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Uq(sl2) at even roots of unity

Consider Lustig quantum group of divided powers Uq(sl2) at even roots

of unity q = e
πi
l , where l is odd. It is generated by E, E(l), F , F (l),

K±1 and

[
K; 0
l

]
. with the relations

EF − FE =
K −K−1

q − q−1
;

EK = q2KE, FK = q−2KF, KK−1 = K−1K = 1;

K2l = 1, El = F l = 0.

Tensor product decomposition

• Tensor power of fundamental representation decomposes as

T (1)⊗N =

N⊕
k=0

M
(l)
T (k)(N)T (k), T (1), T (k) ∈ Rep(Uq(sl2))

• This decomposition allows one to de�ne character measure

p
(N,l)
k (t) =

M
(l)
T (k)(N)chT (k)(et)

(chT (1)(et))N
.

Recursion-induced lattice path model

Grothendieck ring of Rep(Uq(sl2)) induces recursion on multiplicity

functionsM
(l)
T (k)(N). One can de�ne lattice path model, where weighted

numbers of paths descending from (0, 0) to (k,N) satisfy the same re-

cursion.

l − 1 2l − 1

. . .

3l − 1

(0, 0)

l − 2 l 2l − 2 2l 3l − 2 3l0
k

N

Counting paths

Counting numbers of paths in the recursion-induced lattice path model

calls for de�nition of �lter restrictions, regions, boundaries and congru-

ence of regions. Latter allows one to obtain formula for multiplicities.

M
(l)
T (k1l+k0)

(N) = F
(N)
k1l+k0

+

[
N−k1l+1

2l + 1
2 ]∑

j=1

F
(N)
−k1l+k0−2jl+

[
N−k1l+1

2l ]∑
j=1

F
(N)
k1l+k0+2jl,

F
(N)
M =

(
N

N−M
2

)
−
(

N
N−M

2 − 1

)
.

The limit shape

This formula for multiplicities allows one to obtain the limit shape for

the character measure.

The highest weight is given by k = k1l+k0, the critical point of the large
deviation rate function is denoted by ξ0. In the regime, when N =Ml,
k1 →∞, M →∞, l, k1M = ξ0 +

α√
lM

.

p
(N,l)
k (t) = vk0

√
1

2πN
(chT (1)(et))e−

α2(chT (1)(et))2

8 ,

where

vk0 =
(et(k0+1) − e−t(k0+1))(et(l−1−k0) − e−t(l−1−k0))

etl − e−tl
, k0 = 0, . . . , l−2,

vl−1 = 1.

Vector (v0, . . . , vl−1) is an eigenvector of the Markov matrix, correspond-

ing to the random walk, induced by the tensor product decomposition,

with eigenvalue λ = 1.

Results and future directions

• We obtained formulas for multiplicities in tensor power decompo-

sition of a fundamental representation for Lustig quantum group

of divided powers Uq(sl2) and small quantum group uq(sl2) at

even roots of unity. We obtained the limit distributions for

Plancherel measure and Character measure for the mentioned

quantum groups in di�erent asymptotic regimes.

• Statistics of tensor powers of other representations remain unex-

plored. Similar problem for Uq(sln) is still open for both �nite and

in�nite ranks. One would also need to give these �ndings interpre-

tation with respect to the quantum Schur-Weyl duality, meaning,

dimensions of what representations of Hecke algebra nHN (q) are
being studied.
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