Non-existence of a universal zero entropy system for amenable group actions

Georgii Veprev

Leonhard Euler International Mathematical Institute, St. Petersburg State University

"Analysis, Probability, Mathematical Physics" December 3, 2020

Amenability and invariant measures

A countable G is called *amenable* if it satisfies the Følner condition. That is, there exists a sequence of finite subsets $F_n \subset G$ such that for any $g \in G$

$$\lim_{n\to\infty}\frac{|gF_n\triangle F_n|}{|F_n|}=0.$$

The following properties are equivalent.

- Any (left) continuous action of G on a compact metric space X admits an invariant probability measure.
- G is amenable.

Thus, the set $M_G(X)$ of all invariant measures of a topological action $G \cap X$ is always non-empty.

Question

What can be the set of ergodic measures on X?

イロト イポト イヨト

The variational principle

There are two well-known characteristics of G-actions.

- The entropy $h_{top}(X, G)$ of a topological action.
- The entropy $h(X, \mu, G)$ of a measure-theoretic action.

They are related in the following way.

Theorem (The variational principle) Let $G \curvearrowright X$ be a topological G-action. Then

$$h_{top}(X,G) = \sup_{\mu \in M_G(X)} h(X,\mu,G).$$

In particular, if the topological entropy is zero, then the measure theoretical entropy is zero as well.

- 3

・ 同下 ・ ヨト ・ ヨト

Universal systems

Definition

A topological system (X, G) is called *universal* for some class S consisting of ergodic *G*-actions if

• for any ergodic $\mu \in M_G(X)$ the system (X, μ, G) belongs to S;

② for any system $(Y, \nu, G) \in S$ there exists $\mu \in M_G(X)$ such that (X, μ, G) and (Y, ν, G) are isomorphic.

Example

- The standard shift on $[0, 1]^G$ is universal for the class of all G-actions.
- (Krieger'70, Seward'18) Bernoulli shift on {1,...,n}^G is universal for all actions with h < log n (and one more*).

• (Downarowicz, Serafin'16) There exists a universal \mathbb{Z} -system for $h \in [0, \alpha)$ or $h \in [0, \alpha], \alpha > 0$.

A (1) > (1) > (2) > (2)

Universal zero entropy system

Question (B. Weiss)

Does there exist a system (X, G) with is universal for the class of all ergodic measure-preserving actions of zero entropy?

For the case of \mathbb{Z} , the negative answer was given by J. Serafin ('13). However, this question is still open for general amenable groups. Our main result is the following theorem.

Theorem (G.V. '20)

Let $G \cap X$ be a continuous action of a non-periodic amenable group. Assume that for any ergodic zero entropy system (Y, ν, G) there exists $\mu \in M_G(X)$ such that

$$(\boldsymbol{X}, \boldsymbol{\mu}, \boldsymbol{G}) \cong (\boldsymbol{Y}, \boldsymbol{\nu}, \boldsymbol{G}).$$

Then the topological entropy of (X, G) is positive.

イロト 不得 トイヨト イヨト 二日

Scaling entropy invariant

The main tool we implement in the proof is the notion of scaling entropy proposed by A.M.Vershik.

- Let G be a countable group. We call a fixed sequence of finite subsets $\lambda = \{F_n\}$ equipment of the group.
- We require the equipment to be suitable.

Example

•
$$G = \mathbb{Z}$$
, $F_n = \{0, \ldots, n-1\}$;

- Any equipment of an abelian group is suitable;
- An amenable group with a Følner sequence;
- Free group equipped with the standard balls is suitable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Admissible semimetrics

Let $\rho: (X^2, \mu^2) \to [0, +\infty)$ be a non-negative symmetric measurable function which satisfies the triangle inequality.

Example

Let ξ be a measurable partition. The corresponding cut semimetric $\rho_{\xi}(x, y) = 0$ if x and y lie in the same cell of ξ and $\rho_{\xi}(x, y) = 1$ otherwise.

Define the ε -entropy $\mathbb{H}_{\varepsilon}(\mathbf{X}, \mu, \rho)$ of ρ as follows.

Definition

Let *k* be the minimal integer such that $X = X_0 \cup X_1$, where $\mu(X_0) < \varepsilon$ and the cardinality of the minimal ε -net in X_1 equals to *k*. Put

$$\mathbb{H}_{\varepsilon}(\boldsymbol{X}, \boldsymbol{\mu}, \boldsymbol{\rho}) = \log_2 \boldsymbol{k}.$$

If there is no such *k* put $\mathbb{H}_{\varepsilon}(X, \mu, \rho) = +\infty$

イロン 不得 とくほ とくほ とうほ

Admissible semimetrics

The following conditions are equivalent (Vershik, Petrov, Zatitskiy'16)

- **①** The semimetric ρ is separable on a subset of full measure.
- **2** $\mathbb{H}_{\varepsilon}(X, \mu, \rho)$ is finite for all $\varepsilon > 0$.

Definition

In this case, the semimetric ρ is called *admissible*.

These properties are evident.

- If ρ is admissible then all its shifts $g^{-1}\rho(x,y) = \rho(gx,gy)$, $g \in G$, are admissible as well.
- A finite averaging of an admissible semimetric is admissible

$$G^n_{av}
ho(x,y)=rac{1}{|F_n|}\sum_{g\in F_n}
ho(gx,gy),\qquad x,y\in X.$$

Scaling entropy of an equipped group

Definition

- We say that $\Phi(n,\varepsilon) \preceq \Psi(n,\varepsilon)$ if $\forall \varepsilon \exists \delta \Phi(n,\varepsilon) \lesssim \Psi(n,\delta)$.
- We call two functions equivalent if $\Phi \preceq \Psi$ and $\Psi \preceq \Phi$.
- The equivalence class of Φ is denoted by $[\Phi]$.

We are ready to define the scaling entropy of a measure-preserving action of an equipped group.

- Consider the function $\Phi_{\rho}(n,\varepsilon) = \mathbb{H}_{\varepsilon}(X,\mu,G_{av}^{n}\rho).$
- **2** Take the corresponding equivalence class $\mathcal{H} = \mathcal{H}(\mathbf{X}, \mu, \mathbf{G}, \lambda) = [\Phi_{\rho}]$.

Theorem (Zatitskiy '15)

Let $(G, \lambda) \curvearrowright (X, \mu)$ be a measure-preserving action of a countable suitably equipped group. Assume that ρ and ω are admissible generating summable semimetrics. Then $[\Phi_{\rho}] = [\Phi_{\omega}]$.

イロト 不得 トイヨト イヨト 二日

Zero entropy

Zero entropy systems can be easily distinguished by means of scaling entropy.

Theorem

• Assume that $h(X, \mu, G) > 0$ then for any $\Phi \in \mathcal{H}$ and sufficiently small ε $\Phi(n, \varepsilon) \asymp |F_n|.$

2 Let
$$h(X, \mu, G) = 0$$
 and $\Phi \in \mathcal{H}$. Then for all ε
 $\Phi(n, \varepsilon) = o(|F_n|).$

• Thus, it is always true that

$$\Phi(n,\varepsilon) \lesssim |F_n|.$$

• We will looking for systems for which *the equivalence is almost achieved*.

< ロト (周) (三) (三)

Actions of almost complete growth

Definition

We say that (G, λ) admits actions of almost complete growth if for any non-negative function $\phi(n) = o(|F_n|)$ there exists a measure-preserving system (X, μ, G) such that for any $\Phi \in \mathcal{H}(X, \mu, G, \lambda)$

•
$$\Phi(n,\varepsilon) = o(|F_n|),$$
 • $\Phi(n,\varepsilon) \not\leq \phi(n)$

The first condition is equivalent to say that the measure entropy is zero.

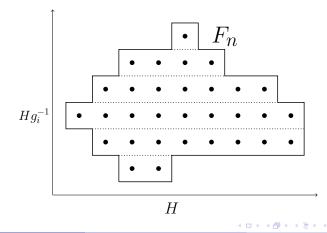
- We prove that the main theorem holds for any such group.
- The main part: every non-periodic amenable group admits ergodic actions of almost complete growth with respect to arbitrary Følner equipment.
 - Construct almost complete actions for the group \mathbb{Z} .
 - Apply coinduction from a subgroup to the whole G.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Step I: Sharpening Følner sets

Let $H = \langle h \rangle$ — be a subgroup generated by an element *h* of infinite order and F_n be a (h, ε^2) -invariant Følner set. There is $W_n \subset F_n$ such that

- All the sections $S_n^i = H \cap W_n g_i$ are (h, ε) -invariant.
- The asymptotic relation $|W_n \triangle F_n| = o(|F_n|)$ holds.

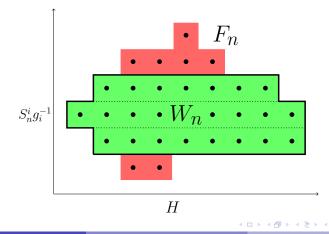


Georgii Veprev (SPSU, EIMI)

Step I: Sharpening Følner sets

Let $H = \langle h \rangle$ — be a subgroup generated by an element *h* of infinite order and F_n be a (h, ε^2) -invariant Følner set. There is $W_n \subset F_n$ such that

- All the sections $S_n^i = H \cap W_n g_i$ are (h, ε) -invariant.
- The asymptotic relation $|W_n \triangle F_n| = o(|F_n|)$ holds.



Step II: Adic transformation

Now the construction of almost complete actions begins.

Step II

We construct a special \mathbb{Z} -actions satisfying uniform estimates for the scaling entropy over the given system of subsets $\{S_n^i\}$

The desired examples can be obtained by the *adic action* (Vershik's automorphism) on the graph of ordered pairs endowed with certain central measures.

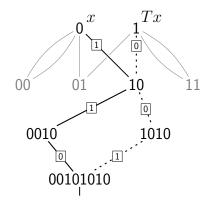


Figure: Vershik's automorphism

Finally, we apply the coinduction procedure from the subgroup $H \cong \mathbb{Z}$ to the whole group *G*.

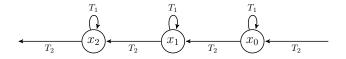


Figure: $\operatorname{CInd}_{\mathbb{Z}}^{\mathbb{Z}^2} T_1$

Finally, we apply the coinduction procedure from the subgroup $H \cong \mathbb{Z}$ to the whole group G.

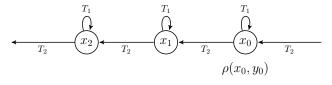


Figure: Semimetric ρ

• Choose a semimetric ρ depending only on the x_0 .

Finally, we apply the coinduction procedure from the subgroup $H \cong \mathbb{Z}$ to the whole group *G*.

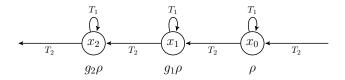
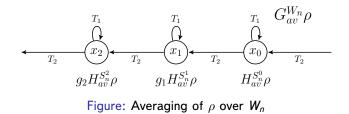


Figure: Semimetric ρ and its shifts

- Choose a semimetric ρ depending only on the x_0 .
- Any shift $g_i s \rho$, $s \in H$, also depends only on one component.

Finally, we apply the coinduction procedure from the subgroup $H \cong \mathbb{Z}$ to the whole group G.



- Choose a semimetric ρ depending only on the x_0 .
- Any shift $g_i s \rho$, $s \in H$, also depends only on one component.
- The averaging $G_{av}^{W_n}\rho$ decomposes into a weighted combination of $S_n^i\rho$.

Step IV: Lower bound for ε -entropy

The main technical statement that we need to complete the proof is the following lemma.

Lemma

Consider a family of admissible semimetric triples (X_i, μ_i, ρ_i) . Let $\phi^{-1}s_i < \mathbb{H}_{4\varepsilon}(X_i, \mu_i, \rho_i) < s_i$, $s = s_1 + \ldots + s_k$. Let ρ be the averaged semimetric: $\rho = \frac{1}{s} \sum_{i=1}^k s_i \rho_i$. Then

$$\mathbb{H}_{\varepsilon^{4}}(\boldsymbol{X}, \boldsymbol{\mu}, \boldsymbol{\rho}) \geqslant \frac{1}{\phi} \varepsilon^{3} \sum_{i=1}^{k} \mathbb{H}_{4\varepsilon}(\boldsymbol{X}_{i}, \boldsymbol{\mu}_{i}, \boldsymbol{\rho}_{i}) - \boldsymbol{k} - \boldsymbol{1},$$

where (X, μ) is the product of (X_i, μ_i) .

This lemma implies that the sequence $\mathbb{H}_{\varepsilon^4}(X, \mu, G^{W_n}_{av}\rho)$ can not be bounded by any given one.

Georgii Veprev (SPSU, EIMI)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Thank you for your attention!

Georgii Veprev (SPSU, EIMI)

Universal zero entropy system

December 3, 2020 16 / 16

Э

イロト イポト イヨト イヨト