Lecture 3. Percolation and other stories

1. Show that the radii of convergence of the growth series $\sum_{n=0}^{\infty} \beta(n) z^n$ and of the spherical growth series $\sum_{n=0}^{\infty} \sigma(n) z^n$ coincide.

2. Show that the augmented growth series $\Gamma(z)$ of the free group F_2 is rational as a formal power series and compute the corresponding rational function with coefficients in $\mathbb{Z}[F_2]$. Use its interpretation as $\Gamma^{\lambda_{F_2}}(z)$ to find the spectral radius of the adjacency operator on the 4-regular tree (that you have already computed by a different method in one of the previous exercises).

3. Show that for the infinite *d*-regular tree T_d ,

$$p_c(T_d) = \frac{1}{d-1}$$

and that for any infinite *d*-regular graph Γ ,

$$p_c(\Gamma) \ge p_c(T_d)$$
 and $\rho(\Gamma) \ge \rho(T_d)$.

4. Prove that the function |C(0)| defined on $\Omega = \{0, 1\}^{E(\Gamma)}$ is measurable.