Pierre Lazag

Aix-Marseille Université

22 décembre 2020

• Presentation of the model

- Presentation of the model
- The limit processes

- Presentation of the model
- The limit processes
- Law of large numbers

- Presentation of the model
- The limit processes
- Law of large numbers
- The proof

2 The limit processes

- The law of large numbers
- 4 The proof

A plane partition $\pi = (\pi_{i,j})_{i,j \geq 1}$ is an almost zero double array of non-negative integers, which is non-increasing in both directions :

$$\pi_{i,j} \geq \pi_{i+1,j} \quad \text{and} \quad \pi_{i,j} \geq \pi_{i,j+1},$$

$$|\pi| := \sum_{i,j=1}^{+\infty} \pi_{i,j} < +\infty.$$

A plane partition $\pi = (\pi_{i,j})_{i,j \geq 1}$ is an almost zero double array of non-negative integers, which is non-increasing in both directions :

$$\pi_{i,j} \geq \pi_{i+1,j} \quad \text{and} \quad \pi_{i,j} \geq \pi_{i,j+1},$$

$$|\pi| := \sum_{i,j=1}^{+\infty} \pi_{i,j} < +\infty.$$

We equip the set of plane partition with a geometric weight :

$$\mathbb{P}_q(\pi) = C.q^{|\pi|},$$

where $q \in (0,1)$ and C is the normalizing contant.

A plane partition $\pi = (\pi_{i,j})_{i,j \geq 1}$ is an almost zero double array of non-negative integers, which is non-increasing in both directions :

$$\pi_{i,j} \geq \pi_{i+1,j}$$
 and $\pi_{i,j} \geq \pi_{i,j+1},$
$$|\pi| := \sum_{i,j=1}^{+\infty} \pi_{i,j} < +\infty.$$

We equip the set of plane partition with a geometric weight :

$$\mathbb{P}_q(\pi) = C.q^{|\pi|},$$

where $q \in (0,1)$ and C is the normalizing contant. We associate to a plane partition π a configuration on $E := \mathbb{Z} \times \frac{1}{2}\mathbb{Z}$:

$$\mathfrak{S}(\pi) = \{(i-j), \pi_{i,j} - (i+j-1)/2, i, j \ge 1\}.$$

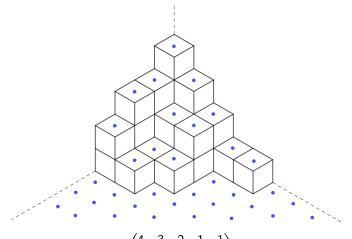


Figure – The plane partition $\begin{pmatrix} 4 & 3 & 2 & 1 & 1 \\ 3 & 2 & 2 & & \\ 3 & 1 & 1 & & \\ 2 & 1 & & & \end{pmatrix}$ and its associated configuration

Theorem (Okounkov-Reshetikhin, 2003)

The image of \mathbb{P}_q by \mathfrak{S} is a determinantal process with kernel :

$$K_q(s,x;t,y) = \frac{1}{(2i\pi)^2} \int_{|z|=1\pm\epsilon} \int_{|w|=\mp\epsilon} \frac{\Phi(s,z)}{\Phi(t,w)} \frac{1}{z-w} \frac{dzdw}{z^{x+\frac{|s|+1}{2}}w^{-y-\frac{|t|-1}{2}}}.$$

Theorem (Okounkov-Reshetikhin, 2003)

The image of \mathbb{P}_q by \mathfrak{S} is a determinantal process with kernel :

$$K_q(s,x;t,y) = \frac{1}{(2i\pi)^2} \int_{|z|=1\pm\epsilon} \int_{|w|=\mp\epsilon} \frac{\Phi(s,z)}{\Phi(t,w)} \frac{1}{z-w} \frac{dzdw}{z^{x+\frac{|s|+1}{2}}w^{-y-\frac{|t|-1}{2}}}.$$

• The function Φ is expressed as a ratio of q-deformed Pochhammer symbols :

Theorem (Okounkov-Reshetikhin, 2003)

The image of \mathbb{P}_q by \mathfrak{S} is a determinantal process with kernel :

$$K_q(s,x;t,y) = \frac{1}{(2i\pi)^2} \int_{|z|=1\pm\epsilon} \int_{|w|=\mp\epsilon} \frac{\Phi(s,z)}{\Phi(t,w)} \frac{1}{z-w} \frac{dzdw}{z^{x+\frac{|s|+1}{2}}w^{-y-\frac{|t|-1}{2}}}.$$

• The function Φ is expressed as a ratio of q-deformed Pochhammer symbols :

$$\Phi(s,z) = \prod_{k=0}^{+\infty} \frac{(1-z^{-1}q^{1/2+k})}{(1-zq^{1/2+s-k})}.$$

Theorem (Okounkov-Reshetikhin, 2003)

The image of \mathbb{P}_q by $\mathfrak S$ is a determinantal process with kernel :

$$K_q(s,x;t,y) = \frac{1}{(2i\pi)^2} \int_{|z|=1\pm\epsilon} \int_{|w|=\mp\epsilon} \frac{\Phi(s,z)}{\Phi(t,w)} \frac{1}{z-w} \frac{dzdw}{z^{x+\frac{|s|+1}{2}}w^{-y-\frac{|t|-1}{2}}}.$$

• The function Φ is expressed as a ratio of q-deformed Pochhammer symbols :

$$\Phi(s,z) = \prod_{k=0}^{+\infty} \frac{(1-z^{-1}q^{1/2+k})}{(1-zq^{1/2+s-k})}.$$

• The number $\epsilon > 0$ is sufficiently small in order to count singularities.

Theorem (Okounkov-Reshetikhin, 2003)

The image of \mathbb{P}_q by $\mathfrak S$ is a determinantal process with kernel :

$$K_q(s,x;t,y) = \frac{1}{(2i\pi)^2} \int_{|z|=1\pm\epsilon} \int_{|w|=\mp\epsilon} \frac{\Phi(s,z)}{\Phi(t,w)} \frac{1}{z-w} \frac{dzdw}{z^{x+\frac{|s|+1}{2}}w^{-y-\frac{|t|-1}{2}}}.$$

• The function Φ is expressed as a ratio of q-deformed Pochhammer symbols :

$$\Phi(s,z) = \prod_{k=0}^{+\infty} \frac{(1-z^{-1}q^{1/2+k})}{(1-zq^{1/2+s-k})}.$$

- The number $\epsilon > 0$ is sufficiently small in order to count singularities.
- One takes the sign "+" for $s \ge t$ and the sign "-" for s < t.

2 The limit processes

- 3 The law of large numbers
- 4 The proof

We have the limit Theorem, as $q = e^{-r} \rightarrow 1$:

We have the limit Theorem, as $q=e^{-r} \rightarrow 1$:

Let
$$A := \{(\tau, \chi) \in \mathbb{R}^2, |e^{\tau/2} + e^{-\tau/2} - e^{-\chi}| < 2\}$$
,

We have the limit Theorem, as $q = e^{-r} \rightarrow 1$:

Let
$$A:=\{(au,\chi)\in\mathbb{R}^2, |e^{ au/2}+e^{- au/2}-e^{-\chi}|<2\}$$
, and for $(au,\chi)\in A$, let :

$$S_{\tau,\chi}(a,b) = \frac{1}{2i\pi} \int_{\overline{z(\tau,\chi)}}^{z(\tau,\chi)} (1-w)^a w^{-b-a/2} \frac{dw}{w}, \ (a,b) \in E,$$

We have the limit Theorem, as $q = e^{-r} \rightarrow 1$:

Let
$$A := \{(\tau, \chi) \in \mathbb{R}^2, |e^{\tau/2} + e^{-\tau/2} - e^{-\chi}| < 2\}$$
, and for $(\tau, \chi) \in A$, let :

$$\mathcal{S}_{\tau,\chi}(a,b) = \frac{1}{2i\pi} \int_{\overline{z(\tau,\chi)}}^{z(\tau,\chi)} (1-w)^a w^{-b-a/2} \frac{dw}{w}, \ (a,b) \in E,$$

where :
$$\{z(\tau,\chi), \overline{z(\tau,\chi)}\} = C(0, e^{-\tau/2}) \cap C(1, e^{-\tau/4-\chi/2}).$$

We have the limit Theorem, as $q=e^{-r} \rightarrow 1$:

Let
$$A := \{(\tau, \chi) \in \mathbb{R}^2, |e^{\tau/2} + e^{-\tau/2} - e^{-\chi}| < 2\}$$
, and for $(\tau, \chi) \in A$, let :

$$S_{\tau,\chi}(a,b) = \frac{1}{2i\pi} \int_{\overline{z(\tau,\chi)}}^{z(\tau,\chi)} (1-w)^a w^{-b-a/2} \frac{dw}{w}, \ (a,b) \in E,$$

where :
$$\{z(\tau,\chi),\overline{z(\tau,\chi)}\} = C(0,e^{-\tau/2}) \cap C(1,e^{-\tau/4-\chi/2}).$$

Then, for all $(\tau,\chi) \in A$, and all $(t_1,h_1),...,(t_n,h_n) \in E$, we have :

$$\lim_{r\to 0^+} \det \left(K_{e^{-r}} \left(\frac{\tau}{r} + t_i, \frac{\chi}{r} + h_i; \frac{\tau}{r} + t_j, \frac{\chi}{r} h_j \right) \right)_{i,j=1}^n$$

$$= \det \left(\mathcal{S}_{\tau,\chi} (t_i - t_j, h_i - h_j) \right)_{i,j=1}^n.$$

- Presentation of the model
- 2 The limit processes

4 The proof

For
$$m=\left(\left(m_1^1,m_1^2\right),...,\left(m_n^1,m_n^2\right)\right)\subset E$$
, we write :
$$\mathbf{1}_m(\pi)=1 \text{ if } m\subset\mathfrak{S}(\pi)\text{, 0 else.}$$

For
$$m=\left(\left(m_1^1,m_1^2\right),...,\left(m_n^1,m_n^2\right)\right)\subset E$$
, we write :
$$\mathbf{1}_m(\pi)=1 \text{ if } m\subset\mathfrak{S}(\pi), \text{ 0 else.}$$

The fact that we have determinantal processes translates into:

$$\mathbb{P}_{q}(m \subset \mathfrak{S}(\pi)) = \mathbb{E}_{q}\left[\mathbf{1}_{m}\right] = \det\left(K_{q}\left(m_{i}^{1}, m_{i}^{2}; m_{j}^{1}, m_{j}^{2}\right)\right)_{i,j=1}^{n},$$

$$\mathbb{P}_{\tau,\chi}(m \subset X_{\tau,\chi}) = \mathbb{E}_{\tau,\chi}\left[\mathbf{1}_{m}\right] = \det\left(\mathcal{S}_{\tau,\chi}\left(m_{i}^{1} - m_{j}^{1}, m_{i}^{2} - m_{j}^{2}\right)\right)_{i,j=1}^{n},$$

For
$$m=\left(\left(m_1^1,m_1^2\right),...,\left(m_n^1,m_n^2\right)\right)\subset E$$
, we write :
$$\mathbf{1}_m(\pi)=1 \text{ if } m\subset\mathfrak{S}(\pi)\text{, 0 else.}$$

The fact that we have determinantal processes translates into:

$$\mathbb{P}_{q}(m \subset \mathfrak{S}(\pi)) = \mathbb{E}_{q}\left[\mathbf{1}_{m}\right] = \det\left(K_{q}\left(m_{i}^{1}, m_{i}^{2}; m_{j}^{1}, m_{j}^{2}\right)\right)_{i,j=1}^{n},$$

$$\mathbb{P}_{\tau,\chi}(m \subset X_{\tau,\chi}) = \mathbb{E}_{\tau,\chi}\left[\mathbf{1}_{m}\right] = \det\left(\mathcal{S}_{\tau,\chi}\left(m_{i}^{1} - m_{j}^{1}, m_{i}^{2} - m_{j}^{2}\right)\right)_{i,j=1}^{n}$$

$$= \lim_{r \to 0} \mathbb{P}_{e^{-r}}(r^{-1}(\tau, \chi) + m \subset \mathfrak{S}(\pi)).$$

For
$$m=\left(\left(m_1^1,m_1^2\right),...,\left(m_n^1,m_n^2\right)\right)\subset E$$
, we write :
$$\mathbf{1}_m(\pi)=1 \text{ if } m\subset\mathfrak{S}(\pi), \text{ 0 else.}$$

The fact that we have determinantal processes translates into :

$$\mathbb{P}_{q}(m \subset \mathfrak{S}(\pi)) = \mathbb{E}_{q}\left[\mathbf{1}_{m}\right] = \det\left(K_{q}\left(m_{i}^{1}, m_{i}^{2}; m_{j}^{1}, m_{j}^{2}\right)\right)_{i,j=1}^{n},$$

$$\mathbb{P}_{\tau,\chi}(m \subset X_{\tau,\chi}) = \mathbb{E}_{\tau,\chi}\left[\mathbf{1}_{m}\right] = \det\left(\mathcal{S}_{\tau,\chi}\left(m_{i}^{1} - m_{j}^{1}, m_{i}^{2} - m_{j}^{2}\right)\right)_{i,j=1}^{n}$$

$$= \lim_{r \to 0} \mathbb{P}_{e^{-r}}(r^{-1}(\tau, \chi) + m \subset \mathfrak{S}(\pi)).$$

Theorem (P.L.)

For all continuous compactly supported function $f: \mathbb{R}^2 \to \mathbb{R}$,

For
$$m=\left(\left(m_1^1,m_1^2\right),...,\left(m_n^1,m_n^2\right)\right)\subset E$$
, we write : $1_m(\pi)=1$ if $m\subset\mathfrak{S}(\pi)$, 0 else.

The fact that we have determinantal processes translates into:

$$\mathbb{P}_{q}(m \subset \mathfrak{S}(\pi)) = \mathbb{E}_{q}\left[\mathbf{1}_{m}\right] = \det\left(K_{q}\left(m_{i}^{1}, m_{i}^{2}; m_{j}^{1}, m_{j}^{2}\right)\right)_{i,j=1}^{n},$$

$$\mathbb{P}_{\tau,\chi}(m \subset X_{\tau,\chi}) = \mathbb{E}_{\tau,\chi}\left[\mathbf{1}_{m}\right] = \det\left(\mathcal{S}_{\tau,\chi}\left(m_{i}^{1} - m_{j}^{1}, m_{i}^{2} - m_{j}^{2}\right)\right)_{i,j=1}^{n}$$

$$= \lim_{r \to 0} \mathbb{P}_{e^{-r}}(r^{-1}(\tau, \chi) + m \subset \mathfrak{S}(\pi)).$$

Theorem (P.L.)

For all continouous compactly supported function $f : \mathbb{R}^2 \to \mathbb{R}$, and for all finite subset $m \subset E$,

For
$$m=\left(\left(m_1^1,m_1^2\right),...,\left(m_n^1,m_n^2\right)\right)\subset E$$
, we write :
$$\mathbf{1}_m(\pi)=1 \text{ if } m\subset\mathfrak{S}(\pi)\text{, 0 else.}$$

The fact that we have determinantal processes translates into:

$$\mathbb{P}_{q}(m \subset \mathfrak{S}(\pi)) = \mathbb{E}_{q}\left[\mathbf{1}_{m}\right] = \det\left(K_{q}\left(m_{i}^{1}, m_{i}^{2}; m_{j}^{1}, m_{j}^{2}\right)\right)_{i,j=1}^{n},$$

$$\mathbb{P}_{\tau,\chi}(m \subset X_{\tau,\chi}) = \mathbb{E}_{\tau,\chi}\left[\mathbf{1}_{m}\right] = \det\left(\mathcal{S}_{\tau,\chi}\left(m_{i}^{1} - m_{j}^{1}, m_{i}^{2} - m_{j}^{2}\right)\right)_{i,j=1}^{n}$$

$$= \lim_{r \to 0} \mathbb{P}_{e^{-r}}(r^{-1}(\tau, \chi) + m \subset \mathfrak{S}(\pi)).$$

Theorem (P.L.)

For all continouous compactly supported function $f : \mathbb{R}^2 \to \mathbb{R}$, and for all finite subset $m \subset E$, we have :

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m}$$

For
$$m=\left(\left(m_1^1,m_1^2\right),...,\left(m_n^1,m_n^2\right)\right)\subset E$$
, we write :
$$\mathbf{1}_m(\pi)=1 \text{ if } m\subset\mathfrak{S}(\pi), \text{ 0 else.}$$

The fact that we have determinantal processes translates into:

$$\mathbb{P}_{q}(m \subset \mathfrak{S}(\pi)) = \mathbb{E}_{q}\left[\mathbf{1}_{m}\right] = \det\left(K_{q}\left(m_{i}^{1}, m_{i}^{2}; m_{j}^{1}, m_{j}^{2}\right)\right)_{i,j=1}^{n},$$

$$\mathbb{P}_{\tau,\chi}(m \subset X_{\tau,\chi}) = \mathbb{E}_{\tau,\chi}\left[\mathbf{1}_{m}\right] = \det\left(\mathcal{S}_{\tau,\chi}\left(m_{i}^{1} - m_{j}^{1}, m_{i}^{2} - m_{j}^{2}\right)\right)_{i,j=1}^{n}$$

$$= \lim_{r \to 0} \mathbb{P}_{e^{-r}}(r^{-1}(\tau, \chi) + m \subset \mathfrak{S}(\pi)).$$

Theorem (P.L.)

For all continouous compactly supported function $f : \mathbb{R}^2 \to \mathbb{R}$, and for all finite subset $m \subset E$, we have :

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m} = \int_A f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_m] d\tau d\chi$$

Theorem (P.L.)

For all continuous competly supported function $f : \mathbb{R}^2 \to \mathbb{R}$, and all finite subset $m \subset E$, we have :

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m} = \int_A f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_m] d\tau d\chi$$

in probability under $\mathbb{P}_{e^{-r}}$:

Theorem (P.L.)

For all continuous competly supported function $f: \mathbb{R}^2 \to \mathbb{R}$, and all finite subset $m \subset E$, we have :

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m} = \int_A f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_m] d\tau d\chi$$

in probability under $\mathbb{P}_{e^{-r}}$: for all $\varepsilon>0$,

$$\lim_{r\to 0}\mathbb{P}_{e^{-r}}\left(\left|r^2\sum_{(t,h)\in E\cap r^{-1}A}f(rt,rh)\mathbf{1}_{(t,h)+m}-\int_{A}f(\tau,\chi)\mathbb{E}_{\tau,\chi}[\mathbf{1}_m]d\tau d\chi\right|>\varepsilon\right)$$

Theorem (P.L.)

For all continuous compctly supported function $f: \mathbb{R}^2 \to \mathbb{R}$, and all finite subset $m \subset E$, we have :

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m} = \int_A f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_m] d\tau d\chi$$

in probability under $\mathbb{P}_{e^{-r}}$: for all $\varepsilon > 0$,

$$\lim_{r\to 0}\mathbb{P}_{\mathrm{e}^{-r}}\left(\left|r^2\sum_{(t,h)\in E\cap r^{-1}A}f(rt,rh)\mathbf{1}_{(t,h)+m}-\int_Af(\tau,\chi)\mathbb{E}_{\tau,\chi}[\mathbf{1}_m]d\tau d\chi\right|>\varepsilon\right)$$

2 The limit processes

The law of large numbers

The proof

The proof

We want:

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m} = \int_A f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_m] d\tau d\chi$$

The proof

We want:

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m} = \int_A f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_m] d\tau d\chi$$

We will prove that :

the expectation of the left-hand-side converges to the right-hand-side,

The proof

We want:

$$\lim_{r\to 0} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m} = \int_A f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_m] d\tau d\chi$$

We will prove that :

- the expectation of the left-hand-side converges to the right-hand-side,
- the variance of the left-hand-side goes to 0.

$$\mathbb{E}_{e^{-r}}r^2\sum_{(t,h)\in E\cap r^{-1}A}f(rt,rh)\mathbf{1}_{(t,h)+m}$$

$$\mathbb{E}_{e^{-r}} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m}$$

$$= r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbb{E}_{rt,rh} [\mathbf{1}_m]$$

$$\mathbb{E}_{e^{-r}} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m}$$

$$= r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbb{E}_{rt,rh} [\mathbf{1}_m] + O(r).$$

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

$$\mathbb{E}_{e^{-r}} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m}$$

$$= r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbb{E}_{rt,rh} [\mathbf{1}_m] + O(r).$$

Remark that the sum:

$$r^2 \sum_{(t,h) \in E \cap r^{-1}A} f(rt,rh) \mathbb{E}_{rt,rh}[\mathbf{1}_m]$$

First of all, by the Okounkov-Reshetikhin limit theorem, we have :

$$\mathbb{E}_{e^{-r}} r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbf{1}_{(t,h)+m}$$

$$= r^2 \sum_{(t,h)\in E\cap r^{-1}A} f(rt,rh) \mathbb{E}_{rt,rh} [\mathbf{1}_m] + O(r).$$

Remark that the sum:

$$r^2 \sum_{(t,h) \in E \cap r^{-1}A} f(rt,rh) \mathbb{E}_{rt,rh}[\mathbf{1}_m]$$

is a Riemann sum for the integral:

$$\int_{A} f(\tau,\chi) \mathbb{E}_{\tau,\chi}[\mathbf{1}_{m}] d\tau d\chi.$$

We prove that the variance :

$$r^{4} \sum_{(t_{1}h_{1}),(t_{2},h_{2})\in r^{-1}A\cap E} f(rt_{1},rh_{1})f(rt_{2},rh_{2}) \\ \times \left(\mathbb{E}_{r}\left[\mathbf{1}_{(t_{1},h_{1})+m}\mathbf{1}_{(t_{2},h_{2})+m}\right] - \mathbb{E}_{r}\left[\mathbf{1}_{(t_{1},h_{1})+m}\right]\mathbb{E}_{r}\left[\mathbf{1}_{(t_{2},h_{2})+m}\right]\right)$$

goes to 0 as r goes to 0.

We prove that the variance :

$$r^{4} \sum_{(t_{1}h_{1}),(t_{2},h_{2})\in r^{-1}A\cap E} f(rt_{1},rh_{1})f(rt_{2},rh_{2}) \times \left(\mathbb{E}_{r}\left[\mathbf{1}_{(t_{1},h_{1})+m}\mathbf{1}_{(t_{2},h_{2})+m}\right] - \mathbb{E}_{r}\left[\mathbf{1}_{(t_{1},h_{1})+m}\right]\mathbb{E}_{r}\left[\mathbf{1}_{(t_{2},h_{2})+m}\right]\right)$$

goes to 0 as r goes to 0. To this aim, we control the covariances :

$$\mathbb{E}_r \left[\mathbf{1}_{(t_1,h_1)+m} \mathbf{1}_{(t_2,h_2)+m} \right] - \mathbb{E}_r \left[\mathbf{1}_{(t_1,h_1)+m} \right] \mathbb{E}_r \left[\mathbf{1}_{(t_2,h_2)+m} \right]$$

in a convenient manner, depending on the fact that (t_1, h_1) and (t_2, h_2) are close of each other or not.

Lemma

For all finite subset $m \subset E$, for all compact set $\mathcal{K} \subset \mathbb{R}^2$ and for all $\alpha \in (0,1)$,

Lemma

For all finite subset $m \subset E$, for all compact set $\mathcal{K} \subset \mathbb{R}^2$ and for all $\alpha \in (0,1)$, there exists C>0 such that for all sufficiently small r>0, if (τ_1,χ_1) , $(\tau_2,\chi_2) \in \mathcal{K} \cap A \cap rE$ are such that :

Lemma

For all finite subset $m \subset E$, for all compact set $\mathcal{K} \subset \mathbb{R}^2$ and for all $\alpha \in (0,1)$, there exists C>0 such that for all sufficiently small r>0, if (τ_1,χ_1) , $(\tau_2,\chi_2) \in \mathcal{K} \cap A \cap rE$ are such that : $\max\{|\tau_1-\tau_2|,|\chi_1-\chi_2|\}>r||m||_{\infty}$, then,

Lemma

For all finite subset $m \subset E$, for all compact set $\mathcal{K} \subset \mathbb{R}^2$ and for all $\alpha \in (0,1)$, there exists C>0 such that for all sufficiently small r>0, if (τ_1,χ_1) , $(\tau_2,\chi_2) \in \mathcal{K} \cap A \cap rE$ are such that : $\max\{|\tau_1-\tau_2|,|\chi_1-\chi_2|\}>r||m||_{\infty}$, then, for $\tau_1 \neq \tau_2$:

$$\begin{split} \left| \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_1, \chi_1) + m} \mathbf{1}_{\frac{1}{r}(\tau_2, \chi_2) + m} \right] - \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_1, \chi_1) + m} \right] \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_2, \chi_2) + m} \right] \right| \\ & \leq \frac{C \exp\left(-r^{-\alpha}\right)}{|\tau_1 - \tau_2|^2} \end{split}$$

Lemma

For all finite subset $m \subset E$, for all compact set $\mathcal{K} \subset \mathbb{R}^2$ and for all $\alpha \in (0,1)$, there exists C>0 such that for all sufficiently small r>0, if (τ_1,χ_1) , $(\tau_2,\chi_2) \in \mathcal{K} \cap A \cap rE$ are such that : $\max\{|\tau_1-\tau_2|,|\chi_1-\chi_2|\}>r||m||_{\infty}$, then, for $\tau_1\neq\tau_2$:

$$\begin{split} \left| \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_1, \chi_1) + m} \mathbf{1}_{\frac{1}{r}(\tau_2, \chi_2) + m} \right] - \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_1, \chi_1) + m} \right] \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_2, \chi_2) + m} \right] \right| \\ & \leq \frac{C \exp\left(-r^{-\alpha}\right)}{|\tau_1 - \tau_2|^2} \end{split}$$

and for $\tau_1 = \tau_2 = \tau$:

$$\left| \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau,\chi_1) + m} \mathbf{1}_{\frac{1}{r}(\tau,\chi_2) + m} \right] - \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau,\chi_1) + m} \right] \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau,\chi_2) + m} \right] \right| \leq \frac{Cr}{|\chi_1 - \chi_2|}$$

Since:

$$\log\left(\Phi(\tau/r+t,z)z^{-\chi/r-h-\frac{\tau/r+s+1}{2}}\right)\sim\frac{1}{r}S(z;\tau,\chi),$$

Since:

$$\log \left(\Phi(\tau/r+t,z)z^{-\chi/r-h-\frac{\tau/r+s+1}{2}}\right) \sim \frac{1}{r}S(z;\tau,\chi),$$

the kernel $K_{e^{-r}}$, taken at $\frac{1}{r}(\tau,\chi)+(t_i,h_i)$, is equivalent, as $r\to 0$, to :

$$\int_{z\in(1\pm\epsilon)\gamma_{\tau}}\int_{w\in(1\mp\epsilon)\gamma_{\tau}}\exp\left(\frac{1}{r}\left(S(z;\tau,\chi)-S(w;\tau,\chi)\right)\right)/(z-w)dzdw,$$

Since:

$$\log \left(\Phi(\tau/r+t,z)z^{-\chi/r-h-\frac{\tau/r+s+1}{2}}\right) \sim \frac{1}{r}S(z;\tau,\chi),$$

the kernel $K_{e^{-r}}$, taken at $\frac{1}{r}(\tau,\chi)+(t_i,h_i)$, is equivalent, as $r\to 0$, to :

$$\int_{z \in (1 \pm \epsilon) \gamma_{\tau}} \int_{w \in (1 \mp \epsilon) \gamma_{\tau}} \exp \left(\frac{1}{r} \left(S(z; \tau, \chi) - S(w; \tau, \chi)\right)\right) / (z - w) dz dw,$$

•
$$\gamma_{\tau} = C(0, e^{\tau/2});$$

Since:

$$\log \left(\Phi(\tau/r+t,z)z^{-\chi/r-h-\frac{\tau/r+s+1}{2}}\right) \sim \frac{1}{r}S(z;\tau,\chi),$$

the kernel $K_{e^{-r}}$, taken at $\frac{1}{r}(\tau,\chi)+(t_i,h_i)$, is equivalent, as $r\to 0$, to :

$$\int_{z \in (1 \pm \epsilon) \gamma_{\tau}} \int_{w \in (1 \mp \epsilon) \gamma_{\tau}} \exp \left(\frac{1}{r} \left(S(z; \tau, \chi) - S(w; \tau, \chi)\right)\right) / (z - w) dz dw,$$

- $\gamma_{\tau} = C(0, e^{\tau/2});$
- $\Re S(z; \tau, \chi) \equiv -\tau/2(\tau/2 + \chi), z \in \gamma_{\tau};$

Since:

$$\log \left(\Phi(\tau/r+t,z)z^{-\chi/r-h-\frac{\tau/r+s+1}{2}}\right) \sim \frac{1}{r}S(z;\tau,\chi),$$

the kernel $K_{e^{-r}}$, taken at $\frac{1}{r}(\tau,\chi)+(t_i,h_i)$, is equivalent, as $r\to 0$, to :

$$\int_{z \in (1 \pm \epsilon) \gamma_{\tau}} \int_{w \in (1 \mp \epsilon) \gamma_{\tau}} \exp \left(\frac{1}{r} \left(S(z; \tau, \chi) - S(w; \tau, \chi)\right)\right) / (z - w) dz dw,$$

- $\gamma_{\tau} = C(0, e^{\tau/2});$
- $\Re S(z; \tau, \chi) \equiv -\tau/2(\tau/2 + \chi)$, $z \in \gamma_{\tau}$;
- when $(\tau, \chi) \in A$, the function S has two distinct critical points : $e^{\tau/2}z(\tau, \chi)$ and $e^{\tau/2}\overline{z(\tau, \chi)}$;

Since:

$$\log \left(\Phi(\tau/r+t,z)z^{-\chi/r-h-\frac{\tau/r+s+1}{2}}\right) \sim \frac{1}{r}S(z;\tau,\chi),$$

the kernel $K_{e^{-r}}$, taken at $\frac{1}{r}(\tau,\chi)+(t_i,h_i)$, is equivalent, as $r\to 0$, to :

$$\int_{z \in (1 \pm \epsilon) \gamma_{\tau}} \int_{w \in (1 \mp \epsilon) \gamma_{\tau}} \exp \left(\frac{1}{r} \left(S(z; \tau, \chi) - S(w; \tau, \chi)\right)\right) / (z - w) dz dw,$$

- $\gamma_{\tau} = C(0, e^{\tau/2})$;
 - $\Re S(z; \tau, \chi) \equiv -\tau/2(\tau/2 + \chi)$, $z \in \gamma_{\tau}$;
 - when $(\tau, \chi) \in A$, the function S has two distinct critical points : $e^{\tau/2}z(\tau, \chi)$ and $e^{\tau/2}\overline{z(\tau, \chi)}$;
 - we can deform the contour γ_{τ} following the direction of the gradient of $\Re S(z)$.

Deformation of the contour

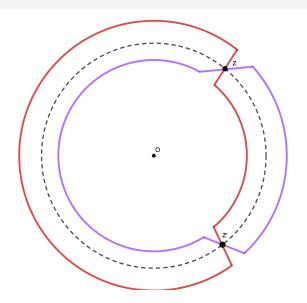


Figure – The contours $\gamma_{\tau}^{>}$ et $\gamma_{\tau}^{<}$ et γ_{τ}^{\sim} et $\gamma_{\tau}^{<}$ et $\gamma_{\tau}^{<}$ et $\gamma_{\tau}^{<}$ et $\gamma_{\tau}^{<}$ e

Deformation of the contour

We deform the circle γ_{τ} in two simple contours $\gamma_{\tau}^{>}$ et $\gamma_{\tau}^{<}$, following the direction (or the opposite direction) of the gradient of $\Re S(z;\tau,\chi)$ in such a way that :

$$\Re S(z;\tau,\chi) - \Re S(w;\tau,\chi) < 0, \ z \in \gamma_{\tau}^{<}, \ w \in \gamma_{\tau}^{>},$$

except at the critical points where we have equality.

Deformation of the contour

We deform the circle γ_{τ} in two simple contours $\gamma_{\tau}^{>}$ et $\gamma_{\tau}^{<}$, following the direction (or the opposite direction) of the gradient of $\Re S(z;\tau,\chi)$ in such a way that :

$$\Re S(z;\tau,\chi) - \Re S(w;\tau,\chi) < 0, \ z \in \gamma_{\tau}^{<}, \ w \in \gamma_{\tau}^{>},$$

except at the critical points where we have equality. Taking into account the residue at z=w, which we do not integrate in the new contours, one obtains the Theorem. \square

Proof of the main lemma

When we have:

$$\max\{|\tau_1 - \tau_2|, |\chi_1 - \chi_2|\} > r||m||_{\infty},$$

the ensembles:

$$\frac{1}{r}(\tau_1, \chi_1) + m \text{ et } \frac{1}{r}(\tau_2, \chi_2) + m$$

are disjoint.

Proof of the main lemma

When we have :

$$\max\{|\tau_1 - \tau_2|, |\chi_1 - \chi_2|\} > r||m||_{\infty},$$

the ensembles:

$$\frac{1}{r}(\tau_1, \chi_1) + m \text{ et } \frac{1}{r}(\tau_2, \chi_2) + m$$

are disjoint. This implies:

The covariance :

$$\mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m} \mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m} \right] - \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m} \right] \mathbb{E}_r \left[\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m} \right],$$

can be written as a sum in which each term has a factor :

$$K_{e^{-r}}\left(\frac{\tau_{1}}{r} + t_{1}^{1}, \frac{\chi_{1}}{r} + h_{1}^{1}; \frac{\tau_{2}}{r} + t_{2}^{1}, \frac{\chi_{2}}{r} + h_{2}^{1}\right) \times K_{e^{-r}}\left(\frac{\tau_{2}}{r} + t_{1}^{2}, \frac{\chi_{2}}{r} + h_{1}^{2}; \frac{\tau_{1}}{r} + t_{2}^{2}, \frac{\chi_{1}}{r} + h_{2}^{2}\right).$$

Indeed:

$$\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]$$

is an alternate sum of $2|\emph{m}|$ terms of two types :

Indeed:

$$\mathbb{E}_{\mathsf{e}^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]$$

is an alternate sum of 2|m| terms of two types :

$$(au_1, \chi_1)$$
 (au_2, χ_2) (au_1, χ_1) (au_2, χ_2)

Indeed:

$$\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]$$

is an alternate sum of 2|m| terms of two types :

$$(au_1, \chi_1)$$
 (au_2, χ_2) (au_1, χ_1) (au_2, χ_2) (au_1, χ_1) \circ (au_2, χ_2) \circ (au_2, χ_2) \circ (au_2, χ_2)

Indeed:

$$\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]$$

is an alternate sum of 2|m| terms of two types :

$$(au_1, \chi_1)$$
 (au_2, χ_2) (au_1, χ_1) (au_2, χ_2) \circ (au_1, χ_1) \bullet \circ (au_2, χ_2) \circ (au_2, χ_2) \bullet (au_2, χ_2) \circ

We have :

$$\sum_{\sigma \in S(2|m|), \text{ type } 1}$$

Indeed:

$$\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]$$

is an alternate sum of 2|m| terms of two types :

$$(au_1, \chi_1)$$
 (au_2, χ_2) (au_1, χ_1) (au_2, χ_2) \circ (au_1, χ_1) \bullet \circ (au_2, χ_2) \bullet (au_2, χ_2) \circ

We have :

$$\sum_{\sigma \in S(2|m|), \text{ type } 1} \bullet \dots \bullet$$

Indeed:

$$\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]$$

is an alternate sum of 2|m| terms of two types :

$$(au_1, \chi_1)$$
 (au_2, χ_2) (au_1, χ_1) (au_2, χ_2) \circ (au_1, χ_1) \circ (au_2, χ_2) \circ (au_2, χ_2) \circ (au_2, χ_2) \circ

We have :

$$\sum_{\sigma \in S(2|m|) \text{ type } 1} \bullet \dots \bullet = \mathbb{E}_{\mathsf{e}^{-r}} \left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1) + m} \right] \mathbb{E}_{\mathsf{e}^{-r}} \left[\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2) + m} \right].$$

Thus:

$$\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]-\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_1,\chi_1)+m}\right]\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_2,\chi_2)+m}\right]$$

Thus:

$$\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_{1},\chi_{1})+m}\mathbf{1}_{\frac{1}{r}(\tau_{2},\chi_{2})+m}\right] - \mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_{1},\chi_{1})+m}\right]\mathbb{E}_{e^{-r}}\left[\mathbf{1}_{\frac{1}{r}(\tau_{2},\chi_{2})+m}\right]$$

$$= \sum_{\sigma \in S(2|m|), \text{ type } 2}$$

Thus:

$$\mathbb{E}_{e^{-r}} \left[\mathbf{1}_{\frac{1}{r}(\tau_1, \chi_1) + m} \mathbf{1}_{\frac{1}{r}(\tau_2, \chi_2) + m} \right] - \mathbb{E}_{e^{-r}} \left[\mathbf{1}_{\frac{1}{r}(\tau_1, \chi_1) + m} \right] \mathbb{E}_{e^{-r}} \left[\mathbf{1}_{\frac{1}{r}(\tau_2, \chi_2) + m} \right]$$

$$= \sum_{\sigma \in S(2|m|), \text{ type } 2} \circ \circ * \dots * .$$

The factors "oo" of interests are quadruple integrals :

$$(1 + O(1)) \int_{z \in \gamma_{\tau_{1}}} \int_{w \in \gamma_{\tau_{2}}} \int_{z' \in \gamma_{\tau_{2}}} \int_{w' \in \gamma_{\tau_{1}}} \frac{dz dw dz' dw'}{(z - w)(z' - w')} \\ \exp \left(\frac{1}{r} \left(S(z; \tau_{1}, \chi_{1}) - S(w; \tau_{2}, \chi_{2}) + S(z'; \tau_{2}, \chi_{2}) - S(w'; \tau_{1}, \chi_{1}) \right) \right).$$

The factors "oo" of interests are quadruple integrals :

$$\begin{split} &(1+O(1))\int_{z\in\gamma_{\tau_{1}}}\int_{w\in\gamma_{\tau_{2}}}\int_{z'\in\gamma_{\tau_{2}}}\int_{w'\in\gamma_{\tau_{1}}}\frac{dzdwdz'dw'}{(z-w)(z'-w')}\\ &\exp\left(\frac{1}{r}\left(S(z;\tau_{1},\chi_{1})-S(w;\tau_{2},\chi_{2})+S(z';\tau_{2},\chi_{2})-S(w';\tau_{1},\chi_{1})\right)\right). \end{split}$$

We symmetrized the problem.

Deformation of the contours

We deform the contours γ_{τ_1} and γ_{τ_2} :

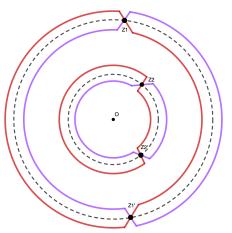


Figure – The contours $\gamma_{ au_i}^>$ et $\gamma_{ au_i}^<$

On these contours, we have :

$$\Re S(z; \tau_1, \chi_1) - \Re S(w'; \tau_1, \chi_1) < 0, \ z \in \gamma_{\tau_1}^<, \ w' \in \gamma_{\tau_1}^>, \Re S(z'; \tau_2, \chi_2) - \Re S(w; \tau_2, \chi_2) < 0, \ z' \in \gamma_{\tau_2}^<, \ w \in \gamma_{\tau_2}^>,$$

On these contours, we have :

$$\Re S(z; \tau_1, \chi_1) - \Re S(w'; \tau_1, \chi_1) < 0, \ z \in \gamma_{\tau_1}^<, \ w' \in \gamma_{\tau_1}^>, \Re S(z'; \tau_2, \chi_2) - \Re S(w; \tau_2, \chi_2) < 0, \ z' \in \gamma_{\tau_2}^<, \ w \in \gamma_{\tau_2}^>,$$

When $\tau_1 \neq \tau_2$, these deformation do not affect the value of te kernel,

On these contours, we have :

$$\Re S(z;\tau_1,\chi_1) - \Re S(w';\tau_1,\chi_1) < 0, \ z \in \gamma_{\tau_1}^<, \ w' \in \gamma_{\tau_1}^>, \Re S(z';\tau_2,\chi_2) - \Re S(w;\tau_2,\chi_2) < 0, \ z' \in \gamma_{\tau_2}^<, \ w \in \gamma_{\tau_2}^>,$$

When $\tau_1 \neq \tau_2$, these deformation do not affect the value of te kernel, which concludes the proof in this case since :

$$\left| \frac{\exp\left(\frac{1}{r}\left(S(z;\tau_1,\chi_1) - S(w;\tau_2,\chi_2) + S(z';\tau_2,\chi_2) - S(w';\tau_1,\chi_1)\right)\right)}{(z-w)(z'-w')} \right|$$

On these contours, we have :

$$\Re S(z; \tau_1, \chi_1) - \Re S(w'; \tau_1, \chi_1) < 0, \ z \in \gamma_{\tau_1}^<, \ w' \in \gamma_{\tau_1}^>, \Re S(z'; \tau_2, \chi_2) - \Re S(w; \tau_2, \chi_2) < 0, \ z' \in \gamma_{\tau_2}^<, \ w \in \gamma_{\tau_2}^>,$$

When $\tau_1 \neq \tau_2$, these deformation do not affect the value of te kernel, which concludes the proof in this case since :

$$\left| \frac{\exp\left(\frac{1}{r} \left(S(z; \tau_1, \chi_1) - S(w; \tau_2, \chi_2) + S(z'; \tau_2, \chi_2) - S(w'; \tau_1, \chi_1) \right) \right)}{(z - w)(z' - w')} \right| \\ \leq C \cdot \frac{\exp\left(-\frac{1}{r^{\alpha}}\right)}{(\tau_1 - \tau_2)^2}$$

for all $\alpha < 1$.

When $\tau_1 = \tau_2 = \tau$ the deformed contours look like :

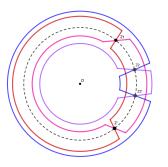


Figure – The contours $\gamma_{\tau}^{i,>}$ and $\gamma_{\tau}^{i,<}$

When $\tau_1 = \tau_2 = \tau$ the deformed contours look like :

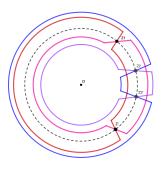


Figure – The contours $\gamma_{\tau}^{i,>}$ and $\gamma_{\tau}^{i,<}$

In this case, the new contours avoid the residues at z = w, z' = w' and we have to integrate them to obtain the right asymptotics.

This gives:

$$\begin{split} & \mathcal{K}_{e^{-r}} \left(\frac{1}{r} (\tau_1, \chi_1) + ...; \frac{1}{r} (\tau_2, \chi_2) + ... \right) \\ & \times \mathcal{K}_{e^{-r}} \left(\frac{1}{r} (\tau_2, \chi_2) + ...; \frac{1}{r} (\tau_1, \chi_1) + ... \right) \\ & = \left(\int_{z \in \gamma_{\tau}^{1,<}} \int_{w \in \gamma_{\tau}^{2,>}} ... + \int_{w} f(w; \tau, \chi_1, \chi_2) dw \right) \\ & \times \left(\int_{z' \in \gamma_{\tau}^{2,<}} \int_{w' \in \gamma_{\tau}^{1,>}} ... + \int_{w'} f(w'; \tau, \chi_2, \chi_1) dw' \right), \end{split}$$

This gives:

$$\begin{split} \mathcal{K}_{e^{-r}} \left(\frac{1}{r} (\tau_{1}, \chi_{1}) + ...; \frac{1}{r} (\tau_{2}, \chi_{2}) + ... \right) \\ & \times \mathcal{K}_{e^{-r}} \left(\frac{1}{r} (\tau_{2}, \chi_{2}) + ...; \frac{1}{r} (\tau_{1}, \chi_{1}) + ... \right) \\ &= \left(\int_{z \in \gamma_{\tau}^{1, <}} \int_{w \in \gamma_{\tau}^{2, >}} ... + \int_{w} f(w; \tau, \chi_{1}, \chi_{2}) dw \right) \\ & \times \left(\int_{z' \in \gamma_{\tau}^{2, <}} \int_{w' \in \gamma_{\tau}^{1, >}} ... + \int_{w'} f(w'; \tau, \chi_{2}, \chi_{1}) dw' \right), \end{split}$$

where:

$$f(w; \tau, \chi_1, \chi_2) \sim w^{\frac{1}{r}(\chi_2 - \chi_1) + \dots}$$

We have :

$$f(w; \tau, \chi_1, \chi_2) \sim w^{\frac{1}{r}(\chi_2 - \chi_1) + \dots}$$

We have :

$$f(w; \tau, \chi_1, \chi_2) \sim w^{\frac{1}{r}(\chi_2 - \chi_1) + \dots}$$

Integrating by parts, we obtain:

$$\left| \int_{w} f(w; \tau, \chi_{1}, \chi_{2}) dw \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{2} - \chi_{1}) \right),$$

$$\left| \int_{w'} f(w; \tau, \chi_{2}, \chi_{1}) dw' \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{1} - \chi_{2}) \right).$$

We have :

$$f(w; \tau, \chi_1, \chi_2) \sim w^{\frac{1}{r}(\chi_2 - \chi_1) + \dots}$$

Integrating by parts, we obtain:

$$\left| \int_{w} f(w; \tau, \chi_{1}, \chi_{2}) dw \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{2} - \chi_{1}) \right),$$

$$\left| \int_{w'} f(w; \tau, \chi_{2}, \chi_{1}) dw' \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{1} - \chi_{2}) \right).$$

By construction, the double integrals are equivalent to :

$$\exp\left(\pm\frac{\tau}{2r}(\chi_1-\chi_2)\right)$$
,

We have :

$$f(w; \tau, \chi_1, \chi_2) \sim w^{\frac{1}{r}(\chi_2 - \chi_1) + \dots}$$

Integrating by parts, we obtain:

$$\left| \int_{w} f(w; \tau, \chi_{1}, \chi_{2}) dw \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{2} - \chi_{1}) \right),$$

$$\left| \int_{w'} f(w; \tau, \chi_{2}, \chi_{1}) dw' \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{1} - \chi_{2}) \right).$$

By construction, the double integrals are equivalent to :

$$\exp\left(\pm\frac{\tau}{2r}(\chi_1-\chi_2)\right),\,$$

and their product rapidly tends to 0.

We have :

$$f(w; \tau, \chi_1, \chi_2) \sim w^{\frac{1}{r}(\chi_2 - \chi_1) + \dots}$$

Integrating by parts, we obtain:

$$\left| \int_{w} f(w; \tau, \chi_{1}, \chi_{2}) dw \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{2} - \chi_{1}) \right),$$

$$\left| \int_{w'} f(w; \tau, \chi_{2}, \chi_{1}) dw' \right| \leq C \frac{r}{|\chi_{1} - \chi_{2}|} \exp \left(\frac{\tau}{2r} (\chi_{1} - \chi_{2}) \right).$$

By construction, the double integrals are equivalent to :

$$\exp\left(\pm\frac{\tau}{2r}(\chi_1-\chi_2)\right),\,$$

and their product rapidly tends to 0. Developping the product, one obtains the result. \Box .

Thank you for your attention!