
THE SCHMIDT SUBSPACES OF HANKEL OPERATORS

ALEXANDER PUSHNITSKI

Abstract. These are (slightly expanded) lecture notes from a zoom mini-
course given at the EIMI thematic program on Spectral Theory and Mathe-
matical Physics, 3–5 November 2020. The content is based on the author’s joint
work with Patrick Gérard.

1. Introduction

1.1. Hankel and Toeplitz matrices. The most elementary way of approaching
the definition of Hankel and Toeplitz operators is to consider them as infinite
matrices in `2(Z+), Z+ = {0, 1, 2, . . . }, with the following structure:

Γ = {a(n+m)}∞n,m=0, T = {a(n−m)}∞n,m=0,

where {a(n)}∞n=−∞ is a sequence of complex numbers. The aim of this mini-course
is to give a description of eigenspaces of Toeplitz operators and Schmidt subspaces
of Hankel operators.

1.2. Eigenspaces and Schmidt subspaces. Let A be a bounded operator in a
Hilbert space. One says that λ ∈ C is an eigenvalue of A, if the eigenspace

Ker(A− λI)

is non-trivial: Ker(A− λI) 6= {0}.
One says that s > 0 is a singular value of A, if the Schmidt subspace

EA(s) := Ker(A∗A− s2I)

is non-trivial. In other words, this means that there exists a non-zero pair (ξ, η)
(called the Schmidt pair) of elements in our Hilbert space such that Aξ = sη and
A∗η = sξ.

It is straightforward to see that A maps the Schmidt subspace EA(s) onto
EA∗(s):

A : EA(s)→ EA∗(s), A∗ : EA(s)→ EA∗(s).
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1.3. Hardy space. We use the standard notation for the unit circle and the unit
disk in C:

T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1}.

There are three ways of thinking of the Hardy space:

• As `2(Z+), Z+ = {0, 1, 2, . . . }; in this case the elements are sequences

x = {xn}∞n=0,

with
∑∞

n=0 |xn|
2 <∞.

• As H2(T) ⊂ L2(T), a subspace of L2 on the unit circle; in this case the
elements are the functions

f(z) =
∞∑
n=0

f̂(n)zn, |z| = 1

with the Fourier coefficients satisfying
∑∞

n=0 |f̂(n)|
2
<∞.

• As H2(D), the space of analytic functions on the open unit disk; in this
case, the elements are

f(z) =
∞∑
n=0

f̂(n)zn, |z| < 1

with the Taylor coefficients satisfying
∑∞

n=0 |f̂(n)|
2
<∞.

The unitary map between the first and the second representation is effected by
the Fourier series expansion.

The map from the second to the third representation is given by the analytic
continuation inside the unit disk. The map from the third to the second represen-
tation is given by taking the boundary values

f(eiθ) = lim
r→1−

f(reiθ), a.e. θ ∈ (0, 2π).

We refer e.g. to [12, 15] for the theory of boundary behaviour of holomorphic
functions in the unit disk.

The second and third representations are often used interchangeably. We will
denote the space simply by H2. We will denote by 〈f, g〉 the inner product of f
and g in H2, and we will denote by 1 the function in H2 which is identically equal
to 1.

Consider the space H2(D). We have 〈f,1〉 = f(0) for any f ∈ H2(D). More

generally, if uα(z) =
1

1− αz
, where |α| < 1, then uα is the reproducing kernel of

H2, i.e.

〈f, uα〉 = f(α), f ∈ H2.
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The Szegő projection P is the orthogonal projection in L2(T) onto H2(T), given
by

P :
∞∑

n=−∞

f̂(n)zn 7→
∞∑
n=0

f̂(n)zn.

The shift operator S in H2 is defined by Sf(z) = zf(z), and its adjoint S∗ in
H2 is given by

S∗f(z) =
f(z)− f(0)

z
.

We will also need the Hardy space H∞, which can be defined as H2 ∩ L∞ (or as
the space of all bounded analytic functions in the unit disk).

1.4. Toeplitz operators in Hardy space. Let a ∈ L∞(T); consider the operator
Ta in H2, given by

Taf = P (a · f), f ∈ H2.

The function a is called the symbol of Ta. It is straightforward to see that Ta is
bounded and that the matrix of Ta in the standard basis {zn}∞n=0 is a Toeplitz
matrix:

〈Tazn, zm〉 = 〈P (azn), zm)〉 = 〈azn, zm〉 = 〈a, zm−n〉 = â(m− n), n,m ≥ 0.

Conversely, it is not difficult to prove that any bounded Toeplitz matrix

T = {t(m− n)}∞n,m=0 on `2(Z+)

is unitarily equivalent to Ta with some a ∈ L∞ (we will say that T is realised as
Ta in the Hardy space). Moreover, we have the norm equality

‖Ta‖ = ‖a‖L∞ .
Toeplitz operators satisfy the commutation relation

S∗TaS = Ta;

the proof of this is a simple exercise. In fact, if a bounded operator Ta satisfies this
commutation relation, then it is necessarily a Toeplitz operator (this is called the
Brown-Halmos theorem).

Example. We have Tz = S and Tz = S∗.

We refer, e.g. to [14] for background information on Toeplitz operators.
It is easy to see that Ta is compact if and only if Ta = 0. For a general symbol

a ∈ L∞, the description of the spectrum of Ta is a difficult problem. Here we briefly
mention the following facts for continuous symbols a ∈ C(T):

• The essential spectrum of Ta is given by σess(Ta) = a(T).
• If λ /∈ a(T), then the winding number wind(a − λ) around zero is well

defined. The kernel of Ta is not empty if and only if this winding number
is negative. In fact, dim Ker(Ta − λI) = −wind(a− λ).
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1.5. Hankel operators in Hardy space. Let a ∈ L∞(T); consider the operator
Γa on H2, given by

Γaf = P (a · Jf), Jf(z) = f(z), f ∈ H2.

It is straightforward to see that the matrix of Γa in the standard basis of H2 is a
Hankel matrix:

〈Γazn, zm〉 = 〈P (azn), zm〉 = 〈a, zm+n〉 = â(n+m), n,m ≥ 0.

It is an easy exercise to check the commutation relation

S∗Γa = ΓaS.

In fact, it is not difficult to show that any bounded operator that satisfies this
relation is a Hankel operator.

Observe that Γa depends only on the Fourier coefficients â(n) with n ≥ 0. In
other words, the symbol a is not uniquely defined: there are many symbols b 6= a
(they all differ by Fourier coefficients with n < 0) such that Γa = Γb; in particular,
Γa = ΓPa.

It is clear from the definition that

‖Γa‖ ≤ ‖a‖L∞ .
In contrast to Toeplitz operators, this is not an equality! To understand this, recall
that there are many symbols b with Γb = Γa. Thus, we have

‖Γa‖ ≤ inf{‖b‖L∞ : Γb = Γa}.
It turns out that here we have an equality; this is known as Nehari’s theorem and
it marks the start of the development of the modern theory of Hankel operators.

Theorem (Z. Nehari, 1957 [13]).

‖Γa‖ = inf{‖b‖L∞ : Γb = Γa},
and the infimum is attained on some b ∈ L∞.

Example. Let uα(z) =
1

1− αz
, where |α| < 1. Recall that uα is the reproducing

kernel of H2, i.e.
〈f, uα〉 = f(α), f ∈ H2.

It is a simple exercise to check that

Γuα = 〈·, uα〉uα,
i.e. Γuα is a rank one Hankel operator.

Kronecker’s theorem asserts that Γa is a finite rank operator if and only if
Pa is a rational function with no poles in the closed unit disk. Using the above
example, it is not difficult to prove one part of Kronecker’s theorem. If Pa is a
rational function, we can represent it as a sum of elementary fractions uα and their
derivatives. Each of them gives rise to a finite rank Hankel operator.
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Combining Kronecker’s theorem and Nehari’s theorem, one can prove that Γa is
compact iff Γa = Γb for some b ∈ C(T) (this is known as Hartman’s theorem [9]).

We refer, e.g. to [14] and [16] for background information on Hankel operators.
Lastly, we would like to discuss one convention. If we want the symbol of Γa

to be uniquely defined, we can require it to be analytic, i.e. Pa = a, or in other
words â(n) = 0 for all n < 0. If we make this choice, then the symbol is given by
Γa1 = Pa = a. In the later sections, we will make this choice. We note that if Γa
is bounded, then Pa = Γa1 ∈ H2.

2. Inner functions, model spaces and isometric multipliers

2.1. Inner functions. A non-constant function θ ∈ H∞ is called inner, if |θ(z)| =
1 for almost all z in the unit circle.

Example. Let N ∈ N and let {zn}Nn=1 be points in the open unit disk. Define

θ(z) =
N∏
n=1

zn − z
1− znz

for |z| < 1. Then θ is inner; it is a Blaschke product of degree N with zeros {zn}Nn=1.

Example. The previous example can be modified to the case of infinitely many
zeros. The only new aspect is that one has to take care about the convergence of
the infinite product. Let {zn}∞n=1 be points in the open unit disk, satisfying the
condition

∞∑
n=1

(1− |zn|) <∞.

Define

θ(z) =
∞∏
n=1

zn
|zn|

zn − z
1− znz

for |z| < 1. (The terms zn/|zn| are inserted in order to make the infinite product
converge.) Then θ is inner; it is an infinite Blaschke product. We define the degree
of θ to be infinity.

Example. Let µ ≥ 0 be a finite singular measure on the unit circle T; define

θ(z) = exp

(
−
∫ π

−π

eit + z

eit − z
dµ(t)

)
for |z| < 1. Then θ is inner; it is a singular inner function; by definition, the degree
of θ is infinity. For example, if µ is a point mass at 1 with µ({1}) = c > 0, we have

θ(z) = exp

(
c
z + 1

z − 1

)
.

In fact, every inner function can be represented as a product of a Blaschke
product and a singular inner function.
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2.2. Beurling’s theorem. What are the invariant subspaces of S on H2?
Let α1, . . . , αn ∈ D, and let M ⊂ H2 be a subspace defined by the condition

f(α1) = · · · = f(αn) = 0. It is clear that SM ⊂ M . Roughly speaking, Beurling’s
theorem says that a suitable generalisation of this example yields all invariant
subspaces of S.

Theorem (A.Beurling (1949)). Let M ⊂ H2 be a closed subspace, M 6= {0} and
M 6= H2. Suppose that M is invariant under the shift operator: SM ⊂ M . Then
there exists an inner function θ such that

M = θH2 := {θf : f ∈ H2}.

Of course, the converse is also true: every subspace θH2 is invariant for S.

2.3. Model spaces. Observing that SM ⊂ M if and only if S∗M⊥ ⊂ M⊥, we
obtain

Corollary. Let M ⊂ H2 be a closed subspace, M 6= {0} and M 6= H2. Suppose
that M is invariant under the backwards shift operator: S∗M ⊂ M . Then there
exists an inner function θ such that

M = Kθ := H2 ∩ (θH2)⊥.

The space Kθ is called a model space.
The name comes from the fact that S∗|Kθ serves as a model for contractions

from a certain class.
Let us rewrite the condition f ∈ Kθ in an equivalent way:
f ⊥ θH2 ⇔ θf ⊥ H2 ⇔ zθf ∈ H2.

Example. Let θ(z) = zN , N ∈ N. Then

KzN = {a0 + · · ·+ aN−1z
N−1 : a0, . . . , aN−1 ∈ C}

is the space of all polynomials of degree ≤ N − 1.

Example. Let N ∈ N and let θ be a Blaschke product of degree N with distinct
zeros {zn}Nn=1. It is easy to see that

Kθ = span{uzn}Nn=1, uα(z) =
1

1− αz
.

Indeed, recalling that uα is the reproducing kernel, we see that the orthogonal
complement to span{uzn}Nn=1 is precisely the linear subspace of functions f ∈ H2

that vanish at all points {zn}Nn=1. This subspace coincides with θH2.

We mention in passing a few properties of model spaces:

• θ(0) = 0 if and only if 1 ∈ Kθ.
• The map f 7→ zθf is an involution on Kθ.
• We have Kθ1 ⊂ Kθ2 if and only if θ1 divides θ2, i.e. if θ2 = θ1ϕ with some

inner ϕ.
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• Suppose for simplicity that the degree of θ is finite. Then the spectrum of
S∗|Kθ coincides (up to complex conjugation) with the set of zeros of θ.

2.4. Isometric multipliers on model spaces. Let M be a closed subspace in
H2, and let p be an analytic function in the open unit disk. One says that p is an
isometric multiplier on M , if for every f ∈M , we have pf ∈ H2 and

‖pf‖ = ‖f‖.
In this case we will denote

pM = {pf : f ∈M}.
Clearly, pM is a closed subspace in H2.

Remark. Observe that if 1 ∈ M , then (taking f = 1) we have p ∈ M and
‖p‖ = 1.

Exercise. Check that if 1 ∈ M , then p is (up to a unimodular complex factor)
the normalised projection of 1 onto the space pM .

The interest to isometric multipliers on model spaces arose due to a result by
E.Hayashi from 1986, who showed that all Toeplitz kernels are of the form pKθ.
We will come back to this later.

D.Sarason has characterised all isometric multipliers on a given model space Kθ.
Before stating his result, we mention in passing that if g is any element of H2 of
norm one, then it can be represented as

g(z) =
a(z)

1− b(z)
, |z| < 1,

where a, b ∈ H∞ is a pair of functions such that |a|2 + |b|2 = 1 almost everywhere
on the unit circle.

Theorem (D. Sarason, 1988 [18]). Let θ be an inner function with θ(0) = 0, and
let p ∈ H2 be a function of norm one. Then p is an isometric multiplier on Kθ if
and only if it can be represented as

p(z) =
a(z)

1− θ(z)b(z)
, |z| < 1,

where a, b ∈ H∞ is a pair of functions such that |a|2 + |b|2 = 1 almost everywhere
on the unit circle.

Some ideas of the proof. We will prove only the easy part of the theorem (the “if”
part) in the easy case when |b| ≤ const < 1. Let us write |p|2 on the unit circle.
By a simple algebra, we have

|p|2 =
|a|2

|1− θb|2
=

1− |b|2

|1− θb|2
= 1 +

θb

1− θb
+

θb

1− θb
.
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Now let us multiply this by |f |2 and write the result as

|p|2|f |2 = |f |2 +
bf

1− θb
θf +

bf

1− θb
θf. (2.1)

Consider the second term in the right hand side. By the assumption on b, the term

bf

1− θb
is an element in H2. Further, since f ∈ Kθ, we have zθf ∈ H2, and so θf is an
element in H2 which vanishes at the origin. It follows that

bf

1− θb
θf

is a function in H1 which vanishes at the origin. Thus, its integral over the unit
circle vanishes. The same considerations apply to the last term in the right hand
side of (2.1): its integral over the unit circle vanishes. So, integrating (2.1), we
obtain ∫ π

−π
|p(eit)|2|f(eit)|2 dt =

∫ π

−π
|f(eit)|2 dt,

which means precisely that ‖pf‖ = ‖f‖. �

2.5. Frostman shifts. Here we address the following question. Let M = pKθ,
where p is an isometric multiplier on Kθ. Are the parameters p, θ unique in the
representation M = pKθ?

It is clear that one can multiply both p and θ by unimodular complex numbers
without changing the space pKθ. It turns out that there is another natural family of
transformations on p and θ that leaves the space pKθ invariant. To begin, consider
the example of the previous theorem with both a and b being constants. Changing

notation slightly, we see that for every |α| < 1, the function
√

1− |α|2/(1−αθ) is

an isometric multiplier on Kθ.

Exercise. 1. Check that√
1− |α|2

1− αθ
Kθ ⊂ Kθα , θα =

α− θ
1− αθ

.

2. Check that in fact we have the equality√
1− |α|2

1− αθ
Kθ = Kθα .

Hint: use the fact that (θα)α = θ and√
1− |α|2

1− αθα
=

1− αθ√
1− |α|2

.
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We can rewrite the result of this exercise as follows:

Kθ = gαKθα , gα =
1− αθ√
1− |α|2

,

and gα is the isometric multiplier on Kθα . This transformation is called the Frost-
man shift. From here we see that if p is an isometric multiplier on Kθ, then the
space pKθ can be equivalently written as

pKθ = pgαKθα ,

where pgα is an isometric multiplier on Kθα .
In fact, the converse statement also holds, see Crofoot [1]. If

pKθ = p̃Kθ̃,

where p is an isometric multiplier on Kθ and p̃ is an isometric multiplier on Kθ̃,
then for some constants |α| < 1, |c1| = 1, |c2| = 1 we have

θ̃ = c1θα, p̃ = c2pgα.

Suppose we have a subspace of the form pKθ. It is often convenient to perform
a Frostman shift with α = θ(0). Then θα(0) = 0 and we write our subspace in an

equivalent form p̃Kθ̃ with θ̃(0) = 0.
Also, θ(0) = 0 is a convenient normalisation which fixes the choices of θ and p

up to unimodular constant factors.

2.6. Nearly invariant subspaces. First, some heuristics. Let p ∈ H∞, and let
Tp be the operator of multiplication by p in H2. By a direct calculation, the
commutator of Tp with S∗ is a rank one operator:

S∗Tp − TpS∗ = (S∗p)〈·,1〉.
How does S∗ act on pKθ? Using the above calculation, we find that for f ∈ Kθ,

S∗(pf) = p(S∗f) + (S∗p)〈f,1〉.
Thus, pKθ is invariant for S∗, up to restricting to the subspace of codimension
one.

The following definition was introduced by D. Hitt in 1988, see [11]. A closed
subspace M ⊂ H2 is called nearly S∗-invariant, if

S∗(M ∩ 1⊥) ⊂M.

In other words, we require that if f ∈M and f(0) = 0, then f(z)/z ∈M .
Observe that if M 6= {0} is nearly S∗-invariant, then M 6⊥ 1. Indeed, if M ⊥ 1

and if f ∈M , then after dividing by z a finite number of times, we must arrive at
a function which does not vanish at the origin, which contradicts the assumption
M ⊥ 1. Because of this simple observation, the condition that M 6⊥ 1 is often
included in the definition of nearly S∗-invariance.
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Let M = pN , where S∗N ⊂ N and p(0) 6= 0. We claim that pN is nearly S∗-
invariant. Indeed, if f ∈ N and pf ∈ pN , then (pf)(0) = 0 means f(0) = 0, and
so p(z)f(z)/z = p(z)(f(z)/z) ∈M , because f(z)/z ∈ N .

Hitt’s theorem gives a converse.

Theorem (D. Hitt, 1988 [11]). Every nearly S∗-invariant subspace M is of the
form M = pN , where S∗N ⊂ N and p is an isometric multiplier on N . Thus,
we have two possibilities: (i) M = pKθ, where θ is inner and p is an isometric
multiplier on Kθ; (ii) M = pH2, where p is an inner function.

First let us discuss some heuristics behind the proof.
Suppose M = pKθ; how to identify p and θ? Recall that, by a Frostman shift,

we can choose θ such that θ(0) = 0, and then 1 ∈ Kθ. Also recall that in this case,
p is the normalised projection of 1 onto M . This is how the proof below starts.

Some ideas of the proof. 1) Let p be the normalised projection of 1 onto M . For
f ∈M , write

f = c0p+ f1, f1 ⊥ p.

Since both f and p are in M , we also have f1 ∈M . By orthogonality,

‖f‖2 = |c0|2 + ‖f1‖2.

Further, f1 ⊥ p means f1 ⊥ 1 and so, by the nearly S∗-invariance, we have
S∗f1 = f1/z ∈M . For f1/z we write again

f1/z = c1p+ f2, f2 ⊥ p.

Then we get
‖f1‖2 = |c1|2 + ‖f2‖2

and again S∗f2 ∈M . Continuing recursively, we get

fn/z = cnp+ fn+1, fn+1 ⊥ p,

and
‖fn‖2 = |cn|2 + ‖fn+1‖2.

Linking these equations together gives

f(z) = (c0 + c1z + · · ·+ cnz
n)p(z) + znfn+1(z)

and
‖f‖2 = |c0|2 + · · ·+ |cn|2 + ‖fn+1‖2 ≥ |c0|2 + · · ·+ |cn|2.

Inspecting the Taylor series of f/p at zero, we find that

f(z)/p(z) =
∞∑
n=0

cnz
n

and

‖f/p‖2 =
∞∑
n=0

|cn|2 ≤ ‖f‖2.
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So the operator T1/p : M → H2 is a contraction.
2) Consider the set

M0 = {f ∈M : ‖f/p‖ = ‖f‖}.

Exercise. Using the previous step of the proof, prove that M0 is a linear (linearity
is non-trivial!) closed subspace of M . Further, prove that T1/p(M0) is S∗-invariant.

3) Using a separate clever calculation with reproducing kernels, Hitt shows that
actually M0 = M . So now we have T1/pM = N , or M = pN , where p is an
isometric multiplier on N . �

3. Back to Toeplitz and Hankel operators

3.1. Toeplitz kernels. As already mentioned, Toeplitz operators satisfy the key
commutation relation

S∗TaS = Ta. (3.1)

Here we determine the structure of Toeplitz kernels. First we make two remarks:
1) Since I is a Toeplitz operator with the symbol 1, we have

Ker(Ta − λI) = KerTa−λ1.

Thus, describing the structure of Toeplitz kernels is equivalent to describing the
structure of all Toeplitz eigenspaces.

2) A deep theorem by M.Rosenblum [17] says that if Ta is a bounded self-adjoint
Toeplitz operator with a non-constant symbol a, then the spectrum of Ta is purely
absolutely continuous. In particular, Ta has no eigenvalues. This shows that the
study of kernels of Toeplitz operators is a specifically non-selfadjoint problem.

Theorem (E. Hayashi, 1986 [10]). Let T be a bounded Toeplitz operator in H2

with a non-trivial kernel. Then there exists an inner function θ and an isometric
multiplier p on Kθ such that

KerT = pKθ.

Example. If θ is inner, then KerTθ = Kθ, i.e. in this case p = 1.

Proof. 1) Let us check that KerTa is nearly S∗-invariant. Suppose Taf = 0 and
f ⊥ 1; then f = SS∗f . Let us apply the commutation relation (3.1) to S∗f : we
get

S∗TaSS
∗f = TaS

∗f.

The left hand side is S∗Taf = 0, hence S∗f ∈ KerTa, as claimed.
2) Since KerTa is a nearly invariant subspace, by Hitt’s theorem there are two

possibilities: (i) KerTa = pKθ where p is an isometric multiplier on Kθ, and (ii)
KerTa = pH2, where p is inner. Let us show that the second possibility implies
Ta = 0. Let f ∈ H2, and Ta(pf) = 0, where p is inner. This means P (apf) = 0,
i.e.

apf ∈ zH2.
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Since p is inner, this can be equivalently rewritten as

af ∈ pzH2.

Since pH2 ⊂ H2, we obtain f ∈ KerTa. Recall that f was an arbitrary element in
H2; this, we get Ta = 0. �

Remark. Part 2) of the proof can be easily modified to show that in the repre-
sentation KerTa = pKθ, the isometric multiplier p cannot have any inner divisors
(i.e. p is outer).

3.2. Anti-linear representation for Hankel operators. Recall that we have
defined Hankel operators on H2 as Γaf = P (af(z)). Now it is convenient to switch
to the following anti-linear version of Hankel operators:

Haf = P (af), f ∈ H2.

Observe that for f(z) =
∑∞

n=0 f̂(n)zn, we have

f(z) =
∞∑
n=0

f̂(n)z−n, f(z) =
∞∑
n=0

f̂(n)z−n,

and so the operators Γa and Ha are related through the anti-linear involution:

Ha = ΓaC, C :
∞∑
n=0

f̂(n)zn 7→
∞∑
n=0

f̂(n)zn.

It is easy to see that ΓaC = CΓ∗a, and so

H2
a = ΓaCΓaC = ΓaΓ

∗
a.

Thus, any Schmidt subspace EΓ∗a(s) can be expressed as

EΓ∗a(s) = Ker(H2
a − s2I).

It follows that Ha acts on Ker(H2
a − s2I). This is one of the advantages of the

anti-linear representation: Ha acts on EΓ∗a(s), while Γa acts from EΓa(s) to EΓ∗a(s).
Notation: from now on, we will assume that the symbol of a Hankel operator

is analytic and denote it by u. Recall again that u = Hu1 ∈ H2.

3.3. Hankel kernels and ranges. Recall that Hankel operators satisfy the com-
mutation relation

S∗Hu = HuS.

First we discuss Hankel kernels. If Huf = 0, then by the above commutation
relation we also have

0 = S∗Huf = HuSf.

Thus, Hankel kernels are invariant under the shift operator S, and so by Beurling’s
theorem they have the form ψH2 for some inner function ψ. Taking orthogonal
complements, we obtain

RanHu = Kψ.
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Example. Let θ be inner; consider the Hankel operator Hθ,

Hθf = P (θf).

It is straightforward to see that in this case we have

KerHθ = zθH2, RanHθ = Kzθ,

and Hθ is an anti-linear involution on Kzθ,

Hθf = θf, f ∈ Kzθ.

It follows that H2
θ is the orthogonal projection onto Kzθ. In other words, in this case

we have only one singular value s = 1, and the corresponding Schmidt subspace is
EHθ(1) = Kzθ.

3.4. Schmidt subspaces of Hankel operators.

Theorem (Gerard-Pushnitski [6, 8]). Let Hu be a bounded Hankel operator on
H2, and let s > 0 be a singular value of Hu:

EHu(s) = Ker(H2
u − s2I) 6= {0}.

Then there exists an inner function θ and an isometric multiplier p on Kθ such
that

EHu(s) = pKθ.

Before embarking on the proof, we note that EHu(s) may or may not be nearly
S∗-invariant. Indeed, it may happen that EHu(s) is orthogonal to 1.

Example. Let 0 < α < 1, and let

u(z) =
1− α2

1− αz2
.

Exercise. Check that Huu = u.

Thus, 1 is a singular value, and u ∈ EHu(1).

Exercise. Applying S∗ to the identity Huu = u, check that Hu(zu) = α(zu).

Thus, α is a singular value, and zu ∈ EHu(α).

Exercise. Check that rankHu = 2. Deduce that

EHu(1) = span{u}, EHu(α) = span{zu}.

Summarising, we see that EHu(α) ⊥ 1.

Proof of the Theorem in the case EHu(s) 6⊥ 1.
1) Let us establish some identities. We need the rank one identity

SS∗ = I − 〈·,1〉,
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and the obvious identity Hu1 = u. Using the commutation relation S∗Hu = HuS,
we have

S∗H2
uS = HuSS

∗Hu = H2
u − 〈·, Hu1〉Hu1 = H2

u − 〈·, u〉u.
(Compare this with the identity S∗TS = T for Toeplitz operators!) Let us multiply
the last identity by S∗ on the right. After rearranging, we obtain

S∗H2
u −H2

uS
∗ = 〈·,1〉S∗Huu− 〈·, Su〉u. (3.2)

2) We need to establish the existence of an element g ∈ EHu(s) such that
〈u, g〉 6= 0. This follows from the assumption EHu(s) 6⊥ 1. Indeed, let h ∈ EHu(s)
be such that 〈h,1〉 6= 0; take g = Huh. Then

〈u, g〉 = 〈ug,1〉 = 〈Hug,1〉 = 〈H2
uh,1〉 = s2〈h,1〉 6= 0.

3) Let us prove that EHu(s) is nearly S∗-invariant. Let f ∈ EHu(s) ∩ 1⊥, and
let g as above. Let us take the bilinear form of (3.2) on the elements f , g. For the
left hand side, we have

〈S∗H2
uf, g〉 − 〈H2

uS
∗f, g〉 = s2〈S∗f, g〉 − 〈S∗f,H2

ug〉 = s2〈S∗f, g〉 − s2〈S∗f, g〉 = 0.

For the right hand side, we have

〈f,1〉〈S∗Huu, g〉 − 〈f, Su〉〈u, g〉;
by assumption f ⊥ 1, and so we obtain

〈f, Su〉〈u, g〉 = 0.

But 〈u, g〉 6= 0, and so we obtain that 〈f, Su〉 = 0.
Now let us substitute f back into (3.2) and use the latter fact; the right hand

side vanishes and we have

S∗H2
uf −H2

uS
∗f = 0.

Since H2
uf = s2f , this can be rewritten as

(H2
u − s2I)S∗f = 0,

and so S∗f ∈ EHu(s), as claimed.
Thus, EHu(s) is a nearly S∗-invariant subspace.
4) By Hitt’s theorem, either EHu(s) = pKθ (where p is an isometric multiplier

on Kθ) or EHu(s) = pH2 (where p is inner).

Exercise. Show that the second option is not possible. Use the fact that the
calculation from the previous step of the proof shows that

S∗(EHu(s) ∩ 1⊥) ⊂ EHu(s) ∩ u⊥.
Compare this with

S∗(pH2 ∩ 1⊥) = pH2

if p is inner. Bring this to a contradiction.

This completes the proof. �
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Proof of the Theorem in case EHu(s) ⊥ 1. Let α, |α| < 1, be such that α is not a
common zero of all elements of EHu(s). Let µ be the Moebius map

µ(z) =
α− z
1− αz

,

mapping the unit disk onto itself, and let Uµ be the corresponding unitary operator
on H2:

Uµf(z) =

√
1− |α|2

1− αz
f(µ(z)).

By a direct calculation, Uµ is a unitary involution on H2.

Exercise. Check that UµHuUµ = Hw with some symbol w.

Now consider M = UµEHu(s). Then M = EHw(s) and z = 0 is not a common
zero of all elements of M , i.e. M 6⊥ 1. By the previous part of the proof, it follows
that M = pKθ with some θ, and p is an isometric multiplier on Kθ. Now

EHu(s) = Uµ(pKθ).

Exercise. Check that
Uµ(pKθ) = (p ◦ µ)Kθ◦µ,

and p ◦ µ is an isometric multiplier on Kθ◦µ.

This completes the proof. �

3.5. The cubic Szegő equation and inverse spectral problems. The mo-
tivation for the study of Schmidt subspaces of Hankel operators comes from the
work of Patrick Gérard and Sandrine Grellier in 2010–2014. In [2], they introduced
the cubic Szegő equation

i
∂u

∂t
= P (|u|2u), u = u(z; t), z ∈ T, t ∈ R,

as a model for totally non-dispersive evolution equations. Here for each t ∈ R, the
function u(·, t) is an element of the Hardy class H2 = H2(T) and P : L2 → H2

is the usual Szegő projection. It turned out [2, 3] that this equation is completely
integrable and possesses a Lax pair. Indeed, a function u is a solution to the cubic
Szegő equation if and only if

d

dt
Hu = [Bu, Hu],

where Hu is an anti-linear Hankel operator with the symbol u as discussed above,
and Bu is a certain auxiliarly skew-selfadjoint operator. In particular, it follows
that if the operator Hu is compact, then its singular values are integrals of motion
for the cubic Szegő equation.

In order to solve the Cauchy problem for the cubic Szegő equation, one must
therefore develop a version of direct and inverse spectral theory for Hu. The spec-
tral data in this problem involves the sequence of singular values of Hu and the
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sequence of inner functions, parameterising the Schmidt subspaces of Hu. This
was achieved in [4, 5] for u ∈ VMOA(T), which corresponds to compact Hankel
operators Hu.

Without going into details, we mention the main points of this construction
(see also [7]). For simplicity of discussion, let us assume that Hu is a finite rank
operator, i.e. u is a rational function analytic in the unit disk, with no poles on the
unit circle. Denote by {sn}Nn=1 the sequence of singular values of Hu, enumerated
in the decreasing order; for each sn, we have a non-trivial Schmidt subspace

EHu(sn) = Ker(H2
u − s2

nI).

(Note that usually singular values are enumerated with multiplicities, but here we
list every distinct singular value exactly once!) Further, by our main result, each
of these Schmidt subspaces can be written as

EHu(sn) = pnKθn .

In general, the parameters pn and θn are not unique. But my making a Frostman
shift we can ensure that θn(0) = 0 for all n, and then they are unique up to a
unimodular multiplicative factor. Part of our spectral data for Hu will be the pair

({sn}Nn=1, {θn}Nn=1).

It turns out that this data is insufficient to recover the symbol Hu; we need to
complement it by the spectral data corresponding to the auxiliary finite rank
Hankel operator HS∗u. Let {s̃n}Nn=1 be the singular values of HS∗u and let

EHS∗u(s̃n) = p̃nKθ̃n

be the corresponding Schmidt subspaces, where the parameters are normalised by

θ̃n(0) = 0. Then it turns out that the spectral data

({sn}Nn=1, {s̃n}Nn=1, {θn}Nn=1, {θ̃n}Nn=1)

uniquely determines the symbol u. Moreover, for any sets of distinct positive num-
bers {sn}Nn=1, {s̃n}Nn=1 (we need a certain interlacing condition to hold) and any

collection of inner functions θn, θ̃n, one can construct a unique symbol u such that
the Hankel operator Hu has the corresponding spectral data.
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