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Abstract

In his Ph.D. thesis, Greenberg proved that if ρ(X̃) is the spectral radius of the universal cover X̃ of a
finite graph X, then for each ε > 0, a positive proportion (depending only on X̃ and ε) of the eigenvalues of
X have absolute value at least ρ(X̃) − ε. In this paper, we show that the same result holds true if we remove
absolute from the previous result. We also prove an analogue result for the smallest eigenvalues of X.
© 2006 Elsevier Inc. All rights reserved.
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1. Preliminaries

Our graph theoretic notation is standard, see [18]. The graphs discussed in this paper are
simple and connected unless stated otherwise. For a graph X, we denote by λ1(X) ! λ2(X) !
· · · ! λn(X) the eigenvalues of the adjacency matrix of X.

Serre has proved the following theorem (see [4,5,11,17]) using Chebyschev polynomials. The
simplest self-contained proof of this theorem is given in [4] and it is fairly involved. See [2,3] for
a simple proof of Serre’s theorem and other related results.
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Theorem 1 (Serre). For each ε > 0, there exists a positive constant c = c(ε, k) such that for any
k-regular graph X, the number of eigenvalues λ of X with λ ! (2 − ε)

√
k − 1 is at least c|X|.

Serre’s theorem is a generalization of the asymptotic Alon and Boppana theorem, see [1,6,16]
for more details.

Theorem 2. If (Xn)n is an infinite sequence of k-regular graphs, then lim inf λ2(Xn) ! 2
√

k − 1.

Theorem 1 is also related to a result obtained by Greenberg in [9] whose proof has not appeared
to our knowledge in any journal as of yet. Greenberg’s result is cited in many places, [14,15] for
example. For a graph X, we denote by ρ(X) its spectral radius and by C(X) the family of all
finite graphs that are covered by X. In Section 2, we describe these notions in more detail.

Theorem 3 (Greenberg). Let X be a connected, infinite graph with finite maximum degree. Given
ε > 0, there exists c = c(X, ε) > 0, such that for every Y ∈ C(X),

|{λ ∈ spectrum of Y : |λ| ! ρ(X) − ε}| ! c|V (Y )|. (1)

In Section 3, we present a proof of Theorem 3. Note that Theorem 3 implies a weaker form of
Serre’s theorem. This is because if X is the infinite k-regular tree, then ρ(X) = 2

√
k − 1. Thus,

if Y is a finite k-regular graph we obtain that for each ε > 0, a positive proportion (that depends
only on ε and k) of the eigenvalues of Y have absolute value at least (2 − ε)

√
k − 1. This is

slightly weaker than Theorem 1.
In Section 4, we present a slight improvement of Greenberg’s theorem. We prove that given

X and ε > 0, there is a positive c = c(X, ε) such that |{λ ∈ spectrum of Y : λ ! ρ(X) − ε}| !
c|V (Y )| for each finite graph Y covered by X. We also prove a similar result regarding the smallest
eigenvalues of general (not necessarily regular) graphs.

2. Graphs and coverings

If X is a connected graph (not necessarily finite) such that the maximum degree of X is
finite, let l2(X) denote the space of functions f : V (X) → R with

∑
x∈V (X) |f (x)|2 < +∞. Let

δ : l2(X) → l2(X) be the adjacency operator of X, i.e., (δf )(x) = ∑
yx∈E(X) f (y). If x ∈ V (X),

let ts(x) denote the number of closed walks of length s that start at x. Denote by ρ(X) the spectral
radius of X:

ρ(X) = sup{|λ| : λ ∈ spectrum of δ}.

Lemma 4. Let X be a connected graph. Then lim sups→+∞
s
√

ts(x) is independent on the vertex
x ∈ V (X).

Proof. Since X is connected, it is enough to prove that

lim sup
s→+∞

s
√

ts(x) = lim sup
s→+∞

s
√

ts(y)

for any adjacent vertices x and y. The previous assertion will follow easily from the fact that

ts+2(y) ! ts(x) ! ts−2(y)

for each s ! 2. "
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It is well known (cf. [13, Chapter 4]) that

ρ(X) = lim sup
s→+∞

s
√

ts(x). (2)

Given two graphs X1 and X2, a homomorphism from X1 to X2 is a function f : V (X1) →
V (X2) such that xy ∈ E(X1) implies f (x)f (y) ∈ E(X2) for each x, y ∈ V (X1). If f is bijective
and f and f −1 are both homomorphisms, then f is called an isomorphism from X1 to X2. An
isomorphism from a graph X to itself is called an automorphism of X. The automorphisms of X

form a group, called the automorphism group of X that we denote by Aut(X). If x is a vertex of
X, then the automorphism orbit of x is Orb(x) = {y ∈ V (X) : ∃f ∈ Aut(X) such that f (x) =
y}. If x is a vertex in the graph X, then we denote by NX(x) the set of neighbours of x in
X.

If X1 and X2 are two graphs, a homomorphism π : V (X1) → V (X2) is called a cover map if
it is surjective and for each x ∈ V (X1), π induces an isomorphism from NX1(x) to NX2(π(x)).
It follows from (2) that if π : V (X1) → V (X2) is a cover map, then ρ(X1) # ρ(X2). If π is
a finite cover, then ρ(X1) = ρ(X2). Denote by C(X) the family of finite graphs covered by
X.

Using a result of Leighton [12], the next theorem is also proved by Greenberg [9] (see also
[14]).

Theorem 5. Let X be a connected graph with finite maximum degree. Then for each X1 and X2
in C(X), ρ(X1) = ρ(X2). This common value is denoted by χ(X).

For a finite graph Z, its universal cover Z̃ is the graph with the property that for any graph Y

with a cover map π : V (Y ) → V (Z), there exists a cover map π ′ : V (Z̃) → V (Y ). The universal
cover of any finite graph is an infinite tree. For example, the universal cover of a k-regular graph
is the infinite k-regular tree. However, not every infinite tree X covers a finite graph. It is easy to
see that a necessary condition for covering a finite graph is that Aut(X) has finitely many orbits.
See [14] for more details on the universal covers of finite graphs.

3. A proof of Greenberg’s theorem

In his Ph.D. thesis [9], Greenberg proved Theorem 3. This result is also cited in [14,15,
Theorem 2.3], but it seems that no proof of it exists in the literature other than in Greenberg’s
thesis. The proof given below is a simplified version of the original proof.

Proof of Theorem 3. Let ε > 0 and Y ∈ C(X). Because X has finitely many automorphism
orbits, it follows that there exists r0 = r(X, ε) such that

t2r (y) !
(
ρ(X) − ε

2

)2r

for each vertex y ∈ V (Y ) and r ! r0. Let c be the proportion of eigenvalues of Y that have
absolute value ! ρ(X) − ε. Using the previous inequality, we obtain

(
ρ(X) − ε

2

)2r
# min

y∈V (Y )
t2r (y) # tr(A2r (Y ))

|V (Y )| # cχ2r (X) + (1 − c) (ρ(X) − ε)2r

for each r ! r0. This implies
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c !
(
ρ(X) − ε

2

)2r − (ρ(X) − ε)2r

χ2r (X) −
(
ρ(X) − ε

2

)2r

for each r ! r0. Letting r = r0, this proves the theorem. "

4. An slight improvement of Greenberg’s theorem

In this section, we present a slight improvement of Theorem 3. Our proof is similar to the
previous one and we obtain the required estimate for the largest eigenvalues by shifting the
spectra of Y up by a constant.

Theorem 6. Let X be a connected, infinite graph with finite maximum degree. Given ε > 0, there
exists c = c(X, ε) > 0, such that for every Y ∈ C(X),

|{λ ∈ spectrum of Y : λ ! ρ(X) − ε}| ! c|V (Y )|.

Proof. Let Y ∈ C(X) with eigenvalues λ1 ! λ2 ! · · · ! λn and cover map f : V (X) → V (Y ).
Given ε > 0, let m = |{i : λi ! ρ(X) − ε}|.

From (2) we know that ρ(X) = lim sups→+∞
2s
√

t2s(x), for any vertex x ∈ V (X). Since
ρ(X) > 0, it follows that there exists an integer N = N(X, ε) > 1 such that ρ(X) > ε

N . Obvi-
ously, if x and y are in the same orbit of Aut(X), then tr (x) = tr (y) for any non-negative integer
r . Hence, the fact that X has finitely many automorphism orbits implies that there exists a
non-negative integer s0 = s(X, ε) such that t2s(x) ! (ρ(X) − ε

N )2s , for each s ! s0 and any
x ∈ V (X).

It is easy to see that the number of closed walks of length r in X starting at vertex x ∈ V (X) is
less than or equal to the number of closed walks of length r in Y starting at vertex f (x) ∈ V (Y ).
Hence, !r (Y ) ! ∑

y∈V (Y )
y=f (x)

tr (x) for each non-negative integer r . From the previous two relations

it follows that !2s(Y ) ! n(ρ(X) − ε
N )2s for s ! s0.

Let K be a positive constant that does not depend on Y and is larger than λ1(Y ). We can take
K = "(X), the maximum degree of X, for example. From the previous inequality we deduce

tr(K · I + A(Y ))2l =
2l∑

i=0

(
2l

i

)
K2l−i!i (Y ) !

l∑

j=s0

(
2l

2j

)
K2l−2j!2j (Y )

! n

l∑

j=s0

(
2l

2j

)
K2l−2j

(
ρ(X) − ε

N

)2j

! n

l∑

j=0

(
2l

2j

)
K2l−2j

(
ρ(X) − ε

N

)2j

− n

s0−1∑

j=0

(
2l

2j

)
K2l−2j

(
ρ(X) − ε

N

)2j

! n

2

(
K + ρ(X) − ε

N

)2l
− ns0

(
2l

2s0

)
K2l
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for each l ! 2s0. Since K · I and A(Y ) commute, it follows that

tr(K · I + A)2l =
n∑

i=1

(K + λi (Y ))2l

# (n − m)(K + ρ(X) − ε)2l + m(2K)2l .

Hence, we obtain

m

n
!

(K+ρ(X)− ε
N )2l

2 − (K + ρ(X) − ε)2l − s0
( 2l

2s0

)
K2l

(2K)2l − (K + ρ(X) − ε)2l
(3)

for each l ! 2s0.
Now

lim
l→∞

2l

√(
K + ρ(X) − ε

N

)2l

2
= K + ρ(X) − ε

N

and

lim
l→∞

2l

√

2 (K + ρ(X) − ε)2l + s0

(
2l

2s0

)
K2l = max(K + ρ(X) − ε, K)

< K + ρ(X) − ε

N

imply that there exists l0 = l(X, ε) such that
(
K + ρ(X) − ε

N

)2l

2
− (K + ρ(X) − ε)2l − s0

(
2l

2s0

)
K2l > (K + ρ(X) − ε)2l

for each l ! l0. Hence,

m

n
>

(K + ρ(X) − ε)2l0

(2K)2l0 − (K + ρ(X) − ε)2l0
= c(X, ε) > 0. "

By using a similar argument as before, we can also prove a similar result to Theorem 6 for
the smallest eigenvalues. Note that we need an extra hypothesis since there are classes of graphs
that have eigenvalues bounded from below by a constant. For examples, line graphs have all their
eigenvalues at least −2.

Theorem 7. Let X be a connected, infinite graph with finite maximum degree. Given ε > 0,

there exist a non-negative integer g = g(X, ε) and c = c(X, ε) > 0, such that for every graph
Y ∈ C(X) with no odd cycles of length less than g,

|{µ ∈ spectrum of Y : µ # −(ρ(X) − ε)}| ! c|V (Y )|.

Proof. Let Y ∈ C(X) with eigenvalues λ1 ! λ2 ! · · · ! λn and cover map f : V (X) → V (Y ).
Given ε > 0, let m = |{i : λi # −(ρ(X) − ε)}|.

The proof continues now similarly to the proof of Theorem 6. There exist N = N(X, ε) > 1,
s0 = s(X, ε) and l0 = l(X, ε) with l0 ! 2s0 such that

(
K + ρ(X) − ε

N

)2l0

2
− (K + ρ(X) − ε)2l0 − s0

(
2l0

2s0

)
K2l0 > (K + ρ(X) − ε)2l0 .
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Consider

tr(K · I − A(Y ))2l =
n∑

i=1

(K − λi )
2l # (n − m)(K + ρ(X) − ε)2l + m(2K)2l .

Let g(X, ε) = 2l0. If Y has no odd cycles of length less than 2l0, then

tr(K · I − A(Y ))2l0 =
l0∑

j=0

(
2l0

2j

)
K2l0−2j!2j (Y )

!
l0∑

j=s0+1

(
2l0

2j

)
K2l0−2j!2j (Y )

! n

2l0∑

j=0

(
2l0

2j

)
K2l0−2j

(
ρ(X) − ε

N

)2j
− s0

(
2l0

2s0

)
K2l0

! n

2

(
K + ρ(X) − ε

N

)2l0 − s0

(
2l0

2s0

)
K2l0 .

From the previous two inequalities, we deduce

m

n
!

(K+ρ(X)− ε
N )2l0

2 − (K + ρ(X) − ε)2l0 − s0
(2l0

2s0

)
K2l0

(2K)2l0 − (K + ρ(X) − ε)2l0

>
(K + ρ(X) − ε)2l0

(2K)2l0 − (K + ρ(X) − ε)2l0
.

This proves the theorem. "

In his Ph.D. thesis [9], Greenberg also introduced the notion of Ramanujan graph for general
finite graphs (not necessarily regular). See also [14] for more details. A finite graph Y is called
Ramanujan if for any eigenvalue λ /= ±χ(Ỹ ) of Y , the inequality |λ| # ρ(˜̃Y ) holds. If Y is
regular, then we obtain the definition given by Lubotzky et al. in [16] where an infinite sequence
of regular Ramanujan graphs is constructed when the degree equals p + 1, p ≡ 1 mod 4 prime
number. In [4], this construction is extended and an infinite sequence of regular Ramanujan graphs
is produced for the degree equal to a prime plus one. We are not aware of any similar results for
irregular graphs as of yet.

Friedman [8] has recently proved that almost all regular graphs are almost Ramanujan. For
similar results regarding irregular graphs, see [7]. Hoory [10] proved that if Y is a finite graph
with average degree d , then ρ(Ỹ ) ! 2

√
d − 1. Hoory used this result to prove a generalization of

the asymptotic Alon–Boppana theorem. Denote by Br(v) the ball of radius r around v. A graph
Y has an r-robust average-degree d if for every vertex v the graph induced on V (Y ) \ Br(v) has
average degree at least d . Hoory’s generalization is the following result.

Theorem 8. Let Yi be a sequence of graphs such that Yi has an ri-robust average degree d ! 2,

where limi→+∞ ri = +∞. Then

lim inf
i→∞

λ(Yi) ! 2
√

d − 1.
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[2] S.M. Cioabă, On the extreme eigenvalues of regular graphs, Journal of Combinatorial Theory, Series B, in press.
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