra and elements of K.Saito’s Theory of Primitive Form: an attempt of mathematical text written by mathematical physicist23

εk by the result of a parallel transport along ε TSε , that acts on h as
follows:

(84) TSε (h) = [z−1(−
µ∑
k=1

εkΦk + S ◦ π(

µ∑
k=1

εkΦk))]dSt+ε,z

The following comments are needed. First, the term in the brackets
actually is dSt+ε,z closed ( as can be easily seen by comparison with the
GM connection).

Second, both terms in the bracket are closed with respect to dSt,0,

and their classes in dSt,0 cohomology are equal, thus, the class of dSt+ε,z
cohomology of bracket is vanishes at z = 0, so the results of such trans-
port actually belongs to Ht+ε,z, and not just to Ĥt,z (note, that the

parallel transport in GM connection belongs to Ĥt+ε,z ).
Third, if we localize K.Saito connection at z = 0 (i.e. consider it as

connection on Ĥt,z) we can compare it with the GM connection and we
will get the following remarkable relation

(85) ∇S = ∇GM + z−1

µ∑
k=1

dtkCk

Forth, for a general section the K.Saito connection is not integrable.
However, if the section is parallel along the K.Saito connection the
K.Saito connection is integrable. Thus, K.Saito defined a good section,
such that if we find it at zero it could be transported to the full formal
disk SpecC[t1, . . . , tµ.

Moreover, given a good section one can trivialize GM connection
and in such trivialization K.Saito connection reads

(86) (∇S)GM frame = d+ z−1A

From the flatness of K.Saito connection it follow that:

(87) A2 = 0

(88) dA = 0

Note, that system (87) and (87) correspond exactly to Commutativi-
ty equations! That is why the Commutativity equations were actually
discovered by K.Saito.
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It looks like a miracle. In [11] this was explained as follows.
There is a analogue of complex Hodge theory where the role of com-

plex structure is played by function Wt. The differential Qt depends
on Wt while differential G− does not. Hodge property identifies coho-
mology of Q and G− through harmonic forms that are simultaneously
annihilated by Q and G−. K.Saito connection is such a connection in
cohomology of Qt that corresponding class in G− cohomology is not
changing. That is why it is integrable. The good section is a class of
holomorphic part of germ of harmonic form at singularity, and Hodge
connection restricted to classes of Qt + zG− coincides with K.Saito’s
connection.

The Hodge theory allows to construct the solution to Commutativity
equation, that is why K.Saito theory of good section does the same.
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