Cellular Al' -homology of schemes associated with the Bruhat decomposition Joint work with Fabian Morel

Motivation: Motivic version of Matsumato's theorem Computing $\pi_{1}^{A^{\prime \prime}}(G)=H_{1}^{A^{\prime \prime}}(G)$.
b : perfect field
$A b(k)$: Nisnevich sheaves of abelian groups on $S m / b$.
$A b_{A I^{\prime}}(b)$: Strictly A^{\prime} '- invariant sheaves
$\left(H_{N \text { iS }}^{n}(-, M)\right.$ is A^{\prime}-invariant on $\left.S_{m} / k \forall n \geqslant 0\right)$

$$
\begin{aligned}
& \pi_{n}^{\mathbb{A}^{\prime}}(\mathscr{Z}, \cdot):=a_{N i s}\left(U \longmapsto\left[S^{n} \wedge U_{+}, \notin\right]_{\mathbb{A}^{\prime} .}\right) \in A_{A^{\prime}}(b) \\
& \forall n \geqslant 1 \text {. } \\
& H_{n}^{A^{\prime}}(x) \quad:=H_{n}\left(L_{A^{\prime}} C_{k}(x)\right)
\end{aligned}
$$

$\uparrow \pi$ normalized chain complex
Al-localization functor

$$
L_{A^{\prime}}: D(A b(b)) \rightarrow D_{A^{\prime}}(k)
$$ of A'-local objects

More 1: $\quad \tilde{H}_{0}^{A^{\prime}}\left(\mathbb{G}_{m}^{n^{n}}\right)=\underline{K}_{n}^{M W}$
e.g. $H_{1}^{\mathbb{A}^{\prime}}\left(S L_{2}\right)=H_{1}^{A^{\prime}}$
Cellular \mathbb{A}^{\prime}-homology

Definition:
$x \in S m / b$ is cohomologically trivial if $H_{N i s}^{n}(x, \pi)=0$ $\forall n \geqslant 1 \quad \forall \quad M \in A b_{A 1}(k)$.

Example: \mathbb{A}^{n}, $\mathbb{T r}_{m}$, split tori.

Lemma:
If $x \in S m / k$ is affine and cohomologically trivial, then every vector bundle on x is trivial.
Pro of:
Rank or vector bundle on $x \sim \xi \in\left[x, B G L_{\sigma}\right]_{\notin}$ Postrikov tower argument
\Rightarrow obstructions to lifting ξ to $\left[x, B G L_{r-1}\right]_{A^{\prime}}$ lie in $H^{*}\left(x, \pi A^{\prime}(f i b e r)(\mathcal{I})\right)=0$
strictly $\widehat{\mathbb{A}^{\prime}}$-inv.
x : con. riv. $\Rightarrow H^{\prime}\left(x, \mathbb{C}_{r m}\right)=0, H^{n}(x, M)=0 \forall M \in A(b)$.

Definition:
A rank σ vector bundle ξ on $x \in \operatorname{sm} / k$ is (strictly) orientable if $\Lambda^{\sigma} \xi$ is trivial.
(Strict) orientation of ξ : isomorphism $\theta: A_{x}^{\prime} \rightarrow \Lambda^{\sigma} \xi$.

Lemma:
Let x be cohomologically trivial and let ${ }^{\infty}$ be a (trivial) rank γ vector bundle on x. The induced pointed A^{\prime} 'homotopy class of

$$
\begin{aligned}
& \begin{array}{c}
\operatorname{Th}(\xi) \\
\xi^{\prime \prime}
\end{array} A^{\sigma} / A^{r} \backslash\{0\} \\
& \xi / \xi-\{0-\text { section }\}
\end{aligned}
$$

(which is an Al-weak equivalence) only depends on the chosen orientation of ξ.

Definition:
$x \in S \mathrm{~m} / \mathrm{k}$ is called cellular if it admits an increasing filtration by open subschemes

$$
\begin{equation*}
\phi=\Omega_{-1} \subset \Omega_{0} \subset \Omega_{1} \subset \ldots \subset \Omega_{l}=x \tag{smooth}
\end{equation*}
$$

where for each i, $\Omega_{i}-\Omega_{i-1} \stackrel{\Omega_{i}}{ }$ is of codim i and every irreducible component of $\Omega_{i}-\Omega_{i-1}$ is smooth, affine and cohomologically trivial.
Motivic homotopy purity \Rightarrow

$$
\Omega_{i / \Omega_{i-1}} \xrightarrow{\simeq_{A^{\prime}}} \operatorname{Th}\left(v_{i}\right)
$$

where $v_{i}^{i-1}=$ normal bundle of j_{i}
Cellular A^{\prime}-chain complex of x :

$$
\begin{aligned}
& C_{k}^{\text {cell }}(x): \cdots \rightarrow H_{i}^{A^{\prime}}\left(\Omega_{i} / \Omega_{i-1}\right) \xrightarrow{2} H_{i-1}^{A^{\prime}}\left(\Omega_{i-1} / \Omega_{i-2}\right) \rightarrow \cdots \\
& D\left(A b_{A 1}(k)\right) \\
& H_{i-1}^{A_{i-1}^{\prime}}\left(\Omega_{i-1}\right)
\end{aligned}
$$

Cellular A^{\prime}-homology of x :

$$
H_{n}^{\text {cell }}(x):=H_{n}\left(C_{*}^{\text {cell }}(x)\right)
$$

Remarks:

1) $H_{n}^{\text {cell }}(x)=0, n<0, n>\operatorname{dim} x$ \& has "nothing to do" with $\operatorname{dim} x$.
2) x is $A^{\prime}-(n-1)$-connected $\Rightarrow H_{0}^{\text {cell }}(x)=\mathbb{Z}$,

$$
\begin{aligned}
& H_{i}^{\text {cell }}(x)=0 \quad \text { for } 1 \leqslant i \leqslant n-1 \\
& H_{n}^{A}(x) \xrightarrow{\cong} H_{n}^{\text {cell }}(x) \\
& H_{n+1}^{A^{\prime \prime}}(x) \rightarrow H_{n}^{\text {cell }}(x)
\end{aligned}
$$

3) After choosing a trivialization of v_{i},

$$
\begin{aligned}
H_{i}^{A^{\prime}}\left(\Omega_{i} / \Omega_{i-1}\right) & =H_{i}^{A^{\prime}}\left(T h\left(v_{i}\right)\right) \\
& =H_{i}^{A^{\prime}}\left(S^{i} \wedge \mathbb{F}_{m}^{\prime} \wedge\left(\Omega_{i}-\Omega_{i-1}\right)_{+}\right) \\
& =\tilde{H}_{0}^{A^{\prime}}\left(\mathbb{C}_{m}^{\wedge}\right) \otimes H_{0}^{A \prime}\left(\Omega_{i}-\Omega_{i-1}\right) \\
& =K_{i}^{M W} \otimes H_{0}^{A^{\prime}}\left(\Omega_{i}-\Omega_{i-1}\right) .
\end{aligned}
$$

G: split, semisimple, almost simple, simply connected algebraic group /k
Fix a pinning of G :

- maximal k-split torus $T\}$ determines
- Borer subgroup $B \supset T\} \begin{gathered}\Delta \text { : basis of simple } \\ \text { roots }\end{gathered}$
- an isomorphism $u_{\alpha}: \mathbb{T}_{a} \sim U_{\alpha} \quad \forall \alpha \in \Delta$.

Weyl group of $G: W=N_{G}{ }^{\top} / \tau$. (generated by simple reflections $s_{\alpha}, \alpha \in \Delta$)

Convention: For all $x \in b^{x}$,

$$
\omega_{\alpha}(x)=u_{\alpha}(x) \cdot u_{-\alpha}\left(x^{-1}\right) \cdot u_{\alpha}(x) \in N_{G} T
$$

lifts $s_{\alpha} \in W$. Set $\quad \dot{S}_{\alpha}=w_{\alpha}(-1) \quad \forall \alpha \in \Delta$.

Let $\omega_{0} \in W$ be the longest element of W

$$
l=\operatorname{length}\left(\omega_{0}\right) .
$$

Bruhat cellular structure on C :

$$
\Omega_{0} \subset \Omega_{1} \subset \cdots \subset \Omega_{l}=G
$$

$$
B i_{0}^{\prime \prime} B
$$

(normal red. exp.)
For every $\omega \in W$, choose a reduced expression and
where $\Phi_{\omega}:=\left\{\alpha \in \Phi_{\pi}^{+}\left(\omega(\alpha) \in \Phi^{-}\right\}\right.$.
the foots

$$
U_{\omega^{-1}} \times \dot{\omega} T \times U \xrightarrow{\simeq} B \dot{\omega} B
$$

π cohomologically

$$
\Omega_{i}-\Omega_{i-1}=\prod_{\substack{w \in W \\ l(\omega)=l-i}} B \dot{\omega} B
$$

$C_{*}^{\text {cell }}(G)$: cellular A^{\prime}-chain complex of G

$$
C_{i}^{\text {cell }}(G)=\bigoplus_{\substack{w \in w \\ l(\omega)=\ell-i}} K_{i}^{m w} \otimes H_{0}^{A^{\prime}}(B \dot{\omega} B)
$$

For every $\omega \in W, \quad U_{\omega} U_{\omega_{0} \omega} \leadsto U$
Set $v:=\omega_{0} w$.
Then $v \Omega_{0}=\prod_{\beta \in \Phi^{-},} U_{\beta} \cdot U_{\omega^{-1}} \cdot \dot{\omega} T U$

$$
\begin{aligned}
& \omega^{-1}(\beta) \in \Phi^{+} \\
= & \prod_{\beta \in-\Phi_{v^{-1}}} U_{\beta} \cdot B \dot{\omega} \text { ○ } B i B
\end{aligned}
$$

Choose a (horizontal) reduced expression $\tilde{\omega}$ of each $\omega \in W$. Then

$$
\begin{gathered}
C_{i}^{\text {cell }}(G) \simeq \underset{\substack{w \in W \\
l(w)=l-i}}{\oplus} \leq_{i}^{M W} \otimes \mathbb{Z}_{A^{\prime}}[\widetilde{\omega} T] \\
\oplus \\
\oplus \quad K_{i}^{M w} \otimes \mathbb{Z}_{A^{\prime}}^{M}[T]
\end{gathered}
$$

Aim: To compute $H_{1}^{\text {cell }}(G)$.
Need to understand - structure of $\mathbb{Z}_{\mathbb{A}}[T]$

- differentials in $C_{*}^{\text {cell }}(G)$.

Structure of $\mathbb{Z}_{A 1}[T]$:
Choose $\prod_{i=1}^{r} \alpha_{i}^{2}: \prod_{i=1}^{r} \mathbb{C}_{m} \xrightarrow{\wedge} T$
(G simply connected $\Rightarrow \alpha_{i}^{2}$: Simple coroots)
F / b : Field extra. $u \in F^{x} \leadsto(u) \in K_{1}^{M w}(F)$
$t \in T \sim[t] \in \mathbb{Z}_{A \mid}[T] \quad T:$ pointed at 1

$$
(t):=[t]-[1]
$$

$\alpha_{i}^{v}: \mathbb{T}_{m m} \rightarrow T$ induces $\mathbb{Z}_{A^{\prime}}\left(\mathbb{C}_{m}\right) \rightarrow \mathbb{Z}_{A^{\prime}}[T]$

$$
K_{1}^{\prime \prime} N W
$$

Ring structure on $\mathbb{Z}_{\mathbb{A}}[T]$:

$$
u \longmapsto(u)_{i}
$$

$$
\left.\begin{array}{rl}
\begin{array}{l}
(u)_{i}(v)_{j}
\end{array}=(v)_{j}(u)_{i} \\
(u)_{i}(v)_{i} & =(\eta(u)(v))_{i}
\end{array}\right)=
$$

$$
:=\left(\alpha_{i}^{v}(u)\right)
$$

$$
=\left[\alpha_{i}^{2}(u)\right]-[1]
$$

$$
\left(u_{1}, \cdots, u_{s}\right) \longmapsto\left(u_{1}\right)_{i_{1}} \ldots\left(u_{s}\right)_{i_{s}}
$$

$C_{*}^{\text {cell }}(G)$ is a complex of right and left $\mathbb{Z}_{A},[T]$-mod.

$$
\begin{array}{r}
C_{2}^{\text {cell }}(G) \xrightarrow{\partial_{2}} C_{1}^{\text {cell }}(G) \xrightarrow{\partial_{1}} C_{0}^{\text {cell }}(G) \rightarrow 0 \\
\\
\mathbb{Z}_{A l}^{\text {"l }}\left[\tilde{\omega}_{0} T\right] \\
C_{2}^{\text {cell }}(G) \rightarrow Z_{1}^{\text {cell }}(G) \rightarrow H_{1}^{\text {cell }}(G) \rightarrow 0
\end{array}
$$

G simply connected $\Rightarrow \mathbb{Z}_{A^{\prime}}[T]$-action on $H_{*}^{\text {cell }}(G)$ is trivial.

$$
C_{2}^{\text {cell }}(G) \otimes \mathbb{Z}_{A![T]} \mathbb{Z} \rightarrow Z_{1}^{\text {cell }}(G) \otimes_{\mathbb{Z}_{A l}[T]} \mathbb{Z} \rightarrow H_{1}^{\text {cell }}(G) \rightarrow 0 .
$$

Example: G : semisimple, split, rank 1.

$$
\begin{aligned}
& W=\begin{array}{c}
\langle s\rangle \\
\underset{\alpha}{I}
\end{array} \quad \underset{\mathbb{Z}_{\mathbb{A}^{1}}\left[\mathbb{C}_{m} \times T\right]}{ } \xrightarrow{\alpha^{v} \times i d_{T}} \mathbb{Z}_{\mathbb{A}^{\prime}}[T \times T] \xrightarrow{\mu} \mathbb{Z}_{\mathbb{A}^{\prime}}[T]
\end{aligned}
$$

1)

$$
\begin{aligned}
& G=S L_{2}, \quad \alpha^{2}: G_{m} \xrightarrow{\sim} T \quad \text { id } G_{m} \\
& C_{d}^{\text {cell }}\left(S L_{2}\right): \quad K_{2}^{M W} \oplus K_{1}^{M W} \xrightarrow{\left(\begin{array}{ll}
\eta & 0 \\
i d & 0
\end{array}\right)} K_{1}^{M W} \oplus \mathbb{Z} \\
& H_{0}^{\text {cell }}\left(S L_{2}\right)=4 \quad H_{1}^{\text {cell }}\left(S L_{2}\right)=K_{2}^{M W} \text {. }
\end{aligned}
$$

2)

$$
\left.\begin{array}{ll}
G=P G L_{2}, & \alpha^{v}: \mathbb{G}_{m} \rightarrow T \\
C_{k}^{\text {cell }}\left(P G L_{2}\right): & K_{2}^{M W} \oplus K_{1}^{M W} \xrightarrow{(M} 0 \\
& 0
\end{array}\right) \text { Square map } K_{1}^{\text {Min }} \oplus \mathbb{Z}
$$

$P G L_{2}$ is nor A^{\prime}-connected $\pi_{0}^{A}\left(P G L_{2}\right)=K_{1}^{m} / 2$

$$
1 \rightarrow{K_{2}^{M W}}_{M} \rightarrow \pi_{1}^{A^{\prime}}\left(P G L_{2}\right) \rightarrow \mu_{2} \rightarrow 1
$$

Differentials in $C_{*}^{c e \prime \prime}(G)$:

Fix a reduced expression

$$
\omega_{0}=\sigma_{l} \ldots \sigma_{1} \quad, \quad \sigma_{c} \in\left\{s_{1}, \ldots, s_{r}\right\}
$$

Ser
$\omega_{i}:=\omega_{0} s_{i}=\sigma_{e} \cdots{\hat{\lambda_{i}}}_{\lambda_{i}} \cdots \sigma_{1}$ for a unique $\lambda_{i} \in\{1, \cdots, l\}$.
Write $\omega_{0}=\omega_{i}^{\prime \prime} \sigma_{\lambda_{i}} \omega_{i}^{\prime}$
Set $\quad \tilde{\omega}_{i}:=\dot{\omega}_{i}^{\prime \prime} \dot{\omega}_{i}^{\prime} \in N_{G}(T)$.
The differential

$$
2_{1}: C_{1}^{\text {cell }}(G) \rightarrow C_{0}^{\text {cell }}(G)
$$

is a $\mathbb{Z}_{A^{\prime}}[T]$ - module homomorphism given by

$$
(u) \otimes\left[\tilde{\omega}_{i} \cdot 1\right] \longmapsto\left(\tilde{\omega}_{0} \cdot \alpha_{c}^{v}(u)\right)
$$

$$
\mathbb{Z}_{A l}^{T}\left(\tilde{\omega}_{0} T\right) \subset \mathbb{Z}_{A}\left[\tilde{\omega}_{0} T\right]
$$

(uses $\left.\tilde{\omega}_{i}^{\prime-1}\left(\beta_{\lambda_{i}}^{v}\right)=\alpha_{i}^{v}\right)$
root $\longleftrightarrow \sigma_{\lambda_{i}}$

Key Lemma:

Degree 2 differential:

$$
\begin{aligned}
\omega_{0} & =\sigma_{l} \ldots \sigma_{1} \\
\omega_{i} & =\omega_{0} s_{i}=\sigma_{l} \cdots \sigma_{\lambda_{i}} \cdots \sigma_{1} \\
\omega_{[i, j]} & =\omega_{0} s_{i} s_{j}=\sigma_{l} \cdots \sigma_{\lambda_{i}} \cdots \sigma_{\mu_{j}} \cdots \sigma_{1}
\end{aligned}
$$

for a unique $\mu_{j} \in\{1, \cdots, l\} \backslash\left\{\lambda_{i}\right\}$.

Two cases : $\lambda_{i}>\mu_{j}$ or $\lambda_{i}<\mu_{j}$
Reduce to $\lambda_{i}>\mu_{j}$ case

$$
\begin{aligned}
& w_{\{i, j\}} \subset W \\
& u_{0} v_{0}=w_{0}
\end{aligned}
$$

$$
\text { longest }{ }^{\mathcal{L}} \text { in } W_{\{c, j\}}
$$

Key Proposition:

$$
C_{2}^{\text {cell }}(G) \otimes \mathbb{Z}_{A 1[T]} \mathbb{Z} \rightarrow \mathbb{Z}_{1}^{\text {cell }}(G) \otimes_{\mathbb{Z}_{\text {al }}[T]} \mathbb{Z}
$$

is given by

$$
\left(K_{2}^{M w} \otimes \mathbb{Z}_{A 1}\left[\tilde{\omega}_{[i, j]} T\right]\right) \otimes_{\mathbb{Z}_{A 1}[T]} \mathbb{Z}
$$

$$
\begin{aligned}
& \left(\underset{i}{\oplus} K_{2}^{M W}\right) \oplus\left(\begin{array}{cc}
\bigoplus_{i<j} & k_{2}^{M 9}
\end{array}\right) \xrightarrow{\sim} Z_{1}^{\text {cell }}(G) \otimes_{\mathbb{Z}_{A^{M}}[T]} \mathbb{Z} \\
& (u, v) \\
& \longmapsto \phi_{i}(u, v)=(u) \otimes\left(\tilde{\omega}_{i} \cdot \alpha_{i}^{v}(v)\right) \\
& -(\eta(u)(v)) \otimes\left[\tilde{\omega}_{i} \cdot 1\right] \\
& (u, v) \mapsto \delta_{i j}(u, v) \\
& =(u) \otimes\left(\tilde{w}_{i} \cdot \alpha_{j}^{v}(v)\right) \\
& -(v) \otimes\left(\tilde{\omega}_{j} \cdot \alpha_{i}^{v}(u)\right) \text {. }
\end{aligned}
$$

$$
(u, v) \otimes\left[\tilde{\omega}_{[i, j]} \cdot 1\right] \longmapsto\left\{\begin{array}{l}
\bar{\delta}_{j i}(v, u) \quad \text { if } \alpha_{c,} \alpha_{j} \\
\text { not } \\
\text { adjacent }
\end{array}\right.
$$

else, where

$$
n_{j i}=-\left\langle\alpha_{j}, \alpha_{i}^{v}\right\rangle
$$

$G: A^{\prime}$-connecrad \Rightarrow

$$
\pi_{1}^{A^{\prime}}(G)=H_{1}^{A^{\prime}}(G)=H_{1}^{\text {cell }}(G)
$$

Main theorem: b : perfect field.
Let G be as above. Fix a maximal k-split tons T and a Botel B in $G \supset T$. Let α be a long root in the Dynkin diagram of $G ; S_{\alpha}=\left\langle U_{\alpha}, U_{-\alpha}\right\rangle$. The inclusion $S_{\alpha} \hookrightarrow G$ induces an epimoophism

$$
\pi_{1}^{A^{\prime}}\left(S_{\alpha}\right) \rightarrow \pi_{1}^{A^{\prime}}(G)
$$

(a) This induces a canonical isomorphism

$$
K_{2}^{M} \simeq \pi_{1}^{A^{\prime}}(G)
$$

if G is nor of symplectic type.

$$
\left(\pi_{1}^{A^{\prime}}\left(S L_{2}\right)=\underline{K}_{2}^{M W} \longrightarrow K_{2}^{M W} / \eta=K_{2}^{M}\right)
$$

(b) This induces a non-canonical isomorphism

$$
K_{2}^{M W} \simeq \pi_{1}^{A^{\prime}}(G)
$$

if G is of symplectic type.

