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Presentation of the model

A plane partition m = (7; )i j>1 is an almost zero double array of
non-negative integers, which is non-increasing in both directions :

mij > g1y and  wi; > mijq,

+oo
7| = Z mij < 400.
ij=1

4/29



Presentation of the model

A plane partition m = (7; )i j>1 is an almost zero double array of
non-negative integers, which is non-increasing in both directions :

mij > g1y and  wi; > mijq,

+oo
7| = Z mij < 400.
ij=1

We equip the set of plane partition with a geometric weight :
Pq(ﬂ) = Cq‘ﬂv

where g € (0,1) and C is the normalizing contant.

4/29



Presentation of the model

A plane partition m = (7; )i j>1 is an almost zero double array of
non-negative integers, which is non-increasing in both directions :

Tij 2 Wity and  mij > i,

+oo
7| = Z mij < 400.
ij=1

We equip the set of plane partition with a geometric weight :
Pq(ﬂ) = Cq‘ﬂv

where g € (0,1) and C is the normalizing contant. We associate to a plane
partition 7 a configuration on E := Z x %Z :

S(m) = {0 —J)ymij—(i+j-1)/2,i,j=1}.
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Presentation of the model

N W w s

3 2 11
Figure — The plane partition i f and its associated configuration
1
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Okounkov-Reshetikhin determinantal formula

Theorem (Okounkov-Reshetikhin, 2003)

The image of Pq by & is a determinantal process with kernel :

1 dzd
q(S Xt y / / \s|+1z = \t| 1°
2I7T |z|=1%e J |w|=F¢ ‘D(t W) Z =W x+55= ) —y—
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Okounkov-Reshetikhin determinantal formula

Theorem (Okounkov-Reshetikhin, 2003)

The image of Pq by & is a determinantal process with kernel :

Ko (s, x: t / / 1 dzdw
S, X, .
g y 2[71' |z| 14e W| Te (D(t W zZ— W X+‘ |+1 W—y—i‘tlgl

e The function ® is expressed as a ratio of g-deformed Pochhammer
symbols :

too (1— Z—1q1/2+k)

®(s, z) = H T
- zq1/2+s—k)

e The number € > 0 is sufficiently small in order to count singularities.

e One takes the sign "+" for s > t and the sign "—" for s < t.
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The limit processes

We have the limit Theorem, as g =e¢~" — 1:
Theorem (Okounkov-Reshetikhin, 2003)
Let A:={(7,x) € R?,|e7/2 4 e~™/2 — e7X| < 2}, and for (1,X) € A, let :

2iT S )

z(7,x)
Sradanb) = 5 [ (1= wpwrSY @ b) e E,

where : {z(7,x), z(,x)} = C(0,e~7/2) N C(1, e~ T/4x/?).

Then, for all (1, x) € A, and all (t1, h1), ..., (tn, hn) € E, we have :
i T K p T 2
lim det (Ke,r (r 85, X i =+ 8 rhj))’_FI

= det (Srx(ti — tj, hi — h))._y -
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The law of large numbers
For m = ((m},m%) -~ (m,l,, m%)) C E, we write :

1m(m) =1if m C &(w), 0 else.
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The law of large numbers

Theorem (P.L.)

For all continuous compctly supported function f : R?> — R, and all finite
subset m C E, we have :

3t e = [ F0Einldrd
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The proof

We want :

im r? = | f(r,X)Er [1m]dTd
lim > F(rt )i pysm /A (7, X)Erx [1m]dTd X
(t,n)eENr—1A
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We want :

rIi_rPO r? Z f(rt, rh)l(t’h)+m:/Af(T,X)ET,X[lm]deX
(t,n)eENr—1A

We will prove that :
e the expectation of the left-hand-side converges to the right-hand-side,

13/29



The proof

We want :

rIi_rH)r2 Z f(rt, rh)l(t’h)+m:/Af(T,X)ET,X[lm]deX
(t,n)eENr—1A

We will prove that :
e the expectation of the left-hand-side converges to the right-hand-side,

e the variance of the left-hand-side goes to 0.

13/29



The proof

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

14 /29



The proof

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

Eo-rr? Z f(rt, rh)1(e pyym
(t,h)eENr—1A

14 /29



The proof

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

Eo-rr? Z f(rt, rh)1(e pyym
(t,h)eEnr—1A

— 2 Z f(rt, I’h)Ert,rh [lm]
(t,h)EENr—1A

14 /29



The proof

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

Eo-rr? Z f(rt, rh)1(e pyym
(t,h)eEnr—1A

=r* > f(rt,DEpm[1m] + O(r).
(t,h)eENr—1A

14 /29



The proof

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

Eo-rr? Z f(rt, rh)1(e pyym
(t,h)eEnr—1A

=r* > f(rt,DEpm[1m] + O(r).
(t,h)eENr—1A

Remark that the sum :

P>t th) B 1]

(t,h)eENr—1A

14 /29



The proof

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

Eo-rr? Z f(rt, rh)1(e pyym
(t,h)eEnr—1A

=r* > f(rt,DEpm[1m] + O(r).
(t,h)eENr—1A

Remark that the sum :

P>t th) B 1]

(t,h)eENr—1A

is a Riemann sum for the integral :
/ f(r, x)Ery[1m]dTdx.
A
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The proof

We prove that the variance :

rt Z f(rt1, rhy)f(rta, rho)
(t1h1),(t2,h2)Er—LANE

X (Er [l(t1,h1)+ml(t2,h2)+m] —E, [l(t17h1)+m] Er [l(tz,hz)er])

goes to 0 as r goes to 0.
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The proof

We prove that the variance :

rt Z f(rty, rhy)f(rt2, rha)
(t1h1),(t2,h2)Er—LANE

X (Er [l(t17h1)+ml(t2,h2)+m] —E, [l(t17h1)+m] Er [l(tz,hz)er])

goes to 0 as r goes to 0. To this aim, we control the covariances :

EI’ [l(tl,h1)+ml(t2,h2)+m} - EI’ [l(tl,hl)—‘rm] ]EI’ [l(tz,h2)+m:|

in a convenient manner, depending on the fact that (t1, h1) and (t2, hp) are
close of each other or not.
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Main lemma : control of the covariances

Lemma

For all finite subset m C E, for all compact set K C R? and for all
a € (0,1),
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Main lemma : control of the covariances

Lemma

For all finite subset m C E, for all compact set I C R? and for all
a € (0,1),there exists C > 0 such that for all sufficiently small r > 0, if
(11, x1), (12, x2) € KNANTE are such that :
max{|m1 — 72|, |x1 — Xx2|} > r||m||ec, then, for T # 1 :
‘Er |:l%(7'17X1)+m1%(7'27X2)+m:| —E |:l%(7'17X1)+m:| E, [l%(szxz)—&-m”
< Cexp(—r=9)

|71 — 2|2
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Main lemma : control of the covariances

Lemma

For all finite subset m C E, for all compact set I C R? and for all
a € (0,1),there exists C > 0 such that for all sufficiently small r > 0, if
(11, x1), (12, x2) € KNANTE are such that :

max{|m1 — 72|, |x1 — Xx2|} > r||m||ec, then, for T # 1 :

‘E [11 (r1x2)+m 1L (2, xz)+m} —E [1%(71,X1)+m} E, [l%ﬁmﬂm”
L Cop(=r?)

|71 — 2|2

and formy =1 =171 :

‘E [11 (rx1)+mtl (T,x2)+m] —E [l%(T,xl)er] E [l%(T,xz)er”
Cr
~xn = xel
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Proof of the limit Theorem

Since :

T/rs+l 1
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Proof of the limit Theorem

Since :

T/r+s ]_
log (‘D(T/r +t,z)z X he /;H) ~ =5(z;7,x),
r

the kernel K,--, taken at (7, x) + (t;, h;), is equivalent, as r — 0, to :

[ exp (1 (S(zi7x) = S(wir, x))> /(z — w)dzdw,
z€(1te)y,r Jwe(lFe)vr r

where :
o v = C(0,€7/?);
e RS(z;7,x) = —7/2(7/2+ ), z € ¥r;

e when (7, x) € A, the function S has two distinct critical points :
e™/?z(r,x) and €7/%z(7,x);

e we can deform the contour ~; following the direction of the gradient
of RS(2).
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Deformation of the contour

Figure — The contours 7. et 4=

=

QR
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Deformation of the contour

We deform the circle +, in two simple contours v~ et 7=, following the
direction (or the opposite direction) of the gradient of RS(z; 7, x) in such a

way that :

RS(z;7,x) — RS(w;7,x) <0, z€S, wery,

except at the critical points where we have equality.

19/29



Deformation of the contour

We deform the circle +, in two simple contours v~ et 7=, following the

direction (or the opposite direction) of the gradient of RS(z; 7, x) in such a
way that :

RS(z;7,x) — RS(w;7,x) <0, z€S, wery,
except at the critical points where we have equality. Taking into account

the residue at z = w, which we do not integrate in the new contours, one
obtains the Theorem. O
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Proof of the main lemma

When we have :

max{|T1 — 72|, |x1 — x2|} > r|[m||oo,

the ensembles :

1 1
;(71, X1) + met ;(72, X2)+m

are disjoint.
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Proof of the main lemma

When we have :

max{|T1 — 72|, |x1 — x2|} > r|[m||oo,

the ensembles :

1 1
;(71, X1) + met ;(72, X2)+m

are disjoint. This implies :
e The covariance :

K, [ll(n,xmm 11(r,, x2)+m} —E [1%(71,X1)+m}E [“m,xzwm]’

can be written as a sum in which each term has a factor :
T
Koo (2 e 240l 2+ 6,22 1)
X Ko ( + t12, a8 Ay i)
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Proof of the lemma

Indeed :

Ee-r l%(717X1)+ml%(Tz7xz)+m]

is an alternate sum of 2|m| terms of two types :
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Proof of the lemma
Indeed :
Ee-r l%(71,x1)+ml%(727xz)+m]

is an alternate sum of 2|m| terms of two types :

(r1.xa)  (72,x2) (r1.x1)  (72,x2)
(71, x1) * o (Tx1) °
(72, x2) * . (72, x2) . ’
We have :

2

o€S(2|m|), type 1

21/29



Proof of the lemma
Indeed :
Ee-r l%(71,x1)+ml%(727xz)+m]

is an alternate sum of 2|m| terms of two types :

(r1.xa)  (72,x2) (r1.x1)  (72,x2)
(71, x1) * o (Tx1) °
(72, x2) * . (72, x2) . ’
We have :

S e

o€S(2|m|), type 1

21/29



Proof of the lemma
Indeed :
Ee-r l%(71,x1)+ml%(727xz)+m]

is an alternate sum of 2|m| terms of two types :

(r1.xa)  (72,x2) (r1.x1)  (72,x2)
(71, x1) * o (Tx1) °
(72, x2) * . (72, x2) . ’
We have :

Z o0 =K |:l%(7'17X1)+m:| Ee-r [l%(Tz’Xsz} '
a€5(2|ml), type 1

21/29



Proof of the lemma

Thus :

Ee—r l%(T1,X1)+ml%(T2,X2)+m] — Ee-r [l%(TLX1)+m] Be-r [l%(TLXz)-i-m]
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Proof of the lemma

Thus :

E “E,. [11( E, . [11(

e’ {l%(Tl,X1)+ml%(‘fz,X2)+m] 717X1)+m] 727X2)+m]

>

o€S5(2|m|), type 2
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Proof of the lemma

Thus :

E E, . [11(

e’ {l%(Tl,X1)+ml%(‘fz,X2)+m] — e {l%(ﬁ,xﬂﬂ-m] 727X2)+m]

= E OO0 *x...%.

o€S5(2|m|), type 2
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Proof of the lemma

The factors "oo" of interests are quadruple integrals :

(1+ 04 / / / / dzdwdz dw’ :
z€vry JWEYr, JZ €Y, JWEYH Z_ - )

exp (r (5(2 m1,x1) — S(w; 2, x2) + S(Z; 72, x2) — S(W’;Tl,X1))) )
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Proof of the lemma

The factors "oo" of interests are quadruple integrals :

(1+ 04 / / / / dzdwdz dw’ :
z€vry JWEYr, JZ €Y, JWEYH Z_ - )

exp (r (S(zi 71, x1) — S(w;i T2, x2) + S(2's 72, x2) — S(W’;Tl,X1))) :

We symmetrized the problem.
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Deformation of the contours

We deform the contours 7, and v, :

Figure — The contours 7 et 7

[m]

=
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Proof of the lemma
On these contours, we have :

RS(z; 11, x1) —RS(W';711,x1) <0, zevs, wen,
RS(Z'; 72, x2) — RS(W; 72, x2) <0, 2 €755, w e s,
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Proof of the lemma

On these contours, we have :

RS(z; 11, x1) —RS(W';711,x1) <0, zevs, wen,
RS(Z'; 72, x2) — RS(W; 72, x2) <0, 2 €755, w e s,

When 7, # 7, these deformation do not affect the value of te kernel,
which concludes the proof in this case since :

exp (% (S(z; 71, x1) — S(w; 72, x2) + S(2'; 72, x2) — S(W; 71, X1)))
(- w)(Z —w)
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Proof of the lemma

On these contours, we have :

RS(z; 11, x1) —RS(W';711,x1) <0, zevs, wen,
RS(Z'; 72, x2) — RS(W; 72, x2) <0, 2 €755, w e s,

When 7, # 7, these deformation do not affect the value of te kernel,
which concludes the proof in this case since :

exp (% (S(z; 71, x1) — S(w; 72, x2) + S(2'; 72, x2) — S(W; 71, X1)))
(- w)(Z —w)

exp (—7)

< C.
(11— 72)?

for all o < 1.
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Proof of the lemma

When 71 = 7 = 7 the deformed contours look like :

Figure — The contours 7> and ~/%:<
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Proof of the lemma

When 71 = 7 = 7 the deformed contours look like :

Figure — The contours 7> and ~/%:<

In this case, the new contours avoid the residues at z = w, z/ = w’ and we
have to integrate them to obtain the right asymptotics.
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Proof of the lemma

This gives :

ﬁ\l—l

K- (i(n,X1)+ (T2, Xx2) + - )

1
X Kor (7‘2,)(2) *(Tth) + . )

- +/ f(W;T,Xl,Xz)dW>
</ze'yi’< /vv€v$’> w
x +/ f(W’;T,X2,X1)dW'>a
</z’675‘< /W’Evi’> w'!
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Proof of the lemma

This gives :

ﬁ\l—l

K- (i(n,X1)+ (T2, Xx2) + - )

1
X Kor (7‘2,)(2) *(Tth) + . )

- +/ f(W;T,Xl,Xz)dW>
</ze'yi’< /vv€v$’> w
x +/ f(W’;T,X2,X1)dW'>a
</z’675‘< /W’Evi’> w'!

F(w; T, X1, x2) ~ wr 0@

where :

27 /29



Proof of the lemma

We have :

f(W; T, X1, X2) ~ W%(Xz—)a)-i—...
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Proof of the lemma

We have :
f(W; T, X1, X2) ~ W%(XZ_XIH_W

Integrating by parts, we obtain :

o = (5 e w).

] (T( x))
Ci———exp(~(x1—x2))-
X1 —xal P \2r

/ f(W;T,Xl,Xz)dW‘ <C

/ f(w;7,x2,x1)dw| <
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Proof of the lemma
We have :

f(W; T, X1, X2) ~ W%(XZ_XIH_W

Integrating by parts, we obtain :

/Wf(W;T,Xl,Xz)dW‘ <Ci———ex ( " (x2 - Xl))

X1 — X2
/ i ) : ( ( ))
W, 7 y W ex .
» s X2, X1)d |X1 ol P51~ X2

By construction, the double integrals are equivalent to :

-
exp (ig(m — Xz)) ,
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Proof of the lemma

We have :
f(W; T, X1, X2) ~ W%(XZ_XIH_W
Integrating by parts, we obtain :

r

Ix1 — X2|

/Wf(W;T,Xl,Xz)dW‘ <C ( " (x2 - Xl))

/ f(w;7,x2,x1)dw| <

By construction, the double integrals are equivalent to :
ex —(x1— ,
p or X1 — X2

and their product rapidly tends to 0.

r (7’ ( ))
7EX -— — .
|X1 2| P or X1 — X2
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Proof of the lemma
We have :
f(W; T, X17X2) ~ W%(XZ_XIH_W

Integrating by parts, we obtain :

o = (5 e w).

r (7’ ( ))
7EX -— — .
|X1 2| P or X1 — X2

By construction, the double integrals are equivalent to :

/ f(W;T,Xl,Xz)dW‘ <C

/ f(w;7,x2,x1)dw| <

-
exp (ig(m — Xz)) ,

and their product rapidly tends to 0. Developping the product, one obtains
the result. [J
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Thank you for your attention !
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