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“The laws of nature are written as differential equations.”

Induced dynamics. Let AN denote a phase space of a dynamical system of N

free particles

q̇i = h′(pi), ṗi = 0, i = 1, . . . , N,

i.e. the Hamiltonian system with respect to the canonical Poisson bracket

{qi, pj} = δij, q̇i = {qi, H}, ṗi = {pi, H}, H =

N∑

i=1

h(pi),

where h is a function of one variable. We assume that qi are either real or pairwise

complex conjugate and the same are properties of the corresponding pi.

Let f(q1, . . . , qN , p1, . . . , pN) be a function on AN such that equation

f(q1 − x, . . . , qN − x, p1, . . . , pN) = 0

has M simple real zeros x1, . . . , xM , where 0 < M ≤ N . Moreover, let there ex-

ists such open subset A′
N ⊂ AN , that M = N for any {q1, . . . , qN , p1, . . . , pN} ∈

A′
N .



The induced system is a system with configuration space given by real zeros

of equation

f(q1(t)− x, . . . , qN(t)− x, p1, . . . , pN) = 0.

This system is dynamical as all roots

xi = xi(q1(t), . . . , qN(t), p1, . . . , pN)

are functions on AN and depend on t via qi only. Evolution of this system is

given by the same Hamiltonian H, ẋi = {xi, H}, under the same Poisson bracket.

Moreover, the induced system is not only Hamiltonian but also integrable, as by

construction it has N independent integrals of motion in involution.

Below I use notation q = (q1, . . . , qN), p = (p1, . . . , pN), and e = (1, . . . , 1︸ ︷︷ ︸
N

), so

the equation above takes the form

f(q(t)− xe,p) = 0.



Differential equations. Assume, that equation f(q(t) − xe,p) = 0 has N

(different) solutions xi(t):

f(q1(t)− xi(t), . . . , qN(t)− xi(t), p1, . . . , pN) = 0, i = 1, . . . , N, (1)

Taking q̇i = h′(pi), ṗi = 0 into account we have:

ẋi =

∑N
j=1 h

′(pj)fqj(q− xie,p)
∑N

j=1 fqj(q− xie,p)
, (2)

ẍi

N∑

j=1

fqj(q− xie,p) =
N∑

j,k=1

(h′(pj)− ẋi)(h
′(pk)− ẋk)fqjqk(q− xie,p). (3)

(1)+(2)= 2N equations on 2N unknowns qi and pi. ⇒

q = q(x1, . . . , xN ; ẋ1, . . . , ẋN),

p = p(x1, . . . , xN ; ẋ1, . . . , ẋN) (under condition of unique solvability).

Inserting these functions in (3) we prove existence of the Newton-type equations

of the induced dynamical system:

ẍi = Fi(x1, . . . , xN , ẋ1, . . . , ẋN), i = 1, . . . , N.



Cauchy problem. These results leed to the solution of the Cauchy problem

for the induced system. Let we have 2N initial data: xi(0) and ẋj(0), say at

t = 0, where i, j = 1, . . . , N . Equations (1) and (2) define values (q(0),p(0))

that belong to A′
N by construction. Then qi(t) = qi(0) + th′(pi), pi(t) = pi, that

after substitution in

f(q(t)− xe,p) = 0

gives M real roots x1(t), . . . , xM(t) for any t ∈ R. We will see that M is not

obliged to be equal to N at any moment of time.

Thus the scheme of solution of the Cauchy problem for the induced system is

close to the one for integrable nonlinear PDE’s.



Singular solutions of the KdV equation.

N -soliton solution of the KdV equation 4ut − 6uux + uxxx = 0 is given by

u(t, x) = −2∂2
x log detA(t, x),

where A is N ×N -matrix

Aij(t, x) = ǫie
2pi(x−qi)δij +

2pi
pi + pj

, Repi > 0,

and qi(t) = q0,i + p2i t. Here

either Impi = 0 and then ǫi = ±1, Imqi = 0

or Impi 6= 0, then exists pl = pi and ǫi = ǫi = ±1, q=qj.

In the case where Impi = 0 sign ǫi = +1 gives regular soliton, sign ǫi = −1

gives the singular one. Every pair of pi = pl with Impi 6= 0 gives one line

of singularity. In order to make regular solitons more observable we introduce

“charge conjugation”: A(t, x) → Ã(t, x)|ǫi→−ǫi for all i. Thus we look for the

zeros xi(t) of the function

f(q(t)− x,p) ≡ det
(
A(t, x)Ã(t, x)

)
= 0,

where again q−xe = (q1 − x, . . . , qN − x), p = (p1, . . . , pN), q̇i = p2i , ṗi = 0.



Sinh–Gordon equation.

N -soliton solution of the Sinh–Gordon equation uxt =
1
16 sinhu, where x and t

are cone variables, equals

eu(x,t) =
det(A(x, t) + v)

det(A(x, t)− v)
, where vij =

pi
pi + pj

,

A(x, t) = diag
{
ǫie

2pi(x−qi)
}N

i=1
, qi(η) = q0,i −

t

p2i
.

Repi > 0, and either pi = pi and ǫi = ±1, qi = qi
or pi = pk for some k 6= i and pk 6= pi, ǫi = ǫk, qi = qk.

Singularities x1(t), . . . , xN(t) of these solutions are given by zeros of both de-

terminants, so they are given as zeros of the product

f(q(t)− x,p) ≡ det(A(x, t) + v) det(A(x, t)− v) = 0.

These zeros form N smooth time-like curves xi(t). The first factor gives u = −∞

and the second one u = +∞. Lines corresponding to singularities of the different

signs can intersect and in these points and only in this points they are light-like.

This system is Hamiltonian: x′i = {H, xi}, where H =

N∑

i=1

1

pi
.



Equation of motion, N = 2, x1(t) + x2(t) = 0:

ẍ12 sgnx12√
4− ẋ212

=
4ε

cosh

(
4x12√
4− ẋ212

√
1 +

ẍ12 sgnx12√
4− ẋ212

)
− ε

,

where x12(t) = x1(t)−x2(t) and where ε = 1 for the case of repulsion and ε = −1

for the both, soliton-antisoliton and breather, cases of attraction.
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Figure 1: Soliton–breather collision.



Calogero–Moser and Ruijsenaars–Schneider models.

Rational case.

CM: ẍj =

N∑

k=1,
k 6=j

2γ2

(xk − xj)3
, γ = −γ,

RS: ẍj =
N∑

k=1,
k 6=j

2γ2ẋjẋk

(xj − xk)
(
γ2 − (xj − xk)2

).

Both systems are completely integrable, their L-operators can be written as

L(t) = diag{ẋ1(t), . . . , ẋN(t)} + V (t),

where for CM and RS models

VCM(t) =

(
γ

xk(t)− xj(t)

)N

j,k=1,
k 6=j

, VRS(t) =

(
γẋk(t)

xk(t)− xj(t) + γ

)N

j,k=1,
k 6=j

.

Solutions xi(t) of the equations above obey asymptotic behavior xi(t) = ai+tpi+

O(t−1), say, at t → −∞, ai and pi are constants. They are given (Olshanetski–

Perelomov, Ruijsenaars) as eigenvalues of the matrix X(0)+tL(0), where X(t) =

diag{x1(t), . . . , xN(t)}.



CM and RS models as induced systems Thanks to the translation invariance

it was proved (AP2021) that the rational versions of CM and RS models are given

by the roots of the equation

f(q− xe,p) ≡ det
(
Q(t) +W − xI

)
= 0,

where Q(t) = diag{q1(t), . . . , qN(t)}, qi(t) = ai + tpi and

WCM =

(
γ

pj − pk

)N

j,k=1,
k 6=j

, WRS =

(
γpj

pj − pk

)N

j,k=1,
k 6=j

.

Here again (qi, pj) are canonical variables, and Hamiltonian H =
∑

i p
2
i/2 for

both these models. This gives another proof of the Liouville integrability for

CM and RS systems in the rational case. Moreover, integrability takes place for

any choice of the matrix W (p), that obeys conditions of solvability of the systems

formulated above. Specific property of the CM and RS models is possibility to

write down equations of motion, Lax pairs and Hamiltonian explicitly.



Calogero–Moser and Ruijsenaars–Schneider models.

Hyperbolic case.

Notation: X = diag{x1, . . . , xN}, Ẋ = diag{ẋ1, . . . , ẋN}, Q = diag{q1, . . . , qN}.

Lax operators: L = Ẋ + V , where

VCM =

(
γ

sinh(xj − xk)

)N

j,k=1,
k 6=j

, VRS =

(
(sinh γ)ẋk

sinh(xj − xk + γ)

)N

j,k=1,
k 6=j

.

In analogy to the rational case, xi(t) are given as roots of the characteristic

equation

det
(
e2Q(t)K†K − e2xI

)
= 0,

where K is upper (p1 < · · · < pN) triangular matrix

CM: Kj,k = δj,k −
γ

pj − pk

k−1∏

i=j+1

(
1−

γ

pi − pk

)
, k ≥ j.

Again, integrability is preserved if we substitute K†K by and arbitrary matrix

depending on p1, . . . , pN only.
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Figure 2: Ruijsenaars–Schneider model, 2 particles
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Figure 3: Ruijsenaars–Schneider model, 2 particles
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Figure 4: Calogero–Moser model, 2 particles
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Figure 5: Calogero–Moser model, 3 particles
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Figure 6: Calogero–Moser model, 4 particles
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Figure 7: Calogero–Moser model, 5 particles



The “Goldfish” model.

Ruijsenaars–Schneider system:

ẍj =

N∑

k=1,
k 6=j

2γ2ẋjẋk

(xj − xk)
(
γ2 − (xj − xk)2

)

is completely integrable. L-operator:

L(t) = diag{ẋ1(t), . . . , ẋN(t)} +

(
γẋk(t)

xk(t)− xj(t) + γ

)N

j,k=1,
k 6=j

.

Solutions xi(t):

obey asymptotic behavior xi(t) = ai + tpi +O(t−1), t → ∞,

are given (Olshanetski–Perelomov) as eigenvalues of the matrix X(0) + tL(0),

where X(t) = diag{x1(t), . . . , xN(t)}.

In the limit γ → ∞ we get nice system that Calogero called Goldfish model:

ẍj = 2
N∑

k=1,
k 6=j

ẋjẋk
xj − xk

, with L-operator L = (1, . . . , 1)T ⊗ (ẋ1, . . . , ẋN).



This L-operator is senseless as Ln =
(∑N

j=1 ẋj
)n−1

L, nevertheless it obeys

extremely rich symmetry: x → α+λx, t → β+µt, where α, β, λ, µ are arbitrary

constants. In particular this model is Lorentz invariant.

Any particle initially at rest maintains this state of rest forever—since ẋn = 0

implies ẍn = 0 and so on. Calogero proved that the solution of the initial-value

problem for this N -body model is given by the following simple prescription:

the values of the N coordinates xn(t) are given by the N roots of the following

equation in x:
N∑

j=1

ẋj(0)

x− xj(0)
=

1

t
.

It was proved (Gorsky, Vasilyev and Zotov) that this system is completely

integrable. It has N integrals of motion

Jk =
∑

Ik

ẋi1 · · · ẋik

∏

l<j

(xil − xij)
2,

where Jk is a k-tuple (i1, . . . , ik) such that 1 ≤ i1 < . . . < ik ≤ N .
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Figure 8: “Goldfish” model, 9 particles



Rutherford planetary model of the atom (uncertainty principle)

Creation/annihilation of the particles

The Big Bang

The expanding universe

The dark matter


