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Part 1. General notions, some intuition and historical notes



Geometric reflection – c’est pas ça
Let ξ(t) be a Markov process in Rd. We shall call it free in
opposition to its confined to D versions.

We are interested in one
single type of containment: specular reflection off the boundary.
Note that we cannot define the reflection geometrically

since it means imposing conditions on normal derivatives, which
very seldom exist.



Geometric reflection – c’est pas ça
Let ξ(t) be a Markov process in Rd. We shall call it free in
opposition to its confined to D versions. We are interested in one
single type of containment: specular reflection off the boundary.

Note that we cannot define the reflection geometrically

since it means imposing conditions on normal derivatives, which
very seldom exist.



Geometric reflection – c’est pas ça
Let ξ(t) be a Markov process in Rd. We shall call it free in
opposition to its confined to D versions. We are interested in one
single type of containment: specular reflection off the boundary.
Note that we cannot define the reflection geometrically

since it means imposing conditions on normal derivatives, which
very seldom exist.



Reflection is Neumann conditions for the generator

Taking average of f over the paths of ξ

(T tf)(x) = Ef(x + ξ(t))

is a Markov contraction semigroup!

We define the reflecting
version of ξ by imposing Neumann conditions on its generator.
Or on its quadratic form.

Example (see. [1])
Brownian Motion with reflection off the boundary ∂D is a
process, associated with the Dirichlet form

E(u, v) =
1

2

∫
D
∇u · ∇v dx, D[E ] = W 1

2 (D).

Remark. Same form on W 1,0
2 (D) gives rise to an absorbing BM.
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Local time huddles the process back into the domain

Skorokhod ’61: d = 1
Skorokhod in [6] has proposed a pathwise
construction of the reflecting diffusion in
[0,∞) and proved the since-called
Skorokhod semimartingale decomposition

ξ̃(t) = ξ(t) + ζ(t),

where ζ is the local time of ξ.

Case d > 1: dζ is a measure on a
boundary
If the boundary is C3-smooth, the
Skorokhod construction is still applicable
(see [3]), but in place of ζ(t) the
decomposition features an integral with
respect to dζ(t).

Figure: Local time
pushes the process
back into the
domain D
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Skorokhod reflection bears no resemblance to the
geometric reflection

Let ξ be a non-random smooth function. Its reflecting version in
[0,∞):

Here ξ̃ is the reflecting version and ζ is the compensator.



Part 2. Construction



A class of Lévy processes under consideration
consists of
1. pure jump processes (without diffusion terms)
2. with rotation-invariant Lévy measure dΠ

3. and finite second moments

Figure: Typical path of α-stable process (α = 1.42),
https://demonstrations.wolfram.com/StableLevyProcess

https://demonstrations.wolfram.com/StableLevyProcess


Characteristic function and generator

The characteristic function
is of the form ϕt(p) = exp(−tL(p)), where

L(p) = −
∫
Rd

(
eip·x − 1− ip · x

)
dΠ(x) . (1)

Generator

−Lf(x) =

∫
Rd

(
f(x + y)− f(x)− f ′(x) · y

)
dΠ(y) (2)

Remark. It would be a PDO if L(p) was smooth (it in general is
not!).



Main idea: two extensions

Main idea of [4], [5]:
1. take a function f in D

2. and extend it in some special way to the whole Rd:
2.1 f̃ for the reflecting process
2.2 f for the process inside the domain

3. associate a semigroup to each by

P tf = T tf̃ , Rtf = T tf,

denote its generators by −A and −AN .
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Adjustment to the main idea

The idea works well when D is very simple (such as a ball or a
cube). In an arbitrary smooth domain we construct instead two
sequences f̃M (x,y) and fM (x,y), which are tangent to f at
y = 0.

Then, we define P t as

(P tf)(x) = lim
M→∞

Ef̃M (x, ξ(t)),

whereas for the generator we have

(Af)(x) = lim
M→∞

Lyf̃M (x,y)
∣∣∣
y=0

.
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Difference lives on the boundary

First lemma on the difference of semigroups
Let f ∈W 2

2 (D) and x ∈ D. Then

(P tf)(x)− (Rtf)(x) = − lim
M→∞

∫ t

0
P τL

(
f̃M − fM

)
(x, 0) dτ

and in W 2
2 (D).

Remark. We shall employ this lemma to define a pathwise
accumulated momentum.
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Difference of semigroups lives on the boundary

Second lemma on the difference of semigroups
For every f ∈W 2

2 (D) holds

(P tf)(x)− (Rtf)(x) =

∫
∂D

Qt(x, z)(γ1f)(z) dS(z),

where

Qt(x, z) =
1

2

∫ t

0

R̃τ (x, z) dτ, R̃τ (x, z) =

∞∑
l=0

L(κl)

κ2l
e−tL(κl)sl(x)sl(z).

Remark. Recall that local time is a measure on the boundary.
It is exactly the case here: dLτ = 1

2R̃
τ (x, z)δ∂D(z) dτ .
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A small digression regarding Brosamler theorem

Let Xs be a reflecting BM in D and Ls its local time.

Classical result due to Brosamler [2]:

u(x) =
1

2
lim
t→∞

Ex

∫ t

0
f(Xs)dLs

solves the Neumann problem −∆u = 0, un = f ∈ B(∂D).
In our setting,

u(t,x) = (Qtg)(x)

solves −Au = 0, u(0,x) = 0, γ1u = g.
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Three corollaries on the group structure (1)

Theorem 1
The operator families (Rt)t≥0 and (Qt)t≥0 satisfy the following
evolution relations:

Rt+s = RtRs,

Qt+s = Qt + R̃tQs

and R0 = I, Q0 = 0.



Three corollaries on the group structure (2)

Theorem 2
For every t > 0 and f ∈ L2(D) holds

∂

∂t
Rtf =

1

2
ANRtf.

Theorem 3
For every t > 0 and g ∈W 1/2

2 (∂D) holds

∂

∂t
Qtg =

1

2

∫
∂D

R̃t(x,y)g(y) dS(y) .
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Pathwise definition of the accumulated momentum

It is easy to guess a pathwise counterpart of P t – is should be a
shift by ξ(t)

(Ptf)(x) = f(x + ξ(t))

(in fact it is preferable to choose something equivalent to this
definition).

By way of analogy with the first lemma, define:

(Qtg)(x) = lim
M→∞

∫ t

0
PτL

(
G̃M −GM

)
(x, 0) dτ, (3)

where G(x,y) is a special continuation of g into the domain.
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Properties of pathwise accumulated momentum

Existence
The limit in the rhs of (3) exists in L2(H, µ), where H = D × Ω
and dµ = dx× dP.

The average of Qt
Let g ∈W 1/2

2 (∂D). Then

E(Qtg)(x) = (Qtg)(x).
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Limit theorem for the reflecting BM in d-ball

([5] by me). Let us approximate the BM w(t) with a random
walk

ζn(t) =
1√
n

η(nt)∑
j=1

ξj .

Here ξj are iidrvs with common rotation-invariant distribution
and a unitary second moment.

Denote the corresponding
semigroups by P tn and Rtn. We can prove that their difference is
given by

P tnf −Rtnf = lim
M→∞

∫ t

0
P τL(f̃M − fM ) dτ .

From this we derive the definition of Qtn.
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Limit theorem for the reflecting BM in d-ball

Limit theorem for the process in the domain
Let f ∈ D(AN ). Then

∥∥Rtnf −Rtf∥∥L2(D)
≤ C
√
t√
n
‖f‖W 2

2 (D) .

Limit theorem for the local time
For every g ∈W 1/2

2 (∂D) holds

∥∥Qtng −Qtg∥∥L2(D)
≤ Ct3/8

n3/8
‖g‖2

W
1/2
2 (∂D)

.



Limit theorem for the reflecting BM in d-ball

Limit theorem for the process in the domain
Let f ∈ D(AN ). Then

∥∥Rtnf −Rtf∥∥L2(D)
≤ C
√
t√
n
‖f‖W 2

2 (D) .

Limit theorem for the local time
For every g ∈W 1/2

2 (∂D) holds

∥∥Qtng −Qtg∥∥L2(D)
≤ Ct3/8

n3/8
‖g‖2

W
1/2
2 (∂D)

.



Bibliography I

Bass, Richard. F and Pei Hsu: Some potential theory for
reflecting brownian motion in holder and lipschitz domains.
Ann. Probab., 19(2):486–508, 1991.
https://projecteuclid.org/euclid.aop/1176990437.

Brosamler, G. A.: A probabilistic solution of the neumann
problem.
Math. Scand., 38:137–147, 1976.

Pilipenko, Andrey: An introduction to stochastic differential
equations with reflection, volume 1.
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