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ABSTRACT

Relations between the mean values of distributions of flipped spins on
periodic Heisenberg X X chain and some aspects of enumerative
combinatorics are discussed. The Bethe vectors, which are the
state-vectors of the model, are considered both as on- and off-shell. It is
this approach that makes it possible to represent and to study the
correlation functions in the form of nests of non-intersecting lattice walks
and related plane partitions. The determinantal representation for the
norm-trace generating function of plane partitions with fixed height of
diagonal parts is obtained as the expectation of the generating
exponential over off-shell N-particle Bethe states. The asymptotics of the
mean value of the generating exponential is calculated provided that the
evolution parameter is large. It is shown that the amplitudes of the
leading asymptotics depend on the number of diagonally constrained
plane partitions.
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I. OUTLINE OF THE PROBLEM

ee e Let us consider the quantum system of %—spins on a chain
consisting of M sites. Spin “up”, [1),,, and spin “"down”, [|),,, states are

defined on n'" site, n € {1,2,..., M}. Let two operators, q,, and q,, be
local projectors (i.e., spin “up” and “down" on-site densities) which
respect

dn |\L>'n :‘i>n ) dn |T>n, - 07 (T']n, |T>’n, :|T>n,7 qn, ‘\L>n =0.

Let us introduce the sum of q,, taken with inhomogeneous weights «,,:

M
Q = E (]//7I/q7l, .
n—1

The state |1) = @', [1).. (spins “up” on all sites) is chosen as the

n=1

reference state. Reversed spin on n'" site ||),, is called flipped spin.



The sum Q(m) = >_;" | qy is the operator of number of flipped spins on
first m sites, and ' = Q(M) is the total number of flipped spins.

Let us consider the mean value of generating exponential operator ¢©:
g =P

Q. — Q —
< e~ >= trace(e~p), P=E ———,
‘ (( ) ’ trace (e*BH) ’

where [ is a real positive, H is the Hamiltonian, and p is the density
matrix. The parameter 5 might be treated either as an “evolution”
parameter or inverse absolute temperature. In what follows trace implies
summation over N-particle states, trace = tr x(-).

Our approach is to demonstrate the enumerative combinatorial
implications of the averages generated by < ¢< . Multiple
differentiation of < 2 > with respect to «,, leads to the correlation
functions of flipped spins, which demonstrate combinatorial implications
provided that the Bethe state-vectors are expressed in terms of symmetric
functions.




¢ Mean values < [Ty = of product Iy = Hé.:l qr, of flipped spin
operators q,,, not necessarily at consecutive sites arise provided that the
average G/(ay) == exp(Q(an)) - parameterized by the elements of
M-tuple ap; = (a1, @z, ..., ) is used as the generating function:

< IIy > = trace (Hk p)

g 81 G ans 3
= lim —— (8x) . = lim 9, . . G(am),
a,, —0 dOz;f1 dak.z c d()é;w a,, —0 - kq Qg Ok

where M > ky > ko > -+ >k > 1.



¢ Assume a linear dependence of the elements of a,; on the site
coordinates, ay; = § x (1,2,..., M), a € R. The operator Q is reduced
to @ = aM, where the operator M would be considered as the operator
of first moment of the distribution %t of NV flipped spins (n; is an

eigen-value of q;):

M= —>) nq,. Then, <M= trace(M'p) = D, <M,

where D', denotes differentiation of /' order with respect to o at o = 0.

Therefore the mean value < ¢®M - is the generating function of the
mean values of powers of M.



Temporal evolution of e®™ has been studied for the Quantum Phase
Model, where M is given above, q,, is on-site boson number operator,
and M is the operator of first moment of the distribution i of N bosons
with n; be the occupation number.

N. M. Bogoliubov, C. Malyshev // The phase model and the norm-trace
generating function of plane partitions — Journal of Statistical
Mechanics: Theory and Experiment, vol 2018 issue 8 (2018) 083101

Therefore we shall study < ¢< = = trace (e2p) and its enumerative
combinatorial implications using, as a well-developed model, the
Heisenberg X X spin chain. The combinatorial implications to be
elaborated below are hopefully of interest from the viewpoint of the
models mentioned.



eee Let us introduce the local spin operators o= = (0% + ic¥) and

o7 dependent on the lattice argument n € {1,2,..., M} and acting on
the state space $,; = (C?)®M:

g#:ﬂ@...@ﬂ@ U# QI®- -1,

n

where I is unit 2 x 2 matrix, and o at n-th place is the Pauli matrix,
o™ € su(2) (# means z,v, z, or +):

. (01 , (0 —i . (1 0
=\t o) T7\i o) 7 \o -1/

The spin operators satisfy the commutation relations:

[0, 07] = émof, 07,05 = £20k 07" . J




The spin “up” 1), = (é)n and spin “down” ||),, = (?) i states

constitute a natural base in C? and thus enable that o act on them as
the rising/lowering operators:

O-j; |\Jr>n = H\>n7 0—77 H\>n, - ‘\L>u7 0-77 ‘\L>n - O—: |T>’n, = 0.

The operators ensure the definition of q,,, g,, presented above:

(1+07).

| =

_ 1 i _ _
anO—ﬂO—-‘r:é(l_U‘é)? ano’r—:—Un =




e e e The Hamiltonian of the X X Heisenberg model is chosen:

H = H,, — hS?,

§ AnmU U n

n,m=1

1 M
z
St
n=1

where SZ is the third component of total spin, and 4 > 0 is homogeneous
magnetic field. The number of sites is M =0 (mod 2), the periodic
boundary conditions ”iM =057, VYn € {1,2,

..... , M}, are imposed,
and H commutes with S~7.



Besides, A,,,,, are the entries of exchange matrix A given by

Anm = ()\nfm|,1 + 6\717771,\“\[71 ;

On,1(= 0n1) is the Kronecker symbol, or

0 1 1
1 0 1
1 0 1
A= (Anm)lgn,m,SM =
1 0 1
1 10



The exchange matrix A is expressed in terms of the circulant matrix,
which is a square matrix of order M € N of the form

Co C1 ... Cp—2 Cpr—1
CM—1 Co (&1 ‘e CM—2
C[\,f = : CM—1 Co . : . (3)
Co . . (&)
C1 Co e Ch—1 Cp
The first row of Cy; (3), (co,¢1,...,car—1), is called the generator of

Cys- The exchange matrix A is A = S;; + ST, where

00 ... 0 1
10 0 ... 0
Sar = Cireps(0,0,...,0,1) =] : 1 0
0 L0
00 ... 1 0

is known as the basic circulant permutation matrix.



Depending on the definition of trace, < ¢2(@+) »~ implies the mean value
denoted, in what follows, either Gy s(ay) = ((e2@))) x5 (N flipped
spins and 3 are fixed) or G5(ay) = ((e2@M))) 5 (B is fixed). It will be
shown that the combinatorial implications of G s(axs) are related to
enumeration of nests of closed lattice trajectories with initial /final
positions constrained, as well as with enumeration of boxed plane
partitions with constrained diagonal parts. The implications of G(ays)
are related to enumeration of random turns walks with constrained

initial /final positions.



Il. The state-vectors, the Schur polynomials and non-intersecting
lattice walks

e e e The Bethe state-vectors
Let us introduce a strict partition p = (1, pi2, - - . , ) consisting of
elements 1, 1 < k < N, called parts of p, which respect

M>py >pe> ... >pun >1.
We also introduce the “staircase” partition
Sy =(N,N—1,...,2,1),

and introduce non-strict partition A = (A, A2, ..., A\y) consisting of
weakly decreasing non-negative integers:

MZX 2N > > AN 20, M=M-N.
The relationship between the parts of A and p is expressed as

orA=p— §N77The volume of partition, for instance, A is the sum of its
parts: |A| = ZZ\:] Ai. The volumes of p, A, and § are related:
lul= Al + 5 (N +1).



We define an arbitrary state ) labelled by parts of p corresponding to
N flipped spins and its conjugate (v|:

w=(on ). wi=al(fa).

where |{) = ®n L [1)n, and oF act on [1),, and |¢>,L as rising/lowering

operators. The orthogonality is valid: (v|p) = 6., = H Su i -

n=1

Define N-particle state-vectors as the linear combinations of |u):

[Tun) = Y Sa(u)A+én),
AC{MN}

where the coefficients are the Schur polynomials:

det(2}* V) < ren
V(xn) '

Sa(xn) = Sa(z1,22,...,0n) =

where V(xy) is the Vandermonde determinant

V(XN) = det(w;yik)lgj’kgj\f = H (:L'] — ZL‘m) .



The scalar product of the states takes the form:

(Wun) [Tun)) = 30 Sa(v2)Sa(ud).

AC{MN}

and further due to the Cauchy—Binet formula:

1 — (u;/vj)*M

V(viH)V(u%) dCt< 1 — (ui/v;)? >1§"?-j§N'

(W(vn) [¥(uy)) =

The following identity is valid:

Zb)\+e;, XnN) <iﬂ“ )S)\ XN)

k=1

where e, 1 < k < N, are N-tuples consisting of zeros except of a unity
at k' place, say, from left.



Let the exponential parametrization xx = ¢~ be adopted, where €9~

is N-tuple (¢ %2 . ¢~) Assume that e'M% = (—1)N—1
1 <7 < N holds. As well, |u), (v| are given by aﬁf subjected to the
periodicity o, ;= o, Vn € {1,2,..., M}. Then the state-vector
W (e9x/2)) with the coefficients Sy (') and its conjugate are
N-particle Bethe state-vectors of the XX model.

Statement: The Bethe state-vectors of X X model | U(¢'9~/?)) are the
eigen-states of H (1) and S* (2) on periodic chain:

(Hyx — hS7) | ®(e®N/?)) = En(0n) |¥(eV/?)),

: M :
z 10N /2 (= _ On/2
S* W) = (S = V)| w(eoN /),
where
hM
En(0) = —— +Zs(9j)., e(0;) = h —cosb;.




e e o The Schur polynomials, non-intersecting lattice paths, and plane
partitions

e The Schur polynomials S (x,) admit a combinatorial interpretation
since are related to the semi-standard Young tableaux, which are in
one-to-one correspondence with the nests of non-intersecting lattice

paths.
A semi-standard Young tableau T of shape A is a diagram possessing \;
cells in 3" row (i = 1,2,..., N) such that the cells are filled with

positive integers n € NT weakly increasing along rows and strictly
increasing downwards along columns (right-hand side of Figure below).



Definition Star C, corresponding to semi-standard Young tableau T of
shape A, is a nest of N non-intersecting lattice paths (left-hand side of
Figure) counted from the top of T and going from points

Ci; = (i, N +1—1) to points (N,pu; = i + N+1—14),1<i<N.An
i*™ path makes \; upward steps along vertical lines encoded by the

integers in i*"" row of T.

Hi
12

H T1[3[3]5

2| 4l4]6
C 4|5
C ke
Cs
Cr

Cs b
o
He

X1 X2 X3 X4 X5 X6

Puc.: A star C of N = 6 lattice paths and semi-standard tableau T of shape
A = (5,4,2,0,0,0).



The number I, of upward steps along the line z; coincides with the
number of occurrences of j in T. Then, Sy (xy) corresponding to T of
shape A\ takes the form:

N

S50 = S TT

{C} j=1

where summation is over all admissible stars C.
The number of nests of non-intersecting lattice paths is given by
Sx(1y)=5SA(1,1,...,1) equal to

Aj—J— A+ k i —
S)\(lN) _ H ] J k _ H :u‘] ,u’k )

o k—j , k=
1<j<k<N . 1<j<k<N b



e Let us describe the nest of lattice paths called watermelon. Let us
consider the nest of N non-intersecting lattice paths with equidistantly
arranged start and end points, C; and By, respectively (1 <1 < N). Only
upward and rightward steps are allowed for the path in the nest so that
an ['" one is contained within the rectangle whose lower left and upper
right vertices are C; and Bj, respectively. Moreover, the total number

M = M — N of upward steps and the total number N of rightward steps
are the same for each path in the nest.

1\ | B

Ci { Bs

(
G it
Csi i /is
)]

Csi (Ls
X X2 X3 X4 Xs Xo Y Y2 Y3 Y4 Ys Yo

Puc.: Watermelon as the nest of lattice paths at M =6, N = 6.



e A plane partition  contained in N x N x M box B(N, N, M) is an
array (m;;)i j>1 of non-negative integers that satisfy m;; < M,

Tij > Ti41,5 and Tij > T, j4+1 for all Z,] > 1. Furthermore, T = 0
whenever i or j exceed N.

Puc.: Plane partition with |[A| = 11 equivalent to watermelon in Figure 6.



There exists bijection between the watermelon configuration of
non-intersecting lattice paths (Figure 6) and the plane partition in
B(N, N, M) (Figure 7). The trace of s diagonal of plane partition
counted from lower left corner is trom =3y, mij,
1 <s<2N —1. The volume of 7 is || = Zfif] tr 47v. The bijection is
such that the heights of diagonal columns are given by parts of A, and
thus tr y7 = || (all traces are depicted above; notice that 3 x 3 square

hatched in Figure 7 is commented further).



l1l. The transition amplitude and random turns walks of vicious
walkers

e e ¢ Multi-particle transition amplitude
Let us turn to one-dimensional random walks of vicious walkers, who
annihilate one another whenever they meet at the same site. Suppose
that there are NV walkers on a one-dimensional lattice. In the random
turns model only a single randomly chosen walker jumps at each tick of a
clock to either of adjacent sites while the remaining walkers are staying.
It has been proposed, N.M. Bogoliubov // XX0 Heisenberg chain and
random walks, J. Math. Sci. 138 (2006) 5636, to use X X chain to
interpret random movements in the random turns model as transitions
between spin “up” and “down” states.

K




The generating function of the lattice trajectories of N random turns
vicious walkers is given by N-particle transition amplitude between the
states (pu”| and |pf?) parameterized by parts of pul = (uf, ul, ... uk)
and pft = (uff, ... p%) interpreted as initial and final positions:

G“L;Mﬁ(ﬁ) = <HL‘ EiﬁH"XJr‘ShSZ | NR> y
where X X Hamiltonian is used. Equivalently,

Guryur(B) = et %_N)G;?L;u”’(ﬁ)?

(" e P pfy |

where the exponential factor is due to coupling of the spin chain to
homogeneous magnetic field, and the corresponding exponent is
proportional to the eigen-value of the total spin: S* |{) = % 1)

0 /
GHL;;LR(*B)



The transition amplitude G .., = (/3) respects

N
= Z(GH";HR+e;\»(8) + GHT‘:MRfek(JS))

k=1

= h(]\[ —2N) G#L:“R (/3) .

dGuL;HR (/3)
d(8/2)

Proposition: The transition amplitude respecting the initial condition
Gur.un(0) = 0xear, as well as the periodicity condition and
non-intersection property takes the form:

; (M y
Gurn(B) = P23 N)GOHL;HR([j% GzL:HR(/j) :det(Gﬁ%;Hf(;ﬁ))lghng,

where:
M

1 3 cos ¢ 1 (m—7
G () = L3 et ontns)

n=1



and the sum is over ¢, = 2% (n— &), and 1 <n < M. |

The function GJ () is approximated by the modified Bessel function
J m (B) = I)j_, () provided that 4; M _, is approximately replaced
by 5~ /" _dp at large enough M > 1 Let DK be differentiation of K"

order W|th respect to s at s = 0. Applying Dg/z to GY.,,(3), one obtains
‘th

the number |PY (m — j)| of K-step paths between m'" and j*" sites

(N.M. Bogoliubov // XX0 Heisenberg chain and random walks, J. Math.
Sci. 138 (2006) 5636):

P (m s )| = <2L tim- J) ,

where L is one-half of the total number of turns: L = (K — |m — j])/2.



e e e The random turns walks and the circulant matrix
Acting by D), on G,z.,n(f3) one obtains the matrix element:

6(,U'L; ,UJR ‘I() = ID?,/Z G;LL;/J,R(ﬂ) = </’LL‘ (_QH)K| :U‘R> :

Due to the orthogonality, it follows that & (p”; 1/ [0) = 6,,z,,%. Let us
consider the power series:

> B/2 K
GHL:.‘LR(‘B) - Z ( é\/') ®(IJ’L I‘I'R |K) )
K=0 ’

where the coefficients & (pu”; !t | K) respect the equation:

&(u"; p K +1) = h(M - 2N) 6(u"; p |K)
N

+ ) (Bt pf + ek |K) + & (" uf — e |K))
=1l




which is supplied with the initial condition &(p”; ' |0) = 6,2, as
well as with appropriate periodicity and non-intersection requirements.
The corresponding coefficients & *(u”; u®t |K') defined as follows,

& (" p|K) = D)y GluWn(B) = (07 (-2Ho) " | 1),

[

respect the equation above at 1 = 0. Expanding the exponential

P2 =N)  one obtains the identity:
K i
olutsut 1K) = 3 (1)) (10— 23)" @0t 1 ).
p=0

where (i) is the binomial coefficient.



The circulant matrix A gives N = 1 solution at h = 0:

6°(j,m|K) = (1] of (—2Hxx) oy, 1) = (AF), (4)

where (AK)jm is the entry of K" power of A, which obeys

(AK+l)jm _ (AK) + (AK)

Jym+1 Jjym—1"

The initial condition is fulfilled since &°(j,m|0) is the Kronecker symbol
0jm. The periodicity is also consistent with the circulant matrix.
Position of the walker on the chain is labelled by spin “down”, the empty
sites correspond to spin “up” states. Let |PY-(j — m)| to denote the
number of K -step paths between ;' and m'" sites (h = 0). At N =1
one gets |PY(j — m)| = (AK)jm.

In the case of N random turns vicious walkers at 4 = 0 with initial and
final positions arranged as ;1 and p'?, the numbers of nests of K-step
paths |PY (ul — p't)| are given by



[Malyshev, Bogoliubov (2022)] The number of nests of
non-intersecting lattice paths of N random turns vicious walkers with K
steps is equal to the amplitude &°(pu”; " |K) at h = 0:

|Pic( = p)| = 8" (u"; n"|K)

— Z P(n) dCt((An])/lf:/tf')gi,jgw’
Inj=K

where n = (ny,na,...,ny), In| =ny +ns + ... +ny, P(n) is the

multinomial coefficient,

(n1+ne+...+ny5)!
77,1!77,2! 7’1]\' ’

P(n) =

the entry (A"™),,, is defined by (4), and (A");,, = 0.



C. Malyshev, N. Bogoliubov // Spin correlation functions, Ramus-like
identities, and enumeration of constrained lattice walks and plane
partitions, — J. Phys. A: Math. Theor. 55 (2022), 225002

Expression for &(u’; u*|K) demonstrates that either a single walker
chosen randomly jumps to one of adjacent sites with equal probabilities
or all walkers are staying stationary. Right-hand side of

K

Slutsu 1) = 3 (1)) (10— 23)" @0t 1 ).
p=0

is the polynomial of a single variable h(AM — 2N). The coefficients
& (uk; u*|K — p) enumerate, due to Proposition, (K — p)-step nests of

K
paths of V walkers. In turn, the number » of p-element

combinations of the set of K steps enumerates all the possibilities for NV
walkers to stay stationary p times.



A typical nest of N = 6 paths is shown in Figure (K = 13, p = 1) where
dashed lines imply that walkers are staying. As far as [P}, (u" — p')]
is concerned, the nest in Figure corresponds to n; =0, ny = 1, ng = 3,
ng =1 n5 =4, ng = 3.

L

H pr

Puc.: Random turns vicious walkers.



e e o Transition amplitude as the generating function of random turns
walks
Connection between the solution GL)L,MH(()’) in the determinantal form

and the series form (with coefficients given by ) is expressed
by

Proposition: The determinantal solution G?LL:#R (B) is the generating

function of the numbers |PY-(n% — pll)| given by (a kind
of generalized Ramus’s identity):

et (Gzi‘,;#ﬁ(ﬁ))1§n,,k§1v = &°(u"; uf|K)
= [P} (e — i)l [ = Z P(n) dCt((A7l'j>ltf=u5)1§m‘§N

[n|=K




¢ Ramus's identity Vanishing (AK)J_M = 0 occurs for the circulant

matrix A in the case K — [j —m| = 1(mod 2). In the case
K —|j — m| = 0(mod 2), Ramus's identity allows us to formulate

Proposition: [Malyshev, Bogoliubov (2022)] The row-column indices
J,m of M x M matrix respect |j —m| < M — 1. Let us consider
L= w where p € Z is chosen so that 0 < L < %L Then,

K . 7["
(A )jm - <L(5[ M ) u
L5/ MJ2

where 5L’¥ = 1—10,, a, and the notation for the lacunary sum of
binomial coefficients is used:

IR S O )
= M o
<L M/2 'n,:(%.:Q.... L+I7"L




Ramus’s identity (Christian Ramus (1806-1856) Danmark)

R—1 . .
2n ] mj(n — 2t) n
— s —cos ——F~ = , <t .
7 E:O(os 7 ©08 7 > ‘LRI 0<t<R

Ramus C., Solution Generale d'un Probleme d’Analyse Combinatoire, J.
reine angew. Math. 11 (1834) 353-355

The entries in question in terms of the binomial coefficients thus
stressing the connection with enumeration of the lattice walks.



Appendix

Useful identities arise provided that (AK)jm, on one hand, and by Rimas
J. // On computing of arbitrary positive integer powers for one type of
even order symmetric circulant matrices — Applied Mathematics and
Computation 172 (2005) 86; 174 (2006) 511, on another, are equated
each to other.

We specify the matrix (A]")jm = (AF) _ of thesize 6 x 6 to K = 14:

j—m

We obtain in notations of

a; 22 +2)

(At), = 6 6
4y _ (Al4) _ 93 _ 22" 1) _ ar
(A )2 - (A )4 - 6 - 6 - 6 L.



¢ Generalized Ramus's identity

Proposition 5 (generalized Ramus's identity): The identity is valid:

) K
Z P(n) AEL;MR = 2]\1‘[;\?\’ Z (Zcoa(h))

In|=K 1y EPN

x HCOS(M L), (5)

where
N

= AIL

j=1

Iy 18 o
u A

(A™)},, is defined by above, and (A");,, = d,,,. Summation indices n;
in left-hand side of (5) are of the same parity as |} — pff|, 1 < j < N.
Summation in right-hand side of (5) is over N-tuples
lj\rz(ll,lg,...,lm) l]\EP*{O 1,...71u 1}




e Corollary: Determinantal generalization:

.
> P(n) det(A™)r)cssen = Thv 3 (2D cosén)”

In|=K {pn} m=1
X V() Sxr (M) Sar (e PN ],

where the entries (A"7) .
Summation is over N - tuples On = (Pkys Phios - - - » Phiy ), Where

On = f\}r(nfg) and M > k1 > ko > --- > kny > 1.

s 1<, < N, are given above.




IV. Norm-trace generating function of plane partitions

e e o N-Particle averages and plane partitions with constrained columns
Let us obtain the average of ¢< over ‘off-shell’ N-particle states:

(U(vy) | e? [T(uy)) = Pvy’ uk,an),

N
where Py uk,ay) = Z Sx(v?)Sa (u% H("’ i
AC{MN} i=1
is parameterized by M-tuple ay; = (g, s, ..., ), while A=p — 4

connects the parts. The generic Cauchy—Binet formula leads to

Proposition: The sum P(VR,Q, u%, ay) parameterized by M-tuple a ),
admits the determinantal representation:

M 9

1 w2\ n—1
P 72. 2 an) = 7(1 t o 3 ’
(VN ,UN,a]\[> V(U?V)V(VN ) ® (Z (1)]2) >1<‘ '<N/
2,7

n=1

where the Vandermonde determinant is used.




Let us introduce the ‘tilded’ notations to be used below.

Definition: Let us fix a strict partition k; = (ky, ka, ..., k;) of length [,
M>k >ky>--->k >1(clearly, k; >1—j+1,1<j<l). Among
all strict partitions pu;, there exists a subset of such partitions [ that |
their parts are given by k;, | < N. We introduce strict partitions

m,; C Oy such that parts of my label positions of the parts of k; in 1.
Non-strict partitions A=Ay = Ly — O are characterized by | parts
occupying the positions m; and given by non-strict partition k; — my.

Then, off-shell N-particle matrix element of I} arises:
(T(vn) | I | T (un)) = hm Oﬂnﬂu ,
x <\If<vN> €2 [W(uy)) = Plvy’ v} ki),
where the tilded notation ﬁ(v&g, u%, k;) implies the sum
75(v\ ,ua, k) ZS (u%),
{2}

and summation goes over A with respect to fixed [-tuple k;.



The matrix element of I7 under g-parametrization,

v’ =qn/q,

arises:
- ~ q
< M= (Vay'") | e [ 9((an/0)*%) = Play, "2 Ka).
Equation in the case k; = §; reads:

l ~ qy
< Hi:lqi >N~(1 - 7)<qf\,“'7 7?751> )

so that p, and ;\]\ =y — Oy are concretized:



Right-hand side provides the generating function of watermelons:

l ~
lim <[ ai>nvg=Pn1v,8) = > S5(1n) S5 (1)

2}

Cs

Cs

= t=

Cs 3
Xi X2 X3 Xe X5 X6 Y1 Y2 Y3 Y4 Y5 Ve

Puc.: Watermelon as the nest of lattice paths at M =6, N = 6.

Indeed, S5 (1) corresponds to paths connecting the points
C; = (i, N +1—1) and (V, ;). The nest in Figure is just depicted for 1
at [ = 3. An i'" path in Figure makes \; € Ay = (A1, Ao, ..., Av )

steps upwards at 1 < i < N — [, while only rightward steps are allowed at
N —1+1<1i< N. Notice that 14 = 3, 5 = 2, u¢ = 1 on Figure.



As far as the bijection between the watermelons and the plane partitions
is concerned, the watermelons characterized by 11, and Ay are mapped
to such stacks of cubes that [ x [ square remains empty on the bottom of
N x N x M box. Indeed, the watermelon in Figure is characterized by
g =3, s =2, ug = 1, and \y = A5 = A\¢ = 0. Three columns of zero
height on the diagonal of the plane partition imply the empty 3 x 3
square dashed in Figure. Therefore, Pr((1n,1x,d;) enumerates the

plane partitions constrained by presence of the empty square: stacks are
forbidden.

Puc.: Plane partition with |A| = 11 equivalent to watermelon in Figure 6.



In the case of [ = 0, the sum P (1x,1x,05) provides the number of
such watermelons that upward steps are allowed for all paths from 1% to
Nth_

The number Pr(1n,1n,0y,) gives the number A(N, N, M — N) of
plane partitions in N x N x (M — N) box (MacMahon formula):

M-N+k+j—1
k+j—1 ’

Pm(dn,1n,0n) = A(N,N,M — N) H H
k=1j=1




Generally, Pr(1x,1x,k)),

1 ~
lim < IT, = lim 3 = N oo age 7)) -
a1 <k >Ng a1 < Hi:lq,, >N.q MmN, Iy, ki),

where

< I >y = (Way ") | i [ ¥(an/0)2) = P(ay. 1),

enumerates the plane partitions with [ columns of heights given by

k; — my; at the positions labelled by parts of m; (cf. Definition of
non-strict partitions A=Ay = o — 0N characterized by [ parts at the
positions m; and given by non-strict partition k; — m;).



e e e The N-particle mean values and plane partitions with constrained
diagonal volume

function of plane partitions with fixed total volume of the parts on

Norm-trace generating function G(N, N, M| q,~) is the generating
principal diagonal in box of height M and bottom of size N x N. J

Derived in Stanley R.P. // The conjugate trace and trace of a plane
partition — J. Comb. Theor. A, vol 14 (1973) 53 and generalized in
Gansner E. // The enumeration of plane partitions via the Burge
correspondence — Illinois J. Math. 25 (1981) 533.

The determinantal representation for G(N, N, M| q,~) has been derived
for the model of strongly correlated bosons, N. Bogoliubov, C. Malyshev
// The phase model and the norm-trace generating function of plane
partitions — Journal of Statistical Mechanics: Theory and Experiment,
vol 2018 (2018) 083101.



The norm-trace generating function G(N, N, M| q,~) arises from — (see
-42-) — under the g-parametrization

vi=an=(q.¢,....¢"), v =an/q.
Indeed, let us consider the linear parametrization of a,; and specify a,,
so that e®» =~", 0 <~ < 1. Using < ¢ M >y ¢ to denote the
q- parameterlzed average,

Q(y — —1/2 1/2

< >y = (Way %) |2 [¥((an/a)'?)),

one formulates
Proposition: The determinantal representation for the norm-trace

generating function of plane partitions with fixed total volume of the parts
on principal diagonal in a box of height M and N x N bottom is given:

G(N,N,M|q,7) =77 V+D <2 5
det (h]w(,qu»J 1)) i
= 3 s )SA(‘“‘ Ve
AC(V} an/q)V (VAN
=™

where hy/(2) = 75—



The series above is the norm-trace generating function of plane partitions
with fixed height of their diagonal parts in N x N x M box.

Equation at 7 = 1 gives the determinantal formula for the generating
function of boxed plane partitions in N x N x M box:

lim G(N,N,M|q,1) = A(N,N, M),
qg—1

where A(N, N, M) is the number of plane partitions.
Assume that the approximation hj/(z) ~ (1 — )~ ! is valid at |z| < 1
and large enough M. Then:

det ((1 — gt 1) ]> N
lim G(N,N, M|q,v)= 1<i,j<N
M =00 (‘IN/(I) (vay)

N

1))

i+j—1"
1=1j=1 74

Evaluation of the Cauchy-type determinant leads to the double product,
which is nothing but the norm-trace generating function of plane
partitions with unbounded height.



Further,

o

lim G(]\r~ Na M‘ q,7
N/M<1,N—oco n:1 1 _ ,\,qn n



V. Matrix elements of the generating exponential on the Bethe
states and the lattice paths

Consider the normalized matrix element on the on-shell Bethe states:

(€2 e PHY, (U(e0n/2)]eQ e=PH (108 /2))
>~ e N Nz(eief\’/Q)

We express (¢ e~ %) in the integral form at M > 1:

o o BhM /2 N
> —F ~ 7Z N 7 N
(eZe™ )y = N2(ein/2) N1 /P ,Onr)

i ; ; av
% 7)(67&9;\* i e'PN , a]u) ‘V(ezpw)‘Z B Zl 1(cospy—h) (27)]; ,

where py = (p1,pa.....pn), d"p = dpidps - - dpy, and the integration
domain SV is N-fold product of S = [, 7].



Provided that the transition amplitude G
representation takes equivalent form:

() is used, the

plipk

<6Q 673H>N ~ ./\ffz(ew‘“\"/Q) Z SxL (eiieN) S)\n(eig“")
ALRC(N)
N

X exp( ”ﬁ) Gur.ur(B),
k=1

where G/\,z.,,r () is expressed at M > 1:

2\~ SBR(L-N) ‘
GML;#R(J) ~ P35 )st(ﬂM%*#f\(‘8))1§i.j§N'



Applylng hm 0! , to the numerator taken over the ground state

oo,

solution, one obtalns:

0%, ! —/ 0% 0% 0%,
Dj/z (6’9\/2)‘1_[]:1%6’ 311‘\1}(6 9w/2)> _ ‘B(e'ef\‘/zze 0%, /2

where (9% /2; ¢19%/2 | K) is the value of the polynomial

7)',

Pluniuy [K) = 3 S5, (vi?)San(ud) 6 (55 ul |K)
)\L,AR

at uy = vy = €9%/2, Summation is over A’ and AL, while

&(p"; uf | K) is given above.



The replacement ¢~ — 1 is appropriate at M/ > N, and one obtains:
. ! » .
iy 2 < TL e >0 = 90055 101K,

where < - >y, is defined above. Right-hand side is expressed:

(K
Py Iy|E) =D <p) (h(M —2N))"p°(1n; In|K —p),

p=0

where 30(1 ;1 |K — p) corresponds to &% (1" uf |.),

PN In[K —p) = D S5 (In)San(In) [PR_,(B" — p")], (6)
AL AR

and \P}){_p(ﬁL — p'?)| is given by Proposition 3.



Puc.: Nest of paths contributing to B(1n;1n|K) at N =6, K = 13, and
p=1.



The coefficient B°(1;1y|K — p) (56) enumerates, according to (6),
the compound paths. Indeed, the factor S5, (1x) in (6) corresponds to
walks by the lock steps rules from C;, 1 < i < N, to the sites ﬁL (Figure
1). The contribution \P}){fp(ﬁL — )] in (6) corresponds to the
random turns walks from fz” to p”. The factor Syx(1y) accounts for
the lock steps walks from p’® to B;, 1 < i < N. The coefficients at
powers of h(M — 2N) in PB(1n;1y|K) (56) are responsible for
enumeration of non-intersecting lattice walks corresponding to (6) but
with stays inserted. Therefore (55) and (56) demonstrate that the matrix
element of ¢ e over on-shell Bethe states is the generating function
of numbers of nests of non-intersecting paths of the type presented in
Figure 8. A typical nest is depicted in Figure 8 for K =13 and p =1, so
that the paths are characterized by n = (0, 1,3, 1,4, 3), |n| = 12.




VI. Constrained lattice paths and plane partitions

ee e The N-particle mean values and constrained lattice paths
Let trace to imply summation over all N-particle Bethe solutions, and let
us consider the N-particle trace of the Boltzmann-weighted generating

exponential:
trN(eQef*BH) = Z (eQ efﬁH}N
{on}
(0@ -8y, = (PN P)[eC e PHU (0N T2))
- ° N = N2 (e~ /2)

The definition leads to N-particle mean value dependent on £:

Q o) e~

Gngp = ((e7))npg = trn(e“pn), PN = m

In order to investigate G 3 at M > 1, let us use the representation:

try(e%e M) = 3" eXP(Z ”‘M> win(B) -

{un} k=1



The transition amplitude G,,.,,= (/) is related with enumeration of
random walks of N vicious walkers with initial /final positions given by
partitions 11’ and p*. Only closed walks contribute to tr y(e<e=7H),
since the summands in right-hand side contain the diagonal entries
Gusn(B)-

e With regard at the definitions, we obtain:

()| = e ) InlBl)
P IM>1 tr N((ﬁ ﬂH) M>1 IN(ﬁ,O[\j)
where B
In(Blk) = Y det(Ij—7,1(8) <, jen -
{on}
and summation is over strict partitions with marked parts for a fixed
[-tuple k;.

The Ramus’s identity tells us that fN(/J’\kZ) is the generating function of
numbers Pk n(k;) of nests of trajectories (Proposition 6):

DﬂK/QfN(ﬂ\kz) = 751(,N(kl)~,

where



Prn (ki) = Z PR (fy — b))l
{pn}

~ ~ n;
|PIO((IJ’N — /1’]\ Z P det ((71J+ﬂjﬂi>> .
1<ij<N

In|=K 2

Equation defines the number of nests of trajectories of N random turns
vicious walkers initially located at all admissible 11, and returning after
K steps to their initial positions. The generating function

ePh(5=N)T (B|k;) enables enumeration of nests of closed paths with
stays allowed and with a part of initial/final positions pinned.



e e o Diagonally constrained plane partitions
The representation for tr y(eCe™ ") is estimated at M > 1:

try(eQe Py 1
oBRMZ NI

PP, e ay) [V(ePV)]?
SN

X eﬁz,‘\;l(cospgfh) d p
(2m)N

where the integration domain SN is N-fold product of S = [—7, 7], and
P(e "PN €PN a, ) is given by

N
P(VR/27U?Vaa]\J) = E S)\ VN S)\ H()”m
AC{MN} i=1

is the sum parameterized by M-tuple ay; = (a1, o, ..., anr), while the
parts of X and p are related.



Let us introduce the notation a}, = log~ - (1,2,..., M), which implies
that the parametrization «,, = nlog~, 0 <~ <1, is used in P. Then we
obtain the estimate at 1 < M < 3:

tr v (e2(e=AH) 5 )
T BhME ~ P(1ln,1n,2a,) VN(B,h),

cﬁN(lfh) TN

QN N2 A 0N ~
Vi (B.h) = g = MO oy = log Ty,

where Ty is Mehta integral expressed in terms of the Barnes G-function:

_ G(N+1)

G(N+1) = 112(27 H L(k
The behaviour of Ty = e#~ is governed at 1 < N < M by the estimate:
@N:;logN—STj\ﬂ—i—O(logN), N>1.

It is seen that Vi (f, h) only depends on 3, N via the ratio % at
B>N>1.



The coefficient P(1y,1y,a},) arises at ¢ — 1 from the g-parametrized
sum:

< Q) >N = P(q\,, q;\ a”> — P(1n,1n,a},),

qg—1

where < ¢2(7) > is defined by

N q
>N, = 7?2 (N+1) Z ”/‘)\‘S/\<5)S>\(q)

AC{MN}

\ (N+l) (]\le 1
det ,772 n(i+j— ,
V(QN/Q) Yay) 1<i,j<N

where |A| is the volume of A, and the homogeneity property
YA Sx(q) = Sx(7q) is used.

< (JQ(V)




The limiting expression leads from the generating function
G(N,N, M| 1,~) of plane partitions with fixed sum of their diagonal
parts confined in N x N x M box to the case of box with infinite height:

P(1yn,1y,a], = 42D (N, N, M| 1,~
(1y,1n aM)) M1 v (N,N,M|1,7) M
L (N+1)
Mose | (%gnl 1_[1 1_[1 1- “/q”l 1’
i=1j
where

GV, N, ML) = 3 RS 1)8A(1)
AC{MN}



¢ The mean value of the generating exponential is estimated:

L GINN ML)
~ ~ (N+1)

M>1
1< M<B A(N, N,M)) 7

Gnp(ay,)

M>1

where A(N, N, M) is the number of unconstrained plane partitions in
N x N x M box (M =M — N):

M-N+k+j—1
1n,1n,04) = AN, N, .
P(1n,1n,0n) M) kl_[ljl_[l A

The numerator is the generating function G(N, N, M| 1,~) which is of a
polynomial form. Indeed, application of D!, at v = ¢*/" gives the mean
value of power [ of the first momentum I\/I.

71 vIES (1 (1
((MY) ~ N7 2y [ Snn (L) San N)‘M>>1
N51<<U<<3 A(NNM)‘ 7

M>1

where Ay = p — d. The numerator may be viewed as a sum



of the terms (22)'’A(N, N, M|m), where

A(N,N,M|m) = Z San (In)Say (1n)

pytEm

is the number of plane partitions 7 confined in N x N x M box which
are diagonally constrained since their trace is tr ym = m — 5 (N + 1).
0 The mean value of product I7y of flipped spins on the sites
= (k1, ko, ..., k) of length [, M > kg > kg >--->k >1is
estlmated. _
- P(].N, ].N, k])
<<Hk>>N“3 1<M<p  AN,N, M)’

where 73(1N, 1y,k;) is the number of the plane partitions at ¢ — 1:

lim < [T >ng= Pa(ly, 1y, ki) = ZSX(IN)S;\(IN).
{2}
The numbers 75(1N, 1x,k;) (67) enumerate the plane partitions

diagonally constrained in the sense that [ columns on the principal
diagonal are of prescribed heights and positions (see Definition 3). In the

case of k; = d;, the estimate is given by 75(1N, 1y,0;).



THANKS !
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