Tensor powers of vector representation of $U_q(sl_2)$ at even roots of unity Anna Lachowska, Olga Postnova, Nicolai Reshetikhin, Dmitry Solovyev^{*}

Saint-Petersburg State University, 1 Ulyanovskaya, Petrodvorets, St. Petersburg 198504, Russia *E-mail: dimsol42@gmail.com

$|U_q(sl_2)|$ at even roots of unity

Consider Lustig quantum group of divided powers $U_q(sl_2)$ at even roots of unity $q = e^{\frac{\pi i}{l}}$, where l is odd. It is generated by $E, E^{(l)}, F, F^{(l)},$ $K^{\pm 1}$ and $\begin{bmatrix} K; 0\\ l \end{bmatrix}$. with the relations

$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}};$$

Tensor product decomposition

• Tensor power of fundamental representation decomposes as

$$T(1)^{\otimes N} = \bigoplus_{k=0}^{N} M_{T(k)}^{(l)}(N)T(k), \quad T(1), \ T(k) \in \mathbf{Rep}(U_q(sl_2))$$

• This decomposition allows one to define character measure

$$EK = q^2 KE, \quad FK = q^{-2} KF, \quad KK^{-1} = K^{-1} K = 1;$$

 $K^{2l} = 1, \quad E^l = F^l = 0.$

$p_k^{(N,l)}(t) = \frac{M_{T(k)}^{(l)}(N) \operatorname{ch} T(k)(e^t)}{(\operatorname{ch} T(1)(e^t))^N}.$

Recursion-induced lattice path model

Grothendieck ring of $\operatorname{Rep}(U_q(sl_2))$ induces recursion on multiplicity functions $M_{T(k)}^{(l)}(N)$. One can define lattice path model, where weighted numbers of paths descending from (0,0) to (k,N) satisfy the same recursion.

(0, 0)

Counting paths

Counting numbers of paths in the recursion-induced lattice path model calls for definition of filter restrictions, regions, boundaries and congruence of regions. Latter allows one to obtain formula for multiplicities.

This formula for multiplicities allows one to obtain the limit shape for the character measure

Results and future directions

• We obtained formulas for multiplicities in tensor power decompo-

the character measure.

The highest weight is given by $k = k_1 l + k_0$, the critical point of the large deviation rate function is denoted by ξ_0 . In the regime, when N = Ml, $k_1 \to \infty, \ M \to \infty, \ l, \ \frac{k_1}{M} = \xi_0 + \frac{\alpha}{\sqrt{lM}}.$

$$p_k^{(N,l)}(t) = v_{k_0} \sqrt{\frac{1}{2\pi N}} (\operatorname{ch} T(1)(e^t)) e^{-\frac{\alpha^2 (\operatorname{ch} T(1)(e^t))^2}{8}}$$

where

$$v_{k_0} = \frac{(e^{t(k_0+1)} - e^{-t(k_0+1)})(e^{t(l-1-k_0)} - e^{-t(l-1-k_0)})}{e^{tl} - e^{-tl}}, \quad k_0 = 0, \dots, l-2$$

 $v_{l-1} = 1.$

Vector (v_0, \ldots, v_{l-1}) is an eigenvector of the Markov matrix, corresponding to the random walk, induced by the tensor product decomposition, with eigenvalue $\lambda = 1$.

References

[Kratt] Christian Krattenthaler, Lattice path combinatorics chapter in *Handbook of* Enumerative combinatorics edited by Miklos Bona, Chapman and Hall, 2015.

sition of a fundamental representation for Lustig quantum group of divided powers $U_q(sl_2)$ and small quantum group $u_q(sl_2)$ at even roots of unity. We obtained the limit distributions for Plancherel measure and Character measure for the mentioned quantum groups in different asymptotic regimes.

• Statistics of tensor powers of other representations remain unexplored. Similar problem for $U_q(sl_n)$ is still open for both finite and infinite ranks. One would also need to give these findings interpretation with respect to the quantum Schur-Weyl duality, meaning, dimensions of what representations of Hecke algebra $nH_N(q)$ are being studied.

- [CP] Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, Cambridge University Press, 1995.
- [V] A. Vershik (Ed.), Asymptotic Combinatorics with Applications to Mathematical Physics, A European Mathematical Summer School held at the Euler Institute, St. Petersburg, Russia, July9-20, 2001, Lecture Notes in Mathematics, 1815.
- [LPRS] Anna Lachowska, Olga Postnova, Nicolai Reshetikhin and Dmitry Solovyev, Tensor powers of vector representation of $U_q(sl_2)$ at even roots of unity, TBA
- [PS] Olga Postnova and Dmitry Solovyev, Counting filter restricted paths in \mathbb{Z}^2 lattice, arXiv:2107.09774
- [S] Dmitry Solovyev, Congruence for lattice path models with filter restrictions and long steps, arXiv:2111.13857
- [PR] Olga Postnova and Nicolai Reshetikhin, On multiplicities of ireducibles in large tensor product of representations of simple Lie algebras, arXiv:1812.11236