Semilocal Milnor K-theory (Grigory Garkusha)

weight	Motivic cohomology chart				The BS-conjecture () (b) area for H** = 0 Diagonal			
Z(3)	H ³ (4,21/3))	H ² (12/31)	H (k,213)	H° (k,2(3))	H/k,7(6)	H ² (&, 2/(3))	H ³ ((718))	nal /
Z(2)	H ⁻³ (k,7/2)	H-(4,2(2)	H (4.761)	H° (k,72(2))	H1 (420)	4°(k, 74a)		
Z(x)	0	٥	0	0	H'(k,7/h))	0	0	0
Z(6)	0	D	0	H° (k, 263)	0	0	D	D
	-3	-2	-1	0	41	+2 (cohomolog	y dogree

Motivic cohomology groups outside the diagonal are unknown except $H^1(k, \mathbb{Z}(2)) = \mathcal{K}^{ad}(k)$

The Beilinson-Soule Vanishing Conjecture states $H^{(2)}(k, \mathbb{Z}(n)) = 0$

In positive characteristic p > 0 the Beilinson Conjecture states $(K_*^{\prime\prime})_{\otimes} \approx K_*(k)_{\otimes}$

lespena! char(k)=p>0=> Kx(k) re unerog p-rpyrenuel (87) (MxSordun)

Teopema: $K = K \times (k)$ cyto p-odnognarno denemore = $2\mathbb{Z}[\frac{1}{p}]$ -augyny

On pedeno nue: $f: Sm/k \rightarrow Ab$ n ped ny rox, fo $C_1(f)(X) = colim f(u)$ $x \neq 0,0 \in Cu \in X \times A^n$

ECALIFOTPENCA $F \to C_1(F)$. To bopum, -40 F pais. CTUTUBORMAN, echu $F + C_1(F) \stackrel{\text{de}}{\to} F$ is $\varphi = 1_F$ in $\varphi = 0$

Tpuneper: Z(Hom(-Gm)), Ko(-, Gm), Zer(-, Gm))
ZF(-, Gm), etc. Tpedroxerue: (Cycrum). Bornormenos cred. y Bepxderune: (1) Ecru F - pay, ctet. npegny tok => Hom (D, F)=F(D) Toke pay. CT.21. (2) - (1-11-11-11 -//- => Kompulare $J(\tilde{\Lambda}^{ullet})=$ = Cx7 elmerce contrabaemoin komniercom as. Tpynn. ECM J* - KOBENTION KOMMERC TLO (J*) - KOMMERC (200 pedo-TOTEMBRIE 6 orpus. CTE NETULX. Teopena: Tryetto For - Kovenkoù Konnaeke npednytkob $\frac{d^3}{3} + \frac{d^2}{3} + \frac{d^$ rge kaxdoni fi- pous cretulaement apedny vor. K-n: Kerd-n, n, o, and L:= Coxerd-1 Torga verteou Komnere at. pynn L(Â) Kbazuwsomopper K-1(Â) [1] Tarke uneetel Comme & npough. rat. D(Ab) ab. pynn y trou Samme "kongea" St¹⁻⁹ (Å:) [-9], Tge

Ta Samme unggrupget coporo exog. en. noch: $E_{pq}^{2} = H_{p}(\mathcal{H}^{-1-q}(\hat{\Delta}_{k})) := H_{p}(\mathcal{H}^{-1-q}(\tau_{co}\mathcal{F}^{\bullet})(\hat{\Delta}_{k})) =) H_{p+q+2}(\mathcal{A}_{k})$ ロのコエルガーコチットへのーク 0 - John (Ind-1)(u) - whim F(u) - whim L(u) - 0 -) 0-)(Imd-1)(公)-> F(公)-> (公)-> 0 => I(A) - (Imd-1)(A)[-1] W-1 = 1 7-1 - 1 Ind-1 =)

$$K'(\hat{\Delta}) \longrightarrow F'(\hat{\Delta}) \longrightarrow (I_{n}J^{-1})(\hat{\Delta}) = \chi'(\hat{\Delta})_{E_{1}}^{-1}Imd^{-1})0$$

$$= \chi'(\hat{\Delta}) = \chi'(\hat{\Delta})_{E_{1}}^{-1}Imd^{-1} = \chi''(\hat{\Delta})_{E_{1}}^{-1}Imd^{-1})(\hat{\Delta})$$

$$= \chi''(\hat{\Delta})_{E_{1}}^{-1} \longrightarrow \chi'''(\hat{\Delta})_{E_{1}}^{-1} = \chi''(\hat{\Delta})_{E_{1}}^{-1} = \chi''$$

Ecru F npednytor c "xoponumu" tparedepanne $J(W) \stackrel{=}{=} \mathcal{F}_{2ax}(W)$, W - nonyhok. exema Cheditbue! J^* war a bonul no bel robsener cyth ny the Ba pucchoto e xoponemu \mathcal{F}_{p} -nru \mathcal{F}_{pq} \mathcal{F}_{qis} \mathcal{F}_{qis}

Det: K-T. Munnopa 8. negnéais Tomonorum ronnuerea as, g $K_n^m(k) \xrightarrow{1} K_n^m(k) \xrightarrow{1} K_n^m(k) \xrightarrow{0} K_n^m(k) \xrightarrow{0}$ $K_n^m(k)$ Dul m 70 $K_{n,m}^m(k) \neq 0 = 2$ octabul ro $K_n^m(k)$

Mory nor. K-reopee Meadropa

2

2

2-0,+00 Km(A) 0,-00 Km(k) -> 0 Tot romnerc ecto; nyrox Munnopa Zer (1 Cm) - Zer (m) (Cover) zar Knim (k) det Hm (Kn (3.)) - nongror K-spynner Murropa $\widehat{K}_{n,m}(k,A)$, $\widehat{K}_{n,m}(A,Q) = K_{n,m}(k)Q$ Teopena: Y n, 1, Kn, 0 (k), Kn, (k) = 0 Ynn,1, Epq = Hp (H(n-1-9) (T(nZ(n)) ()) =) Kmp+q+2 () n=2 $H_{2ar}^{p}(k, Z(12)) = \hat{K}_{2,3-p}(k), p \leq 1$ $H_{2ar}^{1}(k)Z(2)) = \hat{K}_{2,2}(k) = K_{3}(k)$ $\hat{K}_{n,q}^{MW}(k) \stackrel{\cong}{=} \hat{K}_{n,q}^{M}(k), \forall n > 0$ $\mathcal{L}_{n}(k)$ Y (2/(n)) HPS1 (X, 7/(2)) = Km (k(x)) K3(1/2) = K3(1/2) @ R21 (1/2) @ Teopena: Tunoteza benjuncoha du noven xap, p>0

Teopena: Tunoteza benjuncoha du noven xap, p>0

***(1) 0 = 0 $H^{\langle n,n}(k,\mathbb{Q}(n))=0$ TunoTe39 Mapullia: X-ra npoert- mag kon nomm

= $\gamma K_{i}(x)_{n} = 0$, i70

Teopena; Econ le -noue xap. p70 u menoteza Mapunira Bapra

=> Res (12) Q = 0

Teopena; Trycto k - art- 3. nove, Torga $K_4(k) \cong K_4^m(k) \oplus \hat{K}_{3,2}(k)_{\mathbb{Q}} \oplus \hat{K}_{2,3}(k)_{\mathbb{Q}} \oplus F$ rge F-970 npemoe craraence € Kn (16) Q

Ka C+ Ka + Kind

For Ex Kind + B(h) B(k) = Ker (P(k) + 12 kx)