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Abstract

In his Ph.D. thesis, Greenberg proved that if p()? ) is the spectral radius of the universal cover X ofa
finite graph X, then for each € > 0, a positive proportion (depending only on X and ) of the eigenvalues of
X have absolute value at least p()N( ) — €. In this paper, we show that the same result holds true if we remove
absolute from the previous result. We also prove an analogue result for the smallest eigenvalues of X.
© 2006 Elsevier Inc. All rights reserved.
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1. Preliminaries

Our graph theoretic notation is standard, see [18]. The graphs discussed in this paper are
simple and connected unless stated otherwise. For a graph X, we denote by 11(X) > Ax(X) >
- -+ 2 Ay (X) the eigenvalues of the adjacency matrix of X.

Serre has proved the following theorem (see [4,5,11,17]) using Chebyschev polynomials. The
simplest self-contained proof of this theorem is given in [4] and it is fairly involved. See [2,3] for
a simple proof of Serre’s theorem and other related results.
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Theorem 1 (Serre). For each € > 0, there exists a positive constant ¢ = c(€, k) such that for any
k-regular graph X, the number of eigenvalues A of X with & > (2 — €)v/k — 1 is at least c| X|.

Serre’s theorem is a generalization of the asymptotic Alon and Boppana theorem, see [1,6,16]
for more details.

Theorem 2. If (X,,), is an infinite sequence of k-regular graphs, thenlim inf 1> (X,,) > 24/k — 1.

Theorem 1 is also related to a result obtained by Greenberg in [9] whose proof has not appeared
to our knowledge in any journal as of yet. Greenberg’s result is cited in many places, [14,15] for
example. For a graph X, we denote by p(X) its spectral radius and by % (X) the family of all
finite graphs that are covered by X. In Section 2, we describe these notions in more detail.

Theorem 3 (Greenberg). Let X be a connected, infinite graph with finite maximum degree. Given
€ > 0, there exists c = c(X, €) > 0, such that for every Y € €(X),

{X € spectrum of Y : |\| = p(X) —€}| = c|V(Y)]. @))]

In Section 3, we present a proof of Theorem 3. Note that Theorem 3 implies a weaker form of
Serre’s theorem. This is because if X is the infinite k-regular tree, then p(X) = 2+/k — 1. Thus,
if Y is a finite k-regular graph we obtain that for each € > 0, a positive proportion (that depends
only on € and k) of the eigenvalues of Y have absolute value at least (2 — €)«/k — 1. This is
slightly weaker than Theorem 1.

In Section 4, we present a slight improvement of Greenberg’s theorem. We prove that given
X and € > 0, there is a positive ¢ = ¢(X, €) such that |{A € spectrtumof Y : A > p(X) —€}| >
c|V (Y)] for each finite graph Y covered by X. We also prove a similar result regarding the smallest
eigenvalues of general (not necessarily regular) graphs.

2. Graphs and coverings

If X is a connected graph (not necessarily finite) such that the maximum degree of X is
finite, let /2(X) denote the space of functions f : V(X) — R with erV(X) | f(x)|> < 4+00. Let
8 : I*(X) — [*(X) be the adjacency operator of X, i.e., (8f)(x) = X" cex) S (). Ifx € V(X),
let z; (x) denote the number of closed walks of length s that start at x. Denote by p (X) the spectral
radius of X:

p(X) = sup{|A| : A € spectrum of §}.

Lemma 4. Let X be a connected graph. Then lim sup,_, , . ~/15(x) is independent on the vertex
x € V(X).

Proof. Since X is connected, it is enough to prove that

lim sup /25 (x) = lim sup v/ (y)

s——+00 §—> 400

for any adjacent vertices x and y. The previous assertion will follow easily from the fact that

ts+2())) P ts(x) = ls—Z(y)
foreachs > 2. [
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It is well known (cf. [13, Chapter 4]) that

p(X) = limsup /1 (x). )
§—>+00
Given two graphs X1 and X7, a homomorphism from X to X» is a function f : V(X1) —
V(X3) suchthatxy € E(Xy)implies f(x) f(y) € E(X3) foreachx, y € V(X1).If f is bijective
and f and f~! are both homomorphisms, then f is called an isomorphism from X| to X. An
isomorphism from a graph X to itself is called an automorphism of X. The automorphisms of X
form a group, called the automorphism group of X that we denote by Aut(X). If x is a vertex of
X, then the automorphism orbit of x is Orb(x) = {y € V(X) : 3f € Aut(X) such that f(x) =
y}. If x is a vertex in the graph X, then we denote by Ny (x) the set of neighbours of x in
X.
If X1 and X, are two graphs, a homomorphism 7 : V(X1) — V(X») is called a cover map if
it is surjective and for each x € V(X), 7 induces an isomorphism from Ny, (x) to Ny, (7 (x)).
It follows from (2) that if = : V(X1) — V(X») is a cover map, then p(X1) < p(X»2). If m is
a finite cover, then p(X{) = p(X2). Denote by ¢ (X) the family of finite graphs covered by
X.
Using a result of Leighton [12], the next theorem is also proved by Greenberg [9] (see also

[14]).

Theorem 5. Let X be a connected graph with finite maximum degree. Then for each X1 and X»
in (X)), p(X1) = p(X2). This common value is denoted by x (X).

For a finite graph Z, its universal cover Z is the graph with the property that for any graph ¥
withacovermapw : V(Y) — V(Z), there exists acovermap ' : V(Z) — V(Y). The universal
cover of any finite graph is an infinite tree. For example, the universal cover of a k-regular graph
is the infinite k-regular tree. However, not every infinite tree X covers a finite graph. It is easy to
see that a necessary condition for covering a finite graph is that Aut(X) has finitely many orbits.
See [14] for more details on the universal covers of finite graphs.

3. A proof of Greenberg’s theorem

In his Ph.D. thesis [9], Greenberg proved Theorem 3. This result is also cited in [14,15,
Theorem 2.3], but it seems that no proof of it exists in the literature other than in Greenberg’s
thesis. The proof given below is a simplified version of the original proof.

Proof of Theorem 3. Let € > 0 and Y € %(X). Because X has finitely many automorphism
orbits, it follows that there exists ro = r(X, €) such that

= (p0 - 5)”

for each vertex y € V(Y) and r > rp. Let ¢ be the proportion of eigenvalues of Y that have
absolute value > p(X) — €. Using the previous inequality, we obtain

e wAT () _ 2
(PO =3)" < min () < FUEEE < e (X0 + (=0 (p() — )

for each r > rg. This implies
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(p(X) = £)” = (p(X) — )
X2 (X) = (p(X) — §)*

for each r > ry. Letting r = ry, this proves the theorem. [J

cz

4. An slight improvement of Greenberg’s theorem

In this section, we present a slight improvement of Theorem 3. Our proof is similar to the
previous one and we obtain the required estimate for the largest eigenvalues by shifting the
spectra of Y up by a constant.

Theorem 6. Let X be a connected, infinite graph with finite maximum degree. Given € > 0, there
exists ¢ = c¢(X, €) > 0, such that for every Y € €(X),

{1 € spectrum of Y : A > p(X) —€}| = c|V(Y)].

Proof. Let Y € ¥ (X) with eigenvalues Ay > A > --- > Ay and covermap f : V(X) — V(Y).
Givene > 0,letm = |{i : 1; = p(X) — €}].

From (2) we know that p(X) = limsup,_, , ¥/t (x), for any vertex x € V(X). Since
p(X) > 0, it follows that there exists an integer N = N (X, €) > 1 such that p(X) > % Obvi-
ously, if x and y are in the same orbit of Aut(X), then #,(x) = #,(y) for any non-negative integer
r. Hence, the fact that X has finitely many automorphism orbits implies that there exists a
non-negative integer so = s(X, €) such that fr,(x) > (p(X) — %)zs, for each s > 59 and any
x € V(X).

It is easy to see that the number of closed walks of length r in X starting at vertex x € V(X) is
less than or equal to the number of closed walks of length 7 in Y starting at vertex f(x) € V(Y).
Hence, @,(Y) > ) er(y; t,(x) for each non-negative integer r. From the previous two relations

y=fx
it follows that @,4(Y) > n(p(X) — %)25 fors > sp.
Let K be a positive constant that does not depend on Y and is larger than A;(Y). We can take
K = A(X), the maximum degree of X, for example. From the previous inequality we deduce

21 l

(K T+ AX)' =) (zll> K i)y =y (;j) K272 0,(Y)

i=0 Jj=so

I .
20\ oiaj €\2J
X) — —
<2j> (p() N)
J=50
l

2 () =)

=n

J=0
so—1 .
— K2-2i X) — —
”Z(m) (P00-7)
J=0
n e\ A
> (k+ 00— £) = K
2( +oX) N) ”S°<2so)
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for each [ > 2s¢. Since K - I and A(Y) commute, it follows that

n
w(K 1+ A" =Y (K +2()*
i=1
<m—mEK +pX) — ) +m@2K)*.
Hence, we obtain

€2l
KO- (K 4 p(X) — ) — so(2)K?

= 2% 3)
n’_ QK)2 — (K + p(X) — €)X
for each [ > 2s.
Now
2

A (K+p(X) — %) €

1 =K X)— —
lingo \/ 2 +pX) N

and

. 21 21 21 21
lhm 2(K 4+ p(X)—e)* + 50 K% =max(K 4+ p(X) — ¢, K)
— 00 S

250

€
K X)— —
< K+ p(X) N

imply that there exists o = [(X, €) such that
2l
(K+p(X)—3)
2
for each [ > [y. Hence,
m (K + p(X) —€)ho

7 KM — (K +p(X) — otk — (X >0. 0

—(K+pX)—e)? —so (22SIO>K21 > (K + p(X) —e)?

By using a similar argument as before, we can also prove a similar result to Theorem 6 for
the smallest eigenvalues. Note that we need an extra hypothesis since there are classes of graphs
that have eigenvalues bounded from below by a constant. For examples, line graphs have all their
eigenvalues at least —2.

Theorem 7. Let X be a connected, infinite graph with finite maximum degree. Given € > 0,
there exist a non-negative integer g = g(X, €) and ¢ = c(X, €) > 0, such that for every graph
Y € €(X) with no odd cycles of length less than g,

{u € spectrum of Y : p < —(p(X) — )} = c|[V(Y)].

Proof. Let Y € €(X) with eigenvalues A; > Ap > --- > Ay and covermap f : V(X) — V(Y).
Givene > 0O,letm = |{i : A; < —(p(X) —e)}l.

The proof continues now similarly to the proof of Theorem 6. There exist N = N(X, ¢€) > 1,
so = s(X, €) and Iy = [(X, €) with [y > 2sg such that

(K + p(X) — £)™
2

— (K4 p(X) —e)?lo — 5 <Z°>K2’0 > (K + p(X) — e)?ho.
0
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Consider

n
tr(K - I —AY)? = Z(K W< m=—m) (K +pX) — ) +mQK).
i=1
Let g(X, €) = 2lp. If Y has no odd cycles of length less than 2/, then

lo
(K -1 —A@)H=3" (2@) K021 @ (Y)
J

j=0

lo
21 .
3 ( ?)K2’°21¢2j<Y)
. 2j
Jj=so+1
2y

> Ko J( X ——) - Ko
an()(zj) PO = 0{ 340

n €2 2o\ 2
> (K +p(x ——) _ j <)
S (K+p00 - 5 So( )

From the previous two inequalities, we deduce

K+p(X)— )20
( p( 2) N) _ (K 4 p(X) _ 6)210 _ SO(%ﬁg)KZIO

(2K)20 — (K + p(X) — €)l0
(K + p(X) —e)o
> .
(K)o — (K + p(X) — €)%

=

3|3

This proves the theorem. [

In his Ph.D. thesis [9], Greenberg also introduced the notion of Ramanujan graph for general
finite graphs (not necessarily regular). See also [14] for more details. A finite graph Y is called
Ramanujan if for any eigenvalue A # :I:)((?) of Y, the inequality |A| < ,0(17) holds. If Y is
regular, then we obtain the definition given by Lubotzky et al. in [16] where an infinite sequence
of regular Ramanujan graphs is constructed when the degree equals p + 1, p = 1 mod 4 prime
number. In [4], this construction is extended and an infinite sequence of regular Ramanujan graphs
is produced for the degree equal to a prime plus one. We are not aware of any similar results for
irregular graphs as of yet.

Friedman [8] has recently proved that almost all regular graphs are almost Ramanujan. For
similar results regarding irregular graphs, see [7]. Hoory [10] proved that if Y is a finite graph
with average degree d, then p(? ) = 2+/d — 1. Hoory used this result to prove a generalization of
the asymptotic Alon—-Boppana theorem. Denote by B, (v) the ball of radius » around v. A graph
Y has an r-robust average-degree d if for every vertex v the graph induced on V(Y) \ B, (v) has
average degree at least d. Hoory’s generalization is the following result.

Theorem 8. Let Y; be a sequence of graphs such that Y; has an r;j-robust average degree d > 2,
where lim;_, 4 oo ri = +00. Then

liminf A(Y;) > 24/d — 1.

11— 00
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