M.V. Bondarko, St. Petersburg State University

Chow-weight homology: a "mixed motivic decomposition of the diagonal"

Basic properties of Chow motives imply that if a Chow motif M is r-effective (r > 0) then its Chow groups $\mathrm{CH}_i(M, \mathbb{Q}) = \{0\}$ for i < r. 40 years ago S. Bloch noted that the converse is true if the base field is a universal domain. This easily yielded the corresponding effectivity properties of the cohomology of a smooth projective P whose lower Chow groups are trivial; moreover, the diagonal cycle on $P \times P$ decomposes into a certain sum.

Together with V. Sosnilo and D. Kumallagov, I extended these results (in several ways) to Voevodsky motives, motives with compact support of arbitrary varieties, and cohomology with compact support.

Theorem (B.+V. Sosnilo). Let r > 0, X is a k-variety (that is, a reduced separated scheme of finite type over k), e is the exponential characteristic of k, K_0 is a universal domain containing k.

Assume that $\mathrm{CH}_j(X_{K_0},\mathbb{Q}) = \{0\}$ for $0 \leq j < r$. Then the following statements are valid.

- 1. There exists E > 0 such that $E \cdot \operatorname{CH}_j(X_{k'}, \mathbb{Z}[1/e]) = \{0\}$ for all 0 < j < r and all field extensions k'/k.
- 2. If k is a subfield of \mathbb{C} and q > 0 then the (highest) q-th weight factor of the mixed Hodge structure $H_c^q(X_{\mathbb{C}})$ (the singular cohomology of $X_{\mathbb{C}}$ with compact support) is r-effective (as a pure Hodge structure).

Moreover, the same property of the Deligne weight factors of $H_c^q(X_{k^{alg}})$ is fulfilled for étale cohomology with values in the category of $\mathbb{Q}_{\ell}[Gal(k)]$ modules if k is the perfect closure of a finitely generated field, $\ell \in \mathbb{P} \setminus \{e\}$.

In particular, these factors are zero if q < 2r.

3. The motif $\mathcal{M}^c_{\mathbb{Q}}(X)$ (of X with compact support) is an extension of an element of $DM^{\mathrm{eff}}_{gm}(k,\mathbb{Q})_{w_{\mathrm{Chow}}\geq 1}$ by an object of $\mathrm{Chow}^{\mathrm{eff}}(k,\mathbb{Q})\langle r \rangle$; here $DM^{\mathrm{eff}}_{gm}(k,\mathbb{Q})_{w_{\mathrm{Chow}}\geq 1}$ is the extension-closure of $\cup_{i>0}\mathrm{Chow}^{\mathrm{eff}}(k,\mathbb{Q})[i]$.

Moreover, condition 3 implies condition 1; well-known motivic conjectures yield that condition 2 implies condition 1 as well.

The most general of our motivic formulations involve the new Chowweight homology theories. Those are defined in terms of the (exact and conservative) weight complex functor $DM_{gm}^{\text{eff}} \to K^b(Chow^{\text{eff}})$. The latter is defined and studied by means of the theory of weight structures on triangulated categories.