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using Thouless formula
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Appendix 1

Let V be an ergodic potential We say that
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For x type
can apply directly

For Maryland type factor out

the unbounded part and analyze

separately

Appendix 3 Originally this method was

developed for the almost Mathieu operator
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In this case P is a polynomial in cosa

h roots 2h roots resonance

In monotone case no such resonances

Leads to uniform localization
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