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Homogeneous algebraic varieties and transitivity degree

Ivan Arzhantsev
HSE University, Faculty of Computer Science

arjantsev@hse.ru

Abstract

Let X be an algebraic variety such that the group Aut(X) acts on X transitively. We define the
transitivity degree of X as a maximal number m such that the action of Aut(X) on X is m-transitive.
If the action of Aut(X) is m-transitive for all m, the transitivity degree is infinite. We compute the
transitivity degree for all quasi-affine toric varieties and for many homogeneous spaces of algebraic
groups. Also we discuss a conjecture and open questions related to this invariant.

The talk is based on joint work [2] with Kirill Shakhmatov and Yulia Zaitseva. Our aim is to
develop earlier results on multiple transitivity of Lie groups and algebraic groups [4, 5, 6] and on
infinite transitivity of the special automorphism group [1, 2].

This research was supported by the Ministry of Science and Higher Education of the Russian
Federation, agreement 075-15-2019-1620 date 08/11/2019 and 075-15-2022-289 date 06/04/2022.

Keywords— Algebraic variety, automorphism group, algebraic group, homogeneous space, quasi-affine vari-
ety, transitivity degree, infinite transitivity, toric variety, unirationality

References

[1] Ivan Arzhantsev. Infinite transitivity and special automorphisms. Ark. Mat. 56 (2018), no. 1, 1-14

[2] Ivan Arzhantsev, Hubert Flenner, Shulim Kaliman, Frank Kutzschebauch, and Mikhail Zaidenberg. Flexible
varieties and automorphism groups. Duke Math. J. 162 (2013), no. 4, 767-823

[3] Ivan Arzhantsev, Kirill Shakhmatov, and Yulia Zaitseva. Homogeneous algebraic varieties and transitivity
degree. https://arxiv.org/abs/2204.08056, 14 pages

[4] Friedrich Knop. Mehrfach transitive Operationen algebraischer Gruppen. Arch. Math. 41 (1983), no. 5, 438-
446

[5] Linus Kramer. Two-transitive Lie groups. J. Reine Angew. Math. 563 (2003), 83-113

[6] Jacques Tits. Sur certaines classes d’espaces homogénes de groupes de Lie. Acad. Roy. Belg. Cl. Sci. Mèm.
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Existence results for B-root subgroups
on affine spherical varieties

Roman Avdeev
HSE University

suselr@yandex.ru

Abstract

In the study of automorphism groups of toric varieties, a key role is played by one-parameter
additive groups normalized by the acting torus. Such subgroups are called root subgroups and each
of them is uniquely determined by its weight, called a Demazure root of the corresponding toric
variety. Moreover, the set of all Demazure roots admits an explicit combinatorial description in
terms of the fan defining the toric variety. For an affine toric T -variety X, an important property
states that every T -stable prime divisor in X can be connected with the open T -orbit via the action
of an appropriate root subgroup.

In the setting of arbitrary connected reductive groups acting on algebraic varieties, a natural
generalization of toric varieties is given by spherical varieties. A spherical variety is an algebraic
variety X equipped with an action of a connected reductive group G in such a way that a Borel
subgroup B of G has an open orbit in X. It was proposed in [1] that a proper generalization of root
subgroups for spherical varieties is given by one-parameter additive groups normalized by B, which
are called B-root subgroups. At present, a complete description of all B-root subgroups on affine
spherical varieties remains an open problem.

In this talk, we shall discuss results of [2, 3] where some sufficient conditions for the existence of
B-root subgroups on a given affine spherical G-variety X are found. Here a key role is played by the
so-called local structure theorem. As an application, it turns out that every G-stable prime divisor
in X can be connected with the open G-orbit via the action of an appropriate B-root subgroup, which
generalizes the above-mentioned result in the toric case.

This research is supported by the Russian Science Foundation; grant no. 22-41-02019.
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On commuting locally nilpotent derivations and isotropy subgroups

Nikhilesh Dasgupta
HSE University, Moscow
its.nikhilesh@gmail.com

Abstract

Let k be an algebraically closed field of characteristic zero. In this talk, we shall discuss properties
of commuting locally nilpotent derivations on the polynomial rings k[X,Y ] and k[X,Y, Z] respectively.
We will describe an algorithm to construct an arbitrary irreducible locally nilpotent derivation on
k[X,Y ] in finitely many steps starting from the partial derivatives ∂

∂X
and ∂

∂Y
, using commuting

locally nilpotent derivations. We shall also give necessary and sufficient conditions on a locally
nilpotent derivation (not necessary irreducible) of k[X,Y, Z] to possess a non-equivalent commuting
locally nilpotent derivation and describe all locally nilpotent derivations which commute with it.

The isotropy subgroup of a locally nilpotent derivation of an affine k-domain B is defined to be
the subgroup of algebraic automorphisms of B which keep the derivation invariant under the natural
action by conjugation. Exponents of locally nilpotent derivations which commute with a fixed locally
nilpotent derivation are always in its isotropy subgroup. We shall describe the structure of the
isotropy subgroups of some important classes of locally nilpotent derivations on k[X,Y, Z].

This talk is based on an ongoing joint work with S. Gayfullin.



Toric degeneration of semi-infinite Grassmannians

Evgeny Feigin
HSE & Skoltech

evgfeig@gmail.com

Abstract

Toric degenerations of the classical Grassmannians are well studied. The subject attracted at-
tention of many experts due to numerous applications in combinatorial and geometric representation
theory. Semi-infinite Grassmannians are obtained by replacing the base field by the ring of series
in one variable. We will describe the basic properties of the semi-infinite Grassmannians and ex-
plain how to construct their toric degenerations. Toric varieties in question are constructed using
combinatorics of certain posets.

This a joint work with Igor Makhlin and Alexander Popkovich.

Keywords— Semi-infinite Grassmannians, toric degenerations



Orbits of automorphism groups of trinomial hypersurfaces

Sergey Gaifullin
MSU and HSE

sgayf@yandex.ru

Abstract

Let K be an algebraically closed field of characteristic zero. We consider affine hypersurfaces given
in Kn0+n1+n2 by equations of the form

T l0101 . . . T
l0n0
0n0

+ T l1111 . . . T
l1n1
1n1

+ T l2121 . . . T
l2n2
2n2

= 0.

Such hypersurfaces are called trinomial hypersurfaces. We are interested in orbits of the natural
action of group of regular automorphisms Aut(X), where X is a trinomial hypersurface. In [2] there
are criterium for trinomial hypersurfaces to be rigid and a sufficient condition to be flexible. In [1]
the group Aut(X) on a rigid trinomial hypersurface are described. So, in rigid case we know the
description of Aut(X)-orbits.

In nonrigid case it is more convenient to consider the neutral component Aut(X)0. In [3] we
prove that each nonrigid trinomial hypersurface admits finite number of Aut(X)0-orbits. For some
subclasses of trinomial hypersurfaces we obtain a complete description of Aut(X)0-orbits.

In the talk we will discuss description of Aut(X)0-orbits when it is known, conjectures and diffi-
culties in cases when the answer is still open.

Keywords— Automorphism, orbits, affine variety, trinomial hypersurface
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Rota—Baxter operators on the polynomial algebra

Vsevolod Gubarev
Sobolev Institute of Mathematics

wsewolod89@gmail.com

Abstract

A linear operator R defined on an algebra A over a field F is called a Rota–Baxter operator of
weight λ, where λ ∈ F , if the identity

R(f)R(g) = R(R(f)g + fR(g) + λfg) (1)

holds for all f, g ∈ A. When λ = 0, such operators generalize of integration by parts formula for
the integral operator. When λ 6= 0, Rota–Baxter operators extend decompositions of an algebra into
a direct vector space sum of two subalgebras. Rota–Baxter operators have been studied since 1950s
from algebraic, combinatorial, topological, physical and many other points of view, see [2].

The intensive study of Rota—Baxter operators on the polynomial algebras was started from the
work [5] of S.H. Zheng, L. Guo, and M. Rosenkranz (2015). They described ompletely all injective
monomial Rota–Baxter operators of weight zero on F [x]; an operator on F [x] is called monomial if
it sends each monomial to a monomial with some coefficient.

Consider two operators on F [x]: an operator lr of multiplication on a fixed polynomial r ∈ F [x]
and the formal integration Ja at a point a ∈ F . For the general case, S.H. Zheng, L. Guo, and
M. Rosenkranz made a significant progress toward the following

Conjecture. Every injective Rota–Baxter operator of weight 0 on R[x] equals Ja ◦ lr for some
nonzero polynomial r ∈ R[x] and a ∈ R.

In [1] the conjecture of S.H. Zheng, L. Guo, and M. Rosenkranz [5] was proved over any field of
characteristic zero.

All monomial Rota—Baxter operators of arbitrary weight on F [x] were classified in [4] (2016).
In [3], a systematic study of monomial Rota—Baxter operators on F [x, y] was initiated.
Given an algebra A, an operator T on A is called a homomorphic averaging operator, if T (a)T (b) =

T (T (a)b) = T (aT (b)) = T (ab) holds for all a, b ∈ A. One can show [3] that except trivial cases we
have exactly two families of monomial homomorphic averaging operators on F [x, y]:

(1) Ar(x
nym) = xrmym, r ∈ N,

(2) Br(x
nym) = ym+rn, r ∈ N.

The idea is to find monomial Rota—Baxter operators R of nonzero weight on F [x, y] in the form
R(xnym) = αn,mT (xnym), where αn,m ∈ F and T is a monomial homomorphic averaging operator.
We find all such Rota—Baxter operators when T = Ar, T = B0, and T = B1.

Keywords— Rota—Baxter operator, polynomial algebra
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Coadjoint orbits of low dimension

Mikhail Ignatev
Samara National Research University, Jacobs University Bremen

mihail.ignatev@gmail.com

Abstract

Let G be a simple algebraic group over an algebraically closed field F of characteristic zero or
large enough, and N be a maximal nilpotent subgroup of G. The orbit method plays the crucial role
in representation theory of N . Let n be the Lie algebra of N , and n be the dual space. The group N
acts on n∗ be the adjoint action; the dual action of N on the space n∗ is called coadjoint.

In general, a complete description of coadjoint orbits is a wild problem. In my talk, I will present a
classification of orbits of dimension ≤ 6 for a classical group G. It turns out that such a classification
can be given in terms of so-called rook placements in the root system of G.

A long-standing I.M. Isaacs’s conjecture [2] claims that, given d ≥ 0, the number of irreducible
complex characters of the group N(q) of Fq-points of N of the degree qd is a polynomial in q − 1
with nonnegative integer coefficients. As a corollary of our main result, we obtain a proof of this
conjecture for all classical groups for d ≤ 3.

The talk is based on my joint work with A.V. Petukhov. The work is supported by the Russian
Science Foundation under grant 22–11–00081.

Keywords— codjoint orbit, nilpotent Lie group, Isaacs’s conjecture
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Mitosis in Schubert calculus

Valentina Kiritchenko
HSE University
vkiritch@hse.ru

Abstract

Mitosis operations in type A were invented by Allen Knutson and Ezra Miller about twenty years
ago [M]. These operations can be thought of as combinatorial counterparts of divided difference (or
Demazure) operators in the cohomology rings of complete flag varieties. In the last decade, several
geometric versions of mitosis operations were defined using convex geometric approach to Schubert
calculus. Recently, Naoki Fujita constructed mitosis operations on faces of Gelfand–Zetlin polytopes
in types A and C using representation theory [F].

In my talk, I survey various geometric incarnations of mitosis operations and their applications
to Schubert calculus. I also define simple geometric operations on faces of polytopes using ideas of
[K]. For Gelfand–Zetlin polytopes, these operations are closely related to Knutson–Miller mitosis in
type A and Fujita mitosis in type C.

Keywords— Schubert calculus, mitosis, divided difference operators
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Noncommutative Novikov algebras

P.S. Kolesnikov
Sobolev Institiute of Mathematics

pavelsk77@gmail.com

Abstract

The variety of Novikov algebras appeared in the paper [1] devoted to the study of Poisson brackets
of hydrodynamic type, though it emerged earlier in [2] as a tool for constructing Hamiltonian operators
in formal variational calculus. The axioms of Novikov algebras appear in [1] as necessary and sufficient
conditions for the local algebra of a formal Poisson bracket to meet the Jacobi identity.

A series of examples of Novikov algebras may be constructed as follows [2]. For an associative and
commutative algebra V with a derivation d, let u ◦ v = ud(v), for u, v ∈ V . Then (V, ◦) is a Novikov
algebra. This construction is known to be generic [3], i.e., every Novikov algebra embeds into an
appropriate commutative algebra with a derivation. The proof of this statement in [3] is based on
the Gröbner–Shirshov bases theory for Novikov algebras, the latter essentially uses the fundamental
result of [4], where it was shown that the free Novikov algebra Nov(X) generated by a set X embeds
into the algebra of differential polynomials in X. However, modulo this fact from [4], the embedding
of an arbitrary Novikov algebra into a commutative differential algebra may be proved in a shorter
way (see [5]). Therefore, the result of [4] (which is mostly combinatorial) plays a key role in the
theory of Novikov algebras.

Our purpose is to find a straightforward way to prove the embedding of a Novikov-type algebra
with two operations satisfying the identities found by J.-L. Loday [7],

x � (y ≺ z) = (x � y) ≺ z,
(x ≺ y) � z − x � (y � z) = x ≺ (y � z)− (x ≺ y) ≺ z,

(1)

into an appropriate associative differential algebra by means of the (differential) Gröbner–Shirshov
bases theory. On the one hand, Gröbner and Gröbner–Shirshov bases are the tools that are especially
designed for solving such embedding problems. On the other hand, the explicit calculation of the
Gröbner basis (relative to a chosen order of monomials) for the ideal generated by defining identities
highly depends on the particular multiplication table.

We present a way how to overcome this problem and prove that every algebra that meets the
identities (1) embeds into an associative differential algebra.

This is a joint work with B. Sartayev.

Keywords— Derivation, Novikov algebra, Gröbner basis
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On unitary Nil K1−groups

Viacheslav Kopeiko
Kalmyk State University

kopeiko52@mail.ru

Abstract

In the talk we will introduce several Nil-subgroups of the unitary Bass’ nilpotent K1-group of a
unitary ring and present some properties of these Nil-groups. These properties are unitary analogues
well-known properties of the Bass’ nilpotent K1-group of a ring in algebraic K−theory.



Plane Curves: a Linear Algebra Approach

Viktor Lopatkin
National Research University Higher School of Economics,

Faculty of Computer Science,
wickktor@gmail.com

Abstract

By a generic plane curve γ : S1 → R2 we mean an immersion of an (oriented) circle S1 into a
plane R2 having only transversal double points of self-intersection. Any generic plane curve γ may
be encoded by its Gauss diagram G(γ). The Gauss diagram is the immersing circle S1 with the
preimages of each double point connected with a chord.

A Gauss diagram G is called realizable if there is a generic plane curve γ : S1 → R2 such that
G = G(γ).

The problem concerning which Gauss diagrams can be realized by a plane curve is an old one and
has been solved in several ways.

We aim to show that a rialization of Gauss diagram can be also obtained by using the famous
Jordan curve theorem. In fact we introduce a notation of Jordan curve in terms of Guass diagram
and prove that Gauss diagram is ralizable if and only if any such Jordan curve diviedes it into two
regions.

We also show that the criteria of realizability of Gauss diagrams can be reformulated in a more
useful and practical way; to check whether a Gauss diagram is realizable it is enough to solve a system
of linear equations over the field GF(2).

Given a Guass diagram G, we then get its adjacency matrix M = (mi,j)1≤i,j≤n ∈ Matn×n(GF(2)),
and hence M2 = (〈mi,mj〉)1≤i,j≤n, where

〈mi,mj〉 := mi,1mj,1 + · · ·+mi,nmj,n, (2)

and mk := (mk,1, . . . ,mk,n) is the kth row of the M .
Theorem. A Guass diagram G is realizable if and only if the following system of equations{

(αi + αj)mi,j = 〈mi,mj〉+mi,j , 1 ≤ i, j ≤ n (3)

has a solution over the field GF(2).
We then deduce a needed and sufficient conditions for a graph which is correspondents to a

meander i.e., in fact we give a bijection between meanders an a special sort of Gauss diagrams
which aroused form the Thurston generators of braid groups. It allows us to give an algorithm to
construct such diagrams and to code meanders by matrices which are exactly incident matrices of the
corresponding adjacency graphs of the diagrams. Finally we show that these matrices are idempotent
over the field GF(2).

Keywords— plane curves, Gauss diagrams, meanders.
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The Golod property of face rings
from the topological viewpoint

Ivan Limonchenko
HSE University

ilimonchenko@hse.ru

Abstract

In 1950s J.-P.Serre proved that Poincaré series of a commutative local Noetherian ring is bounded
by a certain rational function depending on the Betti numbers of the Koszul complex and the minimal
number of generators in the maximal ideal. In 1962 E.S.Golod showed that Serre’s inequality turns
into equality if and only if multiplication and all Massey products in Koszul homology of a local ring
are trivial. J.Backelin proved in 1982 that Poincaré series of monomial rings are rational; among
monomial rings there is the well-known class of Stanley-Reisner rings (or, face rings) of simplicial
complexes.

In this talk we will discuss how toric topology enables us to establish combinatorial, algebraic
and topological conditions equivalent to Golodness and minimal non-Golodness of a face ring of a
simplicial complex over any field. We will describe these two classes of Stanley-Reisner rings in terms
of their Poincaré series, Koszul homology, and the Lie algebra structure on the loop homology of the
corresponding moment-angle-complexes. We will see how the theory of spaces with compact torus
actions allows us to obtain topological interpretations of algebraic properties of Poincaré series and
Koszul homology of Stanley-Reisner rings as well as to get new results.

The talk is based in part on a joint work with Taras Panov.



Equivariant cohomology of moment-angle complexes with respect to
coordinate subtori

Taras Panov
Moscow State University

tpanov@mech.math.msu.su

Abstract

Given a simplicial complex K on [m] = {1, . . . ,m}, the moment-angle complex ZK is the polyhe-
dral product (D2, S1)K, a complex with a compact torus action composed of products of discs and
circles indexed by the faces of K.

There is an equivariant deformation retraction U(K) → ZK, where U(K) is the universal toric
space (the complement of a coordinate subspace arrangement)

U(K) = (C,C×)K = Cm \
⋃

{j1,...,jk}/∈K

{zj1 = · · · = zjk = 0}

in the Batyrev–Cox quotient construction of toric varieties.
It is well known that the Tm-equivariant cohomology ring of ZK (or U(K)) is isomorphic to Z[K],

the face ring of K (the Stanley–Reisner ring).
We consider equivariant cohomology of ZK with respect to the action of coordinate subtori

TI ⊂ Tm, where I = {i1, . . . , ik} ⊂ [m]. Using a polyhedral product descomposition of the Borel
construction ETI ×TI ZK we construct the following commutative integral dga model for H∗TI (ZK):(

Λ[ui : i /∈ I]⊗ Z[K], d
)
, dui = vi, dvi = 0,

where Λ[ui : i /∈ I] is the exterior algebra on degree-one generators ui. This leads to ring isomorphisms

H∗TI (ZK) ∼= H
(
Λ[ui : i /∈ I]⊗ Z[K], d

) ∼= TorZ[v1,...,vm]

(
Z[vi : i ∈ I],Z[K]

)
.

Next, we study the equivariant formality of ZK, that is, whether H∗TI (ZK) is a free module over
the polynomial ring H∗TI (pt) = H∗(BTI) = Z[vi : i ∈ I]. We prove

Theorem. Let K be a simplicial complex on a finite set V . The following conditions are equivalent:

(a) For any I ∈ K, the equivariant cohomology H∗TI (ZK) is a free module over H∗(BTI).

(b) There is a partition V = V1 t · · · t Vp t U such that

K = ∂∆(V1) ∗ · · · ∗ ∂∆(Vp) ∗∆(U),

where ∆(U) denotes a full simplex on U , and ∂∆(Vi) denotes the boundary of a simplex on Vi.

(c) The rational face ring Q[K] is a complete intersection ring (the quotient of the polynomial ring
by an ideal generated by a regular sequence).

This is a joint work with Indira Zeinikesheva.

Keywords— moment-angle complex, equivariant cohomology, equivariant formality, graded modules over
polynomial rings
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Automorphism groups of affine varieties without non-algebraic elements

Alexander Perepechko
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Abstract

Given an affine algebraic variety X over an algebraically closed field K, we study when the neutral
component Aut◦(X) of the automorphism group consists of algebraic elements. We conjectured in
[1] that the following conditions on Aut◦(X) are equivalent:

� all unipotent elements commute,

� it consists of algebraic elements,

� it is nested, i.e., a direct limit of algebraic subgroups,

� it is a semidirect product of an algebraic torus and an abelian unipotent group.

In [1] we proved the conjecture for the group generated by connected algebraic subgroups instead
of Aut◦(X). In this talk we present our further development: we proved that Aut◦(X) consists of
algebraic elements if and only if it is nested.

To prove it, we obtained the following fact: if a connected ind-group G contains a closed connected
ind-subgroup H ⊂ G with a geometrically smooth point, and for any g ∈ G some power of g belongs
to H, then G = H.

The talk is based on the joint work with Andriy Regeta [2]. The research of the speaker was
carried out at the HSE University at the expense of the Russian Science Foundation (project no.
21-71-00062)
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Geometry of minuscule A1-subgroups in E7
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Abstract

This talk is joint with Andrei Semenov.
Let G be a simple algebraic group over a field F of characteristic 0. In [4] the authors introduced

a notion of a minuscule A1-subgroup of G: this means that the Dynkin index of the respective
embedding is 1 or, what is the same, the adjoint representations of G decomposes into a sum of the
adjoint representation of A1 and several copies of the trivial and the vector representations. All such
subgroups are conjugate over an algebraic closure and form F -points of a symmetric space. In the
case of groups of type E7 the respective symmetric space is EV I = E7/D6 + A1, and the set of
F -points becomes non-empty after passing to an odd degree extension, see [5].

Moreover, as Boris Rosendfeld noted in [6], one can introduce a structure of an “elliptic plane”
on this set: both points and lines are minuscule A1-subgroups, and a point is incident to a line of
the respective subgroups commute. It is not, however, an elliptic plane in the usual sense: two lines
in a general position meet at 3 points [7]. More generally, in the case when F = R Atsuyama in [1]
described the intersection set of any two lines; in each case it forms a smaller symmetric space.

We generalize Atsuyama’s result to the case of arbitrary field of characteristic 0, provided that
the group is anisotropic. We describe all possible mutual positions of two minuscule A1-subgroups in
the table below. The first column contains the type of the subgroup generated by two A1-subgroup,
the second column contains the type of its centralizer in E7, and the third column is the symmetric
space from Atsuyama’s list.

A1 D6 SO12/SO4 · SO8

A1 +A1 D4 +A1 SO8/SO4 · SO4

∐
pt

A2 A5 SU6/S(U4 · U2)
B2 B3 +A1 SO7/SO4 · SO3

∐
pt

G2 C3 Sp6/Sp4 · Sp2

A3 A3 +A1 SO6/SO4 · SO2

∐
pt

B3 B2 +A1 SO5/SO4

∐
pt

D4 A1 +A1 +A1 pt
∐
pt
∐
pt

The proof essentially relies on the classification of “symplectic ternary algebras” (also known as
J-ternary algebras and Freudenthal triple systems) by Faulkner and Ferrar [2]. We hope that our
result may help in settling the E7-case of the famous Serre II Conjecture (see [3]).
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Abstract

A del Pezzo variety X is a Fano variety whose anticanonical class has the form

−KX = (n− 1)A,

where A is an ample line bundle and n is the dimension of X. This is a higher-dimensional analog
the notion of del Pezzo surfaces. I am going to discuss biregular and birational classifications of del
Pezzo varieties admitting terminal singularities.

The talk is based on a joint work with Alexander Kuznetsov.
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Abstract

Let X be an affine algebraic variety over algebraically closed field k of characteristic zero. Denote
by Ga = (k,+) the additive group of the field k. We say that X is rigid if X admits no non-trivial
actions of Ga.

In some cases the abssence of additive actions allows to describe the group of automorphisms of
rigid varieties. It was proven in [1] that if X is a rigid variety then there is a subtorus T in Aut(X)
that contains any other subtorus of Aut(X).

A variety is called toral if it is isomorphic to a closed subvariety of an algebraic torus. It is
equivalent to saying that the algebra of regular functions is generated by invertible functions. Toral
varieties are natural examples of rigid varieties. In the talk, we will discuss some properties of toral
varieties obtained jointly with Anton Trushin. In particular, we will show the if T is the maximal
subtorus in Aut(X) of toral variety X then X is isomorphic to Y × T where Y is an affine variety.

Keywords— Rigid varieties, toral varieties
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Abstract

I will survey some results on finite subgroups of birational automorphism groups of surfaces over
finite fields. One of them is that the group of birational automorphisms of a plane is Jordan, that
is, every finite subgroup contains a normal abelian subgroup whose index is bounded by a universal
constant (depending only on the field). Moreover, the relevant constants can be explicitly computed.
This is in contrast to the birational automorphism groups of the plane over algebraically closed fields
of positive characteristic, and of higher-dimensional projective spaces over finite fields, which lack the
Jordan property.



On the A1-fundamental group of Chevalley groups.

Sergei Sinchuk
Chebyshev laboratory, Saint-Petersburg State University

sinchukss@gmail.com

Abstract

This talk is based on the preprint [2] which is a joint work with A. Lavrenov and E. Voronetsky.
The main purpose of [2] is to compute the fundamental group of Chevalley–Demazure group schemes
Gsc(Φ,−), where Φ is an irreducible simply-laced root system.

Let A be a regular Noetherian ring containing an arbitrary field k. Recall that for an A-scheme

X the A1-homotopy group πA1

n (X) is defined as the sheaf R 7→ HomHA1
∗

(Sn ∧ Spec(R)+, X), where

HA1

∗ is the pointed unstable A1-homotopy category over A. From the results of [1] it follows that for

an arbitrary isotropic reductive group scheme G defined over A the sheaf πA1

n (G) coincides with the
sheaf of Karoubi–Villamayour groups R 7→ KVn+1(G,R). The latter groups are, in turn, defined as

n-th homotopy groups of the singular simplicial group SingA1

(G) = G(R[∆•]).
Let G be an isotropic group of rank at least 2. In her recent work [5] A. Stavrova has shown that

the group of connected components πA1

0 (G)(A) coincides with the group of values of the unstable
K1-functor modeled on G. Much less is known about A1-fundamental groups. For example, in [7] it
was shown that the group KV2(G, k) coincides with the Schur multiplier H2(G(k),Z) provided k is
an infinite field. In turn the

Theorem(see [2], Theorem 1.1) Let A be as above and assume that either Φ = A` for ` ≥ 4
or Φ = D` for ` ≥ 7. In the latter case assume additionally that char(k) 6= 2. Then the unstable
K2-functor modeled on the Chevalley group Gsc(Φ, R) is A1-invariant, i. e. K2(Φ, A) = K2(Φ, A[t])

and, moreover, one has πA1

1 (G)(A) = KV2(Gsc(Φ,−), A) = K2(Φ, A).
In the above statement we denote by K2(Φ, A) the kernel of the natural map from the Steinberg

group St(Φ, A) to the simply-connected Chevalley group Gsc(Φ, A). The case Φ = A` of our Theorem
is actually a refinement of the main result of [6], whereas the case Φ = D` is based on the Horrocks
theorem for KO2, see [3].

The invariance of K2(Φ, A) mentioned above is the analogue of the famous Lindel–Popescu theorem
for the functor K2 (recall that the Lindel–Popescu theorem is a partial answer to the geometric case
of Bass–Quillen conjecture). From the A1-invariance for K2(Φ,−) one can extract presentations
a la Steinberg for Chevalley groups over multivariate polynomial rings in terms of generators and
relations. Such presentations are a far-reaching generalization of the classical results for polynomial
rings in one variable over a field (e. g. [4]). Yet another corollary of our results are the following co:
H2(SO2`(R[t]),Z) = H2(SO2`(R),Z), H2(O2`(R[t]),Z) = H2(O2`(R),Z).

Keywords— Steinberg groups, Chevalley groups, K2-functor, A1-homotopy theory
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The ring of symmetric polynomials has several nice bases; probably the most remarkable of them is
formed by Schur polynomials. They appear everywhere: in combinatorics as generating functions for
Young tableaux, in representation theory as the characters of GL(n), in geometry as the cohomology
classes of Schubert varieties in Grassmannians. The multiplication of Schur polynomials is given by
a quite involved combinatorial rule, called the Littlewood–Richardson rule.

In [1] Danilov and Koshevoy introduced a new combinatorial tool: the arrays. An array is a
rectangular board divided into squares (like a chessboard). These squares can contain balls that can
be moved according to certain rules. Using arrays provides uniform and simple proofs of various
statements about Schur polynomials: the RSK correspondence, the Bender–Knuth involution, the
Littlewood–Richardson rule, the crystal operators on Kashiwara crystals etc.

Schur polynomials have numerous generalizations. One of them, the dual stable Grothendieck
polynomials, is obtained by replacing the Young tableaux in the combinatorial definition by the so-
called reverse plane partitions: tableaux filled by numbers weakly increasing along both rows and
columns. They were introduced by T. Lam and P. Pylyavskyy in [2] as a combinatorial gadget for
dealing with the K-theory of Grassmannian. I will speak about a generalization of Danilov–Koshevoy
arrays that allows us to work with these polynomials: for this, we will put on the board not just
single balls, but also balls connected into “strings of beads”.

The talk is based on our joint work with Anastasia Sukacheva.

Keywords— symmetric functions, Schur polynomials, Grothendieck polynomials, Grassmannians, K-theory
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Abstract

We consider the relationship between super Yangians and quantum loop superalgebras. We con-
sider structures of tensor categories on analogs of the category O for representations of the su-
per Yangian Y~(A(m,n)) of the special linear Lie superalgebra and the quantum loop superalgebra
Uq(LA(m,n)), explore the relationship between them. The construction of an isomorphism in the
category of Hopf superalgebras between completions of the super Yangian and the quantum loop
superalgebra endowed with the so-called ”Drinfeld” comultiplications is described. A theorem on
the equivalence of the tensor categories of modules of the super Yangian and the quantum loop su-
peralgebra is formulated, which strengthens the previous result. We also describe the relationship
between Quasi-Triangular structures and Abelian difference equations, which are determined by the
Abelian parts of universal R-matrices. We also define an affine super Yangian Yε1,ε2(s̃l(m,n)) for
an arbitrary system of simple roots Π of affine Kac-Moody superalgebra s̃l(m,n). We introduce two
type presentation of super Yangian, namely minimalistic and current presentation. We prove that
this two presentations are equivalent. It is proved that the super Yangians of a quantum affine su-
peralgebra s̃l(m,n) defined by different simple root systems Π and Π1 are isomorphic as associative
superalgebras. Some of these results were obtained in articles [1], [2].

Keywords— Super Yangian, Quantum Loop Superalgebra, Hopf superalgebra structure, affine super Yangian,
category of representations
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Abstract

For a connected linear algebraic group G defined over the field of real numbers R, the group
of real points G(R) is a real Lie group, not necessarily connected; look at GLn(R) or SOk,l(R)
for example. A natural problem is to determine the component group of G(R). In our joint work
with Mikhail Borovoi [1] we came to this problem as a by-product of our consideration of Galois
cohomology of linear algebraic groups over R. Namely it turns out that the component group π0G(R)

is isomorphic to the kernel of the Galois cohomology map H1(R, π1G)→ H1(R, G̃), where π1G is the

fundamental group of G and G̃ is the universal cover of G. Based on this observation, we obtained in
[1] a certain combinatorial description of π0G(R) as the stabilizer of a distinguished point in a finite
combinatorially defined set acted on by a finite Abeian group.

In this talk I present a much more explicit description for π0G(R) [2]. Let Ts be a maximal R-split
subtorus in G and T a maximal torus in G defined over R and containing Ts. Let X∨ and X∨s denote
the cocharacter lattices of T and Ts, respectively, Q∨ the coroot lattice of the quotient of G modulo
its radical, and Q∨s = Q∨ ∩ X∨s . Let X̃∨s be the image of X∨ under projection LieT → LieT0. Then

π0G(R) ' X∨s /(2X̃s + Q∨s ).

To prove this formula, we relate Galois cohomology of π1G to the maximal split torus Ts instead of
maximal anisotropic tori used in [1] for computation of Galois cohomology of G.

Keywords— Real algebraic group, component group, cocharacter lattice, Galois cohomology
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Anton Trushin
Moscow State University

Trushin.ant.nic@yandex.ru

Abstract

Let A = K[x1, . . . , xn] be the polynomial ring in variables x1, . . . , xn over a field K, and let AutA
be the group of automorphisms of A as an algebra over K. An automorphism τ ∈ AutA is called
elementary if it has form

τ : (x1, . . . , xi−1, xi, xi+1, . . . , xn) 7→ (x1, . . . , xi−1, αxi + f, xi+1, . . . , xn), (4)

where 0 6= α ∈ K, f ∈ K[x1, . . . , xi−1, xi+1, . . . , xn]. We call an automorphism ϕ tame if it is the
composition of elementary automorphisms. An automorphism is said to be wild if it is not tame. In
2004 Shestakov and Umirbaev proved that the Nagata automorphism σ of the polynomial algebra in
three variables is wild [1], where

σ(x) = x+ (x2 − yz)z;
σ(y) = y + 2(x2 − yz)x+ (x2 − yz)2z;

σ(z) = z.

(5)

We fix a Z-grading on this algebra and consider graded-wild automorphisms, i.e. such automorphisms
that can not be decomposed onto elementary automorphisms respecting the grading. The paper [2]
gives a classification of gradings that admit graded-wild automorphisms.
Our goal is a system of group-generating automorphisms for such algebras. In the paper [2] graded
polynomial algebras in three variables admitting wild automorphisms are reduced to polynomial al-
gebras in two variables. With this technique, we will show that Nagata-type automorphisms generate
the entire automorphism group. This report was supported by RSF grant � 22-41-02019.

Keywords— graded algebras, wild automorphisms
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Bounded generation of Chevalley groups
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This talk is based on a series of recent joint works with Boris KUNYAVSKII and Eugene PLOTKIN, see, in
particular [1], where one can find a general survey, many further references, precise statements, and proofs.

We state several results on bounded elementary generation and bounded commutator width for Chevalley
groups over Dedekind rings of arithmetic type in positive characteristic.

In particular, Chevalley groups of rank ≥ 2 over polynomial rings Fq[t] and Chevalley groups of rank ≥ 1 over
Laurent polynomial Fq[t, t−1] rings, where Fq is a finite field of q elements, are boundedly elementarily generated.

We sketch several proofs, which start with reduction to smaller ranks, either via Tavgen rank reduction, or
via surjective stability for K1, with explicit bounds, which oftentimes are better than the known ones even in the
number case.

This leaves us with the analysis of rank 1 or rank 2 cases, which depend on rather deep arithmetical results.
For the group SL2 we refer to an old paper by Clifford Queen, the case of SL(3,Fq[t]) was recently solved by
Bogdan Nica [2].

The core of the present work is a similar calculation for Sp(4,Fq[t]). Our proof follows the same general lines
as the proofs by David Carter, Gordon Keller and Oleg Tavgen in the number case, but now we have to redo all
calculations using the fancier form of the reciprocity laws, and also the classical calculations by Bass, Milnor, and
Serre regarding properties of [the long and short root type] symplectic Mennicke symbols.

As a result, we establish rather plausible explicit bounds for the elementary width that depend on the root
system alone, and not on q, such as

wE
(

Sp(4,Fq[t])
)
≤ 79, wE

(
Sp(6,Fq[t])

)
≤ 72, wE

(
SO(7,Fq[t])

)
≤ 65.

Using these bounds we can also produce sharp bounds on the commutator width of these groups.
We also mention several immediate applications:

• affine Kac—Moody groups,

• model theoretic and logical applications, such as first order rigidity;

and imminent generalisations:

• strong bounded generation,

• bounded verbal width, etc.
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Abstract

Let G(Φ,K) be the simply connected Chevalley group over a commutative ring K associated with
a simple root system Φ of rank ` ≥ 3. The Steinberg group St(Φ,K) is the abstract group with
the generators xα(p) corresponding to the root elements tα(p) ∈ G(Φ,K) and the only “obvious”
relations between the root elements, namely,

xα(p)xα(q) = xα(p+ q),

[xα(p), xβ(q)] =
∏

iα+jβ∈Φ
i,j>0

xiα+jβ(Nαβijp
iqj),

where in the second identity α 6= −β and Nαβij ∈ Z are the structure constants.
For any ideal a ≤ K there is an appropriate relative Steinberg group St(Φ,K, a) [2, 3] defined as

the crossed module over St(Φ,K) with the generators xα(a) for a ∈ a and some relations involving
their conjugates by elements of the absolute Steinberg group. It is classically known that St(Φ,K, a)
is generated as an abstract group by the “elementary conjugates” zα(a, p) = x−α(p)xα(a). Recently
we found all the relations between these generators if Φ is simply laced [4], i.e. of type ADE.

In this talk we recall the simply laced case and give a complete list of the relations between zα(a, p)
if Φ is doubly laced, i.e. of one of the remaining cases B`, C`, or F4. This result actually generalizes
to the relative Steinberg groups parametrized by E. Abe’s admissible pairs (a, b) [1] instead of single
ideals a.

Keywords— Chevalley groups, Steinberg groups
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Abstract

An additive action on an algebraic variety is an effective regular action with an open orbit of a
commutative unipotent linear algebraic group. In other words, we study open equivariant embed-
dings of vector groups into algebraic varieties. Hassett and Tschinkel established a correspondence
between commutative local Artinian unital algebras and additive actions on projective spaces [5].
This approach may be applied to the study of additive actions on projective hypersurfaces [2, 1, 4].
It turns out that the case of non-degenerate hypersurfaces corresponds to Gorenstein local algebras
and several results on additive actions may be proved using this technique. In particular, we prove
that there is at most one additive action on a non-degenerate projective hypersurface. The talk is
based on the joint work with Ivan Arzhantsev [3]. Supported by the RSF grant 19-11-00172.
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Abstract

Berest’s conjecture about orbits in the first Weyl algebra states that the number of orbits of
solutions of a polynomial equation F(X,Y)=0 in the first Weil algebra, where F is an irreducible
polynomial over a field of characteristic zero, is finite, if the arithmetic genus of the corresponding
plane curve is > 1, and is infinite otherwise. This conjecture is closely related to the theory of
commuting ordinary differential operators, as well as with the well-known Dixmier conjecture on
endomorphisms of the first Weyl algebra. Several recent works were devoted to testing this conjecture
in some special cases. Although in the various studied examples this conjecture turns out to be false,
it is still interesting for further study, especially over the field Q. In my talk I will review the already
known as well as recently obtained together with Junho Guo results around this conjecture.

Keywords— Weyl algebra, Dixmier conjecture, commuting ordinary differential operators
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Abstract

An affine algebraic monoid is an irreducible affine variety M together with an assosiative multipli-
cation map · : M ×M −→M , where map · is a morphism of algebraic varieties, and unit e ∈M(K)
such that em = me = m for all m ∈M . A monoid M is called commutative, if, in addition, ab = ba
for all a, b ∈ M . This talk is based on the paper [2], which stands as a generalization of the pa-
per [1], where affine algebraic commutative monoids were studied over algebraically closed field L of
characteristic zero, and classification of such monoids on A2

L and A3
L was reached. Also it is worth

mentioning that same results on algebraic monoids over affine surfaces in the case of algebraically
closed field were obtained in [3] and [4]. Our goal is to obtain such classification over an arbitrary
field K of characteristic zero, not necessary algebraically closed.

It will be explained that all the monoids studied here are the twisted forms of monoids defined in
[1], i.e. they are obtained by Galois descent. Our main results claims that in dimensions 2 and 3 all
nontrivial twisted forms can be described in terms of formulae that define multiplication and norm
in separable algebras over the base field.

In order to achieve these results we use the idea of the connection between a monoid M and its
group of invertible elements G(M). Furthermore, we develop the connection between Aut(M) and
Aut(G(M)) and use the Galois descent technique applied to Aut(M).

Keywords— Algebraic monoids, Affine spaces, Galois descent, Non-closed fields, Schemes
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