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Statement of the problem

Let Γ be a lattice in Rd , let Ω be the cell of Γ.

Let Γ̃ be the dual lattice.
By Ω̃ we denote the central Brillouin zone of Γ̃.

Example: Γ = Zd , Ω = [0, 1)d , Γ̃ = (2πZ)d , Ω̃ = (−π, π)d .

Let ε > 0 be a parameter. We use the notation

f ε(x) := f
(x
ε

)
.
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Statement of the problem

Main object
By Aε we denote the operator in L2(Rd ;Cn) given by

Aε = b(D)∗gε(x)b(D).

Here g(x) is a Γ-periodic (m × m)-matrix-valued function such that

c ′1m 6 g(x) 6 c ′′1m, 0 < c ′ 6 c ′′ < ∞;

b(D) =
∑d

j=1 bjDj is a first order (m × n)-matrix DO. We assume that
m > n and that the symbol b(ξ) =

∑d
j=1 bjξj has maximal rank:

rank b(ξ) = n, 0 6= ξ ∈ Rd .
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Statement of the problem

The precise definition of Aε is given in terms of the quadratic form

aε[u,u] =
∫
Rd

〈gε(x)b(D)u, b(D)u〉 dx, u ∈ H1(Rd ;Cn).

We have

c0

∫
Rd

|Du|2 dx 6 aε[u,u] 6 c1

∫
Rd

|Du|2 dx, u ∈ H1(Rd ;Cn).

Example:
Aε = −div gε(x)∇ = D∗gε(x)D.

In this case, we have n = 1 and m = d .
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Statement of the problem

Problem
The problem is to study the behavior of the operator exponential

e−iτAε , τ ∈ R,

for small ε.

The results can be applied to the Cauchy problem

i∂τuε(x, τ) = (Aεuε)(x, τ), x ∈ Rd , τ ∈ R;
uε(x, 0) = φ(x).

The solution can be represented as

uε(·, τ) = e−iτAεφ.
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The effective operator

We show that, in some sense,

e−iτAε ∼ e−iτA0

for small ε.

Here A0 is the effective operator with constant coefficients:

A0 = b(D)∗g0b(D).

Definition of the effective matrix g0:
Let Λ(x) be the (n × m)-matrix-valued Γ-periodic solution of the problem

b(D)∗g(x)(b(D)Λ(x) + 1m) = 0,
∫
Ω
Λ(x) dx = 0.

Then g0 is an (m × m)-matrix given by

g0 = |Ω|−1
∫
Ω

g̃(x) dx, g̃(x) = g(x)(b(D)Λ(x) + 1m).
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Survey

In 2001, Birman and Suslina proved that∥∥(Aε + I)−1 − (A0 + I)−1∥∥
L2(Rd )→L2(Rd )

6 Cε (1)

by the operator-theoretic (spectral) approach.

In 2005, a more
accurate approximation was obtained:∥∥(Aε + I)−1 − (A0 + I)−1 − εK(ε)

∥∥
L2(Rd )→L2(Rd )

6 Cε2. (2)

In 2006, approximation in the energy norm was obtained:∥∥(Aε + I)−1 − (A0 + I)−1 − εK1(ε)
∥∥

L2(Rd )→H1(Rd )
6 Cε. (3)

Here a corrector K1(ε) is given by

K1(ε)=ΛεΠεb(D)(A0+I)−1, (Πεu)(x)=(2π)−d/2
∫
Ω̃/ε

e i〈x,ξ〉û(ξ) dξ,

and K(ε) has a more complicated structure:
K(ε) = K1(ε) + K1(ε)

∗ + K3.
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Survey

In 2004, Suslina proved that∥∥∥e−Aετ − e−A0τ
∥∥∥

L2(Rd )→L2(Rd )
6 C(τ)ε, τ > 0. (4)

A more accurate approximation was found by Vasilevskaya in 2009:∥∥∥e−Aετ − e−A0τ − εK(ε, τ)
∥∥∥

L2(Rd )→L2(Rd )
6 C(τ)ε2. (5)

In 2010, approximation in the energy norm was obtained by Suslina:∥∥∥e−Aετ − e−A0τ − εK1(ε, τ)
∥∥∥

L2(Rd )→H1(Rd )
6 C(τ)ε. (6)

Here K(ε, τ) and K1(ε, τ) are appropriate correctors. Estimates
(1)–(6) are called operator error estimates in homogenization theory.
A different approach to operator error estimates (the shift method)
was suggested by Zhikov and Pastukhova in 2005. See a survey by
Zhikov and Pastukhova (Russian Math. Surveys, 2016).
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Survey

The situation with homogenization of Schrödinger-type equations and
hyperbolic equations is different from the elliptic and parabolic cases.

In 2008, Birman and Suslina proved that∥∥∥e−iτAε − e−iτA0
∥∥∥

H3(Rd )→L2(Rd )
6 C(1 + |τ |)ε. (7)

In 2017, Suslina confirmed that in the general case this result is
sharp with respect to the norm type.
In 2022, it was shown by Dorodnyi that in the general case this result
is sharp with respect to the dependence on τ .
Under some additional assumptions, estimate (7) was improved:∥∥∥e−iτAε − e−iτA0

∥∥∥
H2(Rd )→L2(Rd )

6 C(1 + |τ |)1/2ε. (8)

Similar results were obtained for cos(τA1/2
ε ) and A−1/2

ε sin(τA1/2
ε ) by

Birman and Suslina, Meshkova, Dorodnyi and Suslina.
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Main questions

Problem
Is it possible to approximate the operator e−iτAε in the (Hs → L2)-norm
with error O(ε2) and in the (Hs → H1)-norm with error O(ε)?

Results: We have obtained such approximations not for the exponential
e−iτAε , but for the operator e−iτAε (I + εΛεb(D)Πε).
The results with corrector can be applied to the Cauchy problem

i∂τuε(x, τ) = (Aεuε)(x, τ), x ∈ Rd , τ ∈ R;
uε(x, 0) = ψε(x), x ∈ R,

(9)

with initial data from a special class:
ψε := φ+ εΛεb(D)Πεφ, φ ∈ Hs(Rd ;Cn) with a suitable s. (10)

Note that
(I + εΛεb(D)Πε)

−1 = I − εΛεb(D)Πε ⇒ φ = ψε − εΛεb(D)Πεψε.
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Reduction 1: Scaling transformation

We apply the operator-theoretic method based on the scaling
transformation, the Floquet–Bloch theory and analytic perturbation theory.

By the scaling transformation, the study of e−iτAε is reduced to the study
of the operator

e−iτε−2A,

where A = b(D)∗g(x)b(D).
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Reduction 2: Direct integral expansion

Using the unitary Gelfand transform, we expand the operator A in the
direct integral:

A ∼
∫
Ω̃

⊕A(k) dk.

The operator A(k) acts in L2(Ω;Cn) and is given by

A(k) = b(D + k)∗g(x)b(D + k)

with periodic boundary conditions.
We have to approximate the operator

e−iτε−2A(k)

uniformly in k ∈ Ω̃.
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Analytic perturbation theory

The operator A(k) is an elliptic operator in a bounded domain; its
spectrum is discrete.

We consider A(0) as an unperturbed operator and
A(k) (for small k) as a perturbed one. We have

N := KerA(0) = {u ∈ L2(Ω;Cn) : u(x) = c ∈ Cn}.

Let P be the orthogonal projection onto N: Pu = |Ω|−1 ∫
Ω u(x) dx. So,

λ0 = 0 is an n-multiple isolated eigenvalue of A(0). Then for |k| 6 t0 the
perturbed operator A(k) has exactly n eigenvalues λ1(k), . . . , λn(k) on
[0, δ], while the interval (δ, 3δ) is free of the spectrum.

specA(0)
λ0 = 0 (mult. = n)

specA(k)
λ1(k), . . . , λn(k)

0 δ 3δ
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Analytic perturbation theory

We put k = tθ, t = |k|, θ ∈ Sd−1, and study the operator family

A(k) = A(tθ) =: A(t,θ)

by means of the analytic perturbation theory with respect to t.

By the Kato–Rellich theorem, for t 6 t0 there exist real-analytic branches
of the eigenvalues λl(t,θ) and the eigenvectors ϕl(t,θ) of A(t,θ):

A(t,θ)ϕl(t,θ) = λl(t,θ)ϕl(t,θ), l = 1, . . . , n,

and the set {ϕl(t,θ)} forms an orthonormal basis in the eigenspace of
A(t,θ) corresponding to [0, δ]. Then for small t we have

λl(t,θ) = γl(θ)t2 + µl(θ)t3 + νl(θ)t4 + . . . , (11)

ϕl(t,θ) = ωl(θ) + tϕ(1)
l (θ) + . . . , (12)

l = 1, . . . , n. Here γl(θ) > c∗ > 0, and µl(θ), νl(θ) ∈ R. The embryos
ω1(θ), . . . , ωn(θ) form an orthonormal basis in N.
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Analytic perturbation theory

Let F (t,θ) be the spectral projection of A(t,θ) for the interval [0, δ]. We
have the following threshold approximations for small t:

F (t,θ) = P + tF1(θ) + O(t2), (13)
A(t,θ)F (t,θ) = t2S(θ)P + t3K(θ) + O(t4). (14)

The operators F1(θ), S(θ) and K(θ) can be described in the invariant
terms, as well as in terms of the coefficients of power series expansions for
λl(t,θ) and ϕl(t,θ). We have

F1(θ) = [Λ]b(θ)P + ([Λ]b(θ)P)∗.

The operator S(θ) = b(θ)∗g0b(θ) is called the spectral germ of the
operator family A(t,θ) at t = 0. The coefficients γl(θ) and the elements
ωl(θ) are eigenvalues and eigenvectors of the spectral germ:

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n.
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Analytic perturbation theory

Next, we need to describe the operator N(θ) = PK(θ)P .

In the invariant
terms, we have

N(θ) = b(θ)∗L(θ)b(θ)P ,

L(θ) := |Ω|−1
∫
Ω
(Λ(x)∗b(θ)∗g̃(x) + g̃(x)∗b(θ)Λ(x)) dx.

In terms of the coefficients,

N(θ) = N0(θ) + N∗(θ),

N0(θ) =
n∑

l=1
µl(θ)(·, ωl(θ))ωl(θ),

N∗(θ) =
n∑

l=1
γl(θ)

(
(·,Pϕ

(1)
l (θ))ωl(θ) + (·, ωl(θ))Pϕ

(1)
l (θ)

)
.
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Results

Theorem 1 [Birman and Suslina, 2008]
For ε > 0 and τ ∈ R we have∥∥∥e−iτAε − e−iτA0

∥∥∥
H3(Rd )→L2(Rd )

6 C(1 + |τ |)ε.
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Results with corrector

Theorem 2 [Suslina, 2023]
For ε > 0 and τ ∈ R we have∥∥∥e−iτAε (I + εΛεb(D)Πε)−e−iτA0−εK(ε, τ)

∥∥∥
H6(Rd )→L2(Rd )

6C(1+|τ |)2ε2.

Here the corrector K(ε, τ) is given by

K(ε, τ) := [Λε]b(D)Πεe−iτA0 − i
∫ τ

0
e−i(τ−ρ)A0b(D)∗L(D)b(D)e−iρA0 dρ.

Tatiana Suslina (SPbSU) Homogenization of Schrödinger Equations May 2024 18 / 27



Results with corrector

Theorem 3 [Suslina, 2023]
For ε > 0 and τ ∈ R we have∥∥∥e−iτAε (I + εΛεb(D)Πε)−e−iτA0−εK1(ε, τ)

∥∥∥
H4(Rd)→H1(Rd )

6C(1+ |τ |)ε.

Here the corrector K1(ε, τ) is given by

K1(ε, τ) := [Λε]b(D)Πεe−iτA0
.

Remark. 1) The correctors K(ε, τ) and K1(ε, τ) are different. This agrees
with the results for elliptic and parabolic equations.
2) We see that the “expected” first order approximation e−iτA0

+ εK1(ε, τ)
is close not to the operator e−iτAε , but to e−iτAε (I + εΛεb(D)Πε).
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Discussion

It is impossible to approximate the operator εe−iτAε [Λε]b(D)Πε in terms
of the spectral characteristics at the bottom of the spectrum.

Indeed, after
the scaling transformation and the direct integral expansion, this operator
transforms to the operator family e−iτε−2A(k)[Λ]b(k)P acting in L2(Ω;Cn).
We have [Λ]P = P⊥[Λ]P , so, we deal with the operator e−iτε−2A(k)P⊥

which is close to e−iτε−2A(k)F (k)⊥ within the margin of error. Here F (k)⊥
is the spectral projection of A(k) corresponding to the interval [3δ,∞).
Hence, this part of the spectrum is responsible for the behavior of the
operator e−iτε−2A(k)F (k)⊥.
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Improvement of the results under additional assumptions

The results can be improved under the following condition.

Condition 1
Suppose that at least one of the following assumptions is satisfied:
1◦. N(θ) = 0 for any θ ∈ Sd−1.
2◦. N0(θ) = 0 for any θ ∈ Sd−1 (i. e., µl(θ) ≡ 0 for l = 1, . . . , n) and the
number of different eigenvalues of S(θ) does not depend on θ.

Remark. If Aε = − div gε(x)∇, where g(x) has real entries, then
N(θ) ≡ 0.

Theorem 4 [Dorodnyi, 2022]
Suppose that Condition 1 is satisfied. Then for ε > 0 and τ ∈ R

‖e−iτAε − e−iτA0‖H2(Rd )→L2(Rd ) 6 C(1 + |τ |)1/2ε. (15)
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Improvement of the results under additional assumptions

Theorem 5 [Suslina, 2023]
Suppose that Condition 1 is satisfied. Then for ε > 0 and τ ∈ R∥∥∥e−iτAε (I + εΛεb(D)Πε)−e−iτA0−εK(ε, τ)

∥∥∥
H4(Rd )→L2(Rd )

6C(1 + |τ |)ε2.

Theorem 6 [Suslina, 2023]
Suppose that Condition 1 is satisfied. Then for ε > 0 and τ ∈ R∥∥∥e−iτAε(I+εΛεb(D)Πε)−e−iτA0−εK1(ε, τ)

∥∥∥
H3(Rd )→H1(Rd )

6C(1+|τ |)1/2ε.
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Sharpness of the results

In the general case, all the results are sharp with respect to the norm type
and the dependence of estimates on τ .

Theorem 7 [Suslina, 2017; Dorodnyi, 2022]
Suppose that N0(θ0) 6= 0 for some θ0 ∈ Sd−1, i. e., µl(θ0) 6= 0 for some l.
1) Let τ 6= 0 and s < 3. Then there does not exist a constant C(τ) > 0
such that the estimate∥∥∥e−iτAε − e−iτA0

∥∥∥
Hs(Rd )→L2(Rd )

6 C(τ)ε (16)

holds for all sufficiently small ε.
2) Let s > 3. There does not exist a positive function C(τ) such that
lim|τ |→∞ C(τ)/|τ | = 0 and estimate (16) holds for τ ∈ R and sufficiently
small ε.

Theorem 7 confirms that Theorem 1 is sharp.
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Sharpness of the results

Theorem 8 [Suslina, 2023]
Suppose that N0(θ0) 6= 0 for some θ0 ∈ Sd−1, i. e., µl(θ0) 6= 0 for some l.
Then the results of Theorem 2 and 3 are sharp both with respect to the
norm type and with respect to the dependence of estimates on τ .
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Sharpness of the results

Finally, we show that the improved results (that are valid under
Condition 1) are also sharp.

Theorem 9 [Dorodnyi, 2022]
Suppose that N0(θ) = 0 for any θ ∈ Sd−1, i. e., µl(θ) ≡ 0 for
l = 1, . . . , n. Suppose that νj(θ0) 6= 0 for some j and θ0 ∈ Sd−1.
1) Let τ 6= 0 and s < 2. Then there does not exist a constant C(τ) > 0
such that the estimate∥∥e−iτAε − e−iτA0∥∥

Hs(Rd )→L2(Rd )
6 C(τ)ε (17)

holds for all sufficiently small ε.
2) Let s > 2. There does not exist a positive function C(τ) such that
lim|τ |→∞ C(τ)/|τ |1/2 = 0 and the estimate (17) holds for τ ∈ R and
sufficiently small ε.

Theorem 9 shows that Theorem 4 is sharp.
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Sharpness of the results

Theorem 10 [Suslina, 2023]
Suppose that N0(θ) = 0 for any θ ∈ Sd−1, i. e., µl(θ) ≡ 0 for
l = 1, . . . , n. Suppose that νj(θ0) 6= 0 for some j and θ0 ∈ Sd−1. Then
the results of Theorems 5 and 6 are sharp both with respect to the norm
type and with respect to the dependence of estimates on τ .
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