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The talk is devoted to applications to the theory of the Korteweg—de Vries hierarchy
of the following results:

V.M. Buchstaber, V.Z. Enolskii, D.V. Leykin:
1. Construction of hyperelliptic analogs of Weierstrass elliptic functions;

2. Description of all algebraic relations in the field of hyperelliptic functions;

V.M. Buchstaber, D.V. Leykin:
3. Construction of the polynomial Lie algebras theory;

4. Construction for each g > 0 of a system of 2g multidimensional Schrédinger
equations, which determines the sigma function of a hyperelliptic curve

2g+1
of genus g in the model Vy = {(x,y) €EC? Yy’ =x*T4 Azkng_"“};
k=2
5. Construction of a polynomial Lie algebra Sch/z, the generators of which
are 2g Schrodinger operators Qo, @2, ..., Qag—2 over A = C[A4, ..., Aagt2];

V.M. Buchstaber, E.Yu. Bunkova:
6. Explicit description of structure polynomials of the Lie algebras SchAg;

7. Explicit description of operators Qo, Q2, Qu;
8. Recurrence formulas for Q«, k > 2, in terms of Lie brackets of operators Qo, @2, Qa.
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The stationary Korteweg—de Vries equation (KdV for short)
u" =6u'u
defines a dynamical system in C3 with coordinates x1 1, %1 and x3 1:
Xi1=X1, Xp1=X31, X35 =12xp1x11.
The first integral of this system is the first integral of the Newton equation
u" = 3u® + oy, where oy is a constant parameter.

Solution of this system can be given in the form

u=2x11;, X1,1=§, X21= o X3,1 = o p= —(log U)H
where o and g are the Welerstrass functions of a non-singular elliptic curve

V=4 —gox—gs, g —21gs #0,

with constant parameters g, g3. In the coordinates of the space C3,
this curve is the intersection of two hypersurfaces given by the equations

2 3 2
2(6x11 — x3,1) = &2, 2x31x11 = 8X{ 1 — X3 = &3
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We will describe the KdV-hierarchy with an infinite set of parameters ay, ag, . . -

and for each g = 1,2, ... introduce the stationary parametric g-equation.

This equation corresponds to an ordinary differential equation of order 2g,
which is called the universal Novikov g-equation.

Each such g-equation defines a polinomial dynamical system in C38
with coordinates

X12k—1, X22k—1, X32k—1, k=1,...,8.
Let pok(z,A) = —#;kil Ino(z,A) be the hyperelliptic function

of non-singular hyperelliptic curves
Va={(x,y) € C* 1 y? = x4 \x®8 1 L Magx + Nagra )

where z = (z1,...,25-1), A= (A4, ..., Aag2).
It will be shown that our dynamical system has the solution of the form
X12k—1 = P2k,  X22k—1 = Poks  X32k—1 = Pox, k=1,...,g,
if the parameters {aox} are given by the recursion
k—2

200442 = Aok2 — E Qj4200k—2i, k = 3, 204 = A4, 206 = Ng.
i=1
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The resulting dynamic system has 2g polynomial integrals.

Thus we realize the Jacobian of a nonsingular hyperelliptic curve
of genus g as a g-dimensional submanifold in C38 given by
the system of 2g polynomial equations

A2k(xl,la-~-axs,2q—1) :AQk, S+2q—1 < 2/(, k:2,,2g—|—1, s = 1,2,3.
We obtain that for any g > 2 the function
u=2p11(z,\)

of a hyperelliptic curve of genus g satisfies the parametric hierarchy.
This hierarchy begins with KdV-equation
4i = u" —6ud

j— OQu s _ Ou
where i = 5 U = 55
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KdV-equation in the Lax form

Set & =0, v’ =0(u) and L= 0% — u.

In 1968 P.Lax showed that for the operator A3 = 8% — 3ud — 31/,
the commutator [As, L] is the operator of multlphca‘mon
by the differential polynomial
1
-2 “(u
Using that 0;(L) = [0, L] = —[0¢, u] = —u, he obtained that the KdV-equation

11 6uu)

4i = " — 6ud,

_ o Ou __ Ou
where u = u(x,t), i = g, v = §~

is equivalent to the equation
(L) = [As, L].
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The graded commutative differential polynomial algebra

Consider a graded commutative differential polynomial algebra

Q[o = ((C[Uo, u,.. .], D)7
where D is a derivation of Clug, u1,...] such that D(ux) = uky1, k=0,1,...
Set |ug| =2, |D| =1 and |ux|] = k+2, k € N. Thus,

Ao = & Ao
k>0

where 2(g x is a graded linear space generated by homogeneous polynomials
of weight k,

o0 = C{1}, Ao1 =0, WAoo = C{uo}, Ao3 = C{w1}, Aoa = C{ua, 53}, ..

For further constructions, it is important that

the operator D defines monomorphisms D: o x — 2o k41 for all k > 1. J
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equation

Let us consider a homogeneous differential operator of order n
n
A=) aiD', 3 € oo, [+ni an # 0,
i=0

such that [L, A] is an operator of multiplication by a polynomial
Pa([u]) € 2o ja,|+nt+2- We will call such operators the KdV-operators.

Denote by V, the set of all KdV-operators of order at most n.
It is clear that V), is a linear space over C.

Let A€V, and [L, A] = Pa([u])-
We will call by A-KdV-equation the equation

9 (u) = Pa([u])

which is equivalent to the equation (L) = [A, L].
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gebra of homogeneous ps lifferential operat

The set of homogeneous pseudodifferential operators (in short, pd-operators)

Ag = {A = aiD'|a; € Ao ja|4m—i» am # 0, m € Z} = kg%?,k,

i<m
where |A| = |an| + m, deg A = m, is a non-commutative associative graded
algebra over C with an additive homogeneous basis {aD", |aD"| = |a| + n}.

The homogeneous polynomial a € 2y is considered as the multiplication operator
a: Ao — Ao : a(b) = ab, b € AUp.
The multiplication rule in ng is given by commutation relations
[D, Uk] = Uk+1, [D_l, Uk] = Z(—l)i_luk+;D_(i+l).
i>0
The set of homogeneous differential operators
QlO[D] = {A = Z a,-Di | a; € Qlo"am|+m,,', am 7é 07 m > 0}

i=0
is a subalgebra in 5.
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Multiplication rule and residues

k . .
bD*aD' =" </> bal) pk+I=i (1)

i>0

Here a) = D/(a) € %o and (J) =1, (§) =1,

<k> _kk=1) (ki) _(_1),(—k+'i—1>’ ez iso.

i il i

For negative k the series (1) is infinite.

For any A € QlOD the coefficient a_; of the term a_; D!
is called the residues of A and denoted res A.

For any A € A5 we have [D, Al = Y D(a;)D’ = D(A).

i<m

For any A € A5, res[D, A] = D(res A).
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The skew-symmetric bilinear form

On the space of pd-operators, a homogeneous skew-symmetric bilinear over C
form

U(‘,‘)SQ[(?@Q[(?—)Q[(), |0(AaB)|:|A|+‘B|a
is defined, such that for n,m € Z
0 if n+m<0,

(n+r,771+1) Zgié'q(—l)sa(s)b(”m—s) ifn+m>0.

o(aD", bD™) = {

The formula (2) is extended to pd-operators since
o(aD",bD™) =0 if nm >0 or n+m <O0.

For example: o(D",bD™) = (, " )b("tm).

Therefore o(D,D~!) =1 and o(D,A) =resA, A € 2.
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Cocycle equation

Corollary.
For any A, B € QIOD

res[A,B] = D(c(A, B)).

Corollary.
For any A, B, C € ng
o([A, B], C) + o([B, C], A) + o([C, A], B) = 0.

For A=Y a;D', ap, #0, weput A=A, +A_ where A, =0 if m<0
i<m
m .
and Ay => aD" if m>0.
i=0

For any A, B € 2§ we have o(A, B) = o(A},B-) + o(A_, By). )
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The square root of the Schrodinger operator

Let us consider a homogeneous operator L = D? — u, |L| = 2.

The equation £? = L uniquely defines homogeneous pd-operator

L=D+ Z LaD™" |L] =1, hp€ Aont1-

n>1

The polynomials / , can be calculated by the recursion

n—2 n—k—2

2Il,n + IL"—l + Z Il,k Z < i )Iilkil - 07 nz 37

k=1 i=0

with initial conditions /1 = —%u, hpo= %ul. Thus,

1 1 1 1
L=D-— 5uD*l + ZulD’z —glet u?)D73 + —(u3 + 6uu ) D4~

— —(ug + 14upu + 1103 + 203)D75 + ...
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Let us define a sequence of homogeneous differential operators
Agie = L3 = LK, Ag—y = L
and homogeneous differential polynomials pox € g 2k,
po=1 pou=resLF 1 k=12 ...

Thus,
£2k_1 = A1+ psz_l +..., k>0.
We have A; = D and

D2k—1 _ 1

Apk—1 = 5(

where ax,_1 = A2k_1(1) € 910)2;(_1.
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Canonical KdV-operators

We have [Ay, L] = [L¥, L] = 0. It is easy to show that [£2~1 L] =0
and therefore the commutator

[Asi—1, L] = [£2%71 = L2571, 1] = 2D(pai) € Ao

is the operator of multiplication on the function 2D(pox).
Thus, we have obtained a sequence of homogeneous KdV-operators

Av=1, A =D, A,=D"+> anD" % n>1
k=1

Any KdV-operator A € 2y ® § of order n, where § is a field of constants,
can be uniquely written in the form

n
A= 35" ckAk, where Ay = ﬁ’j_ and ¢, € 3F.
k=0

Since [Ag, L] = [L¥, L] = 0, then under considering A-KdV-equations
it is sufficient to deal with operators A such that ¢, = 0 for all m.

The operators Azx—1, k > 1, will be called canonical KdV-operators.
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Canonical KdV-derivations Ox_1

Let’s define
Oy, (U) = Ook—1(u) = [L, Aok—1] = —2D(pak) € Ao, 2k+1, k € N.

The operator d,,x_1 on 2y extends to the differentiation operator on Ql(’))
which we will also denote by Ok_1-

Let A= Z a,-D". Then (92k,1(A) = [32;(,1,/4] = Z 82;(,1(3,-)D".

i<m i<m

Ook—1(L) = [A2k—1, L],

and therefore,
Ook—1(L*™ ) = [Axk—1,L*" 1], k,n € N.

For any A, B € AP
Ook—1 ((T(A, B)) = 0(32k_1(A), B) aF O'(A, (92;(_1(3)).
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Canonical evolutionary de Ork—1 commute

A derivation 9; of the ring 2o is said to be evolutionary if [0;, D] = 0.

To set a homogeneous evolutionary derivation J;, it is necessary and sufficient
to choose a polynomial P([u]) € Ao x, k > 0, and put 9:(u) = P([u]).

Let k,n € N. Let’s put

2n—1
02k—1,2n-1 = 0(Azk—1, L") € Wp 2642n—2.

We obtain

01,2n—1 = P2n;, 02k—1,2n—1 = 02p—1,2k—1-

O2k—1(p2n) = O2n—1(p2k) = D(02k—1,2n-1)-

[02k—1,02n—1] = 0.
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Canonical Kd

The infinite system of compatible homogeneous differential equations
Oak—1(u) = —2D(p2k), k €N,

is called the canonical KdV-hierarchy.

This system is written in the form of conservation laws for the KdV-equation
and is equivalent to the system of compatible homogeneous operator equations
in the Lax form

Oak—1(L) = [A2k—1, L].

Namely,
o(u) = D(u) = u,
403(u) = D(ux—3u?) = us— 6uuy,
1605(u) = D(us — 10upu — 50?4+ 10u3) = us — 10uus — 20wy ux + 30u?uy,
and so on.

V. M. Buchstaber Lie algebras, Schrédinger op



The universal Novikov’s N-equation

For fixed N € N, let A = Claz, ay,...,qont2], |aon| =20, n> 1,
be a graded algebra of parameters and 2l = A[up, vy, ...] = &Aok, k = 0.
By definition D(ap,) = 0.

Let us define the universal N-symmetry of the KdV-equation

N
07 (u) = Oany1(u) + Z Ap(N—k+1)02k—1(U).
k=1
We have 0,(u) = —2D(Fyn42) where
N
Foni2 = pani2 + Z Qy(N—k+1)P2k € Aont2, po = 1.
k=0

Equation 9, (u) = 0 is called the universal Novikov’s N-equation.

Let us restrict ourselves with the solution v of the KdV-hierarchy
such that 0,(u) = 0. It implies that
N

poni2 + Y axn-kpnypak = 0, po = L.
k=0
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Since 2271 py = —uo_p + ..., k € N, the equation Fonip =0
can be written in the form

uan = fongo(Uo, U,y .. ., tan—2; Q2. .., Q2n42), Pny2 € Aonyo. (3)

Equation (3) with apx € C is called Novikov’s N-equation.
These equations depend linearly on ap, ag, . .., aanio-
Let us assume ap = 0, then:

N=1: U2:3u2+8a4,

N=2: uy=10(up — v?*)u + 502 — 16a4u + 32as,

N =3: ug = 14(us—5uru+50?)u + 28uyuz + 21u3 + 35u*—

— 160142 —3u?) — 64agu + 1280s.

Since ux = D¥(u), then for the function u = u(x)

the Novikov’s N-equation is an homogeneous ordinary nonlinear differential
equation of the 2/N-th order with graded parameters ay, ..., aonto.

)
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Let Iy = (Font2) C 2 be a differential ideal generated by the polynomial Fopo
and its derivatives D¥(Fon.2). For any element of 2 the canonical projection

mn o A=A Ty

is the result of the elimination of variables ux, k > 2N, using equation (3)
and equation uynix = D¥(uan) = D¥(fany2) recursively.

Thus Ql/jN = .A[Llo, ey U2N,1].

The ideal Jy is invariant with respect to evolutionary derivations dxx_1, k € N.

The canonical operators 021, k = 1,2, ..., on %y induce operators on Ag T .
These operators, which we will also denote by 02x_1, one can write in the form

2N—-2 a a
6 = D = u; — 4 f s
1 ; +1 8u,- 2N+-2 8U2N71
2N—-1 8
Ook—1 = —2 pitl 2< k<N,
2k—1 Z (ka)au,-’

i=0

V. M. Buchstaber Lie algebras, Schrédinger operators



The universal Novikov’s N-hierarchy

Corollary.

In C3V with coordinates Ug, ULy ..y UpN—1; Qlay ..., CONED,

the operators &y = D and Opk—1, k =2,..., N, (see above) define
N compatible dynamical systems with parameters aa, ..., aopni2

Ook—1(us) = —2D Y (ppi), s=0,...,2N—1, k=1,...,N,

which we will call universal Novikov’s N-hierarchy.

The system given by the operator J; is the dynamic system corresponding
to the Novikov’s N-equation

81(U5) = Usyt1, SIO,...72N— ].7

O1(uon—1) = hnyo-
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The Novikov’s N-equation possesses N first integrals

N—-1

Hont1.2N41 = O2n+1,2N+1 + E QON—2k+202n+1,2k—1, n=1,..., N.
k=1

The polynomials Hpi12n+1 € Aony2nt2 are algebraically independent.

Proof. Since 02p11(p2x) = D(02p+1,2k—1) (see Lemma 5), then for any n € N
we have:

Honi12n41 & Ins D(Hani1,2n41) = Oant1(Fang2) € In.
Thus, the polynomials Hppy12n+1 give the first integrals for all n > 1.

A direct verification shows that in the ring 2 /7Ty only the polynomials
Hont1on41, 1 < n <N, are algebraically independent.
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Liouville-integrable polynomial dynamical systems

Let us consider C3V with coordinates

[U] = (U07 uy,..., U2N—1)7 [04] = (04470467 cee 7042N+2)

and CVN with coordinates

[H] = (H3,2N+17 ey H2N+1,2N+1)'

The N first integrals of the Novikov’s N-equation define a polynomial mapping

an: CN 5V mn([u], [a]) = [H].

For fixed values of [a], we obtain a Liouville-integrable polynomial system.
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Example for N =1

The Novikov’s 1-equation gives a dynamical system in C3
with coordinates u, uy, ay

O1u=uy, O :3u2+8a4.

According Theorem 1 we get one first integral

3 (1, 3
Hz3 = 16<2u1 u 80z4u>.

Thus the Novikov’s 1-equation coincides with the Newton equation

v’ =3u® + 8ay

with cubic potential.

The remaining first integrals of this equation are polynomials in Hj 3.
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The problem of constructing a multidimensional analogue
of the Weierstrass o-function is classical.

In 1886, F.Klein proposed the following problem:
Modify multidimensional -function 6(z; ') in order to obtain an entire function
which is:

(1) independent of a choice of basis in the lattice I'y;

(2) covariant with respect to the Mdobius transformations of the curve V.

Oun this problem, Klein published 3 works (1886-1890).

In 1923, a 3-volume collection of Klein’s scientific works was published.
In the preface to the works on the problem under discussion, he emphasized
that the theory of hyperelliptic functions is still far from complete.
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The covariance requirement (2) immediately led to the need to confine ourselves
to the class of hyperelliptic curves. But even this case caused artificial difficulties.

H.F.Baker (1903) disregarded requirement (2) and showed that
in the case of curves of genus 2, it is possible to construct analogues
of elliptic o-functions without using #-functions.

Since 1990, in a cycle of works, V.M. Buchstaber, V.Z. Enolskii and D.V. Leykin
have been developed a theory of multidimensional o-functions associated
with given models of plane algebraic curves.
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sigma, function

V.M. Buchstaber, V.Z. Enol’skii, D.V. Leikin constructed the theory
of sigma functions o(z, A) of non-singular hyperelliptic curves

y? = 5P NP8 L Aagx + Mg, X[ =2, |y =28 + 1, [Aas| = 25,

where z = (217 PN 722g—1); A= ()\4, ey >‘4g+2)-

Let’s put |zok—1| = =2k + 1, |Xok| =2k, w=(i,...,ig).
The function o(z, \) is an entire function given by the homogeneous series

o(2.0) = 3" pu(Ne”, lolz, )] = —5a(g + 1),

where z¥ =z} ... Z% _1, and p,(A) is a homogeneous polynomial of degree
1 2g—17 g g

. 1
PN =i+ + (28 = 1)ig — Eg(ng 1).

3e(g+1)

Initial condition: o(z,,0) = z; , where z, = (z,0,...,0).
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: p-function

Denote by F, the field of meromorphic functions on the Jacobian
of the general nonsingular hyperelliptic curve,

and by P, C F; the subring generated over C by all logarithmic derivatives
of the function o(z, \) of order 2 and higher.

The field F, is a fractions field of the ring P,.
Let’s put

32
pok = p2ax(z,\) =

- I A =2k, k=1,...,8.
821822/(,1 n J(Za )7 |p2k| s ) x4
Denote by B C P, the subring generated by 3g functions

§92k pélm pgk’ k:17"'7g7

of

r_
where f/ = 5o
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Let §92i—1,2k—1 = @2i—1,2k—1(z) = —62;_182k_1 In O’(Z) where I'# 1 or k 7& 1.

Theorem 2.

All algebraic relations between hyperelliptic functions g, of genus g follow
from the relations

©5; = 6(p2i+2 + P202i) — 2(p3,2i—1 — A2i20i1)-

plziplzk = 4(p2ipokt+2 + ©2it202k + 202102k + Kozi+1,2k+1)—
— 2(p2ig3,2k—1 + 269321 + P2i—1,2k+3 + P2i+3.2k—1)+F
+ 2(A2i2002k0i 1 + Aok+2602i0k,1) + 2/\2(i+j+1)(25i,k + Oik—1 + di—1,k)-

Here 0; « is the Kronecker symbol, degd; x = 0.

(4)

(5)
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Corollary.

For all g > 1, we have the following relations:

1. Setting i =1 in (4), we obtain
05 = 605 + 494 + 2\ (6)
2. Setting i = 2 in (4), we obtain
94 = 6(p204 + p6) — 2033.

3. Setting i = k =1 in (5), we obtain

(95)° =4 [03 + (04 + Aa)p2 + P33 — 96 + A6 -

We have p); = 02i—1(p2). Then from (6) we obtain:

For any g > 1, the function u = 2¢p(z) is a solution of KdV equation

" = 6uu + 4, where i = 20;3(p2).
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Theorem 3.

e The functions pgsk), k=1,...,g, s=0,1,2, are algebraically independent,
and so B:(C[pgsk), k=1,...,8,s=0,1,2].

e The embedding B C P, is an isomorphism.

e The embedding C[\] C B is defined.

Examples:
For any g > 2, A\ = 394 — 303 — 204,
for g = 1 we must put g4 = 0.

For any g >3, A = —206 + 504 — 4pap2 + [(05)> — 493 — 4apa],
for g = 2 we must put pg = 0; and for g = 1 we must put pe = 0 and g4 = 0.
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Denote by 2x C B the subring C[A][p2, 05, 05, - - -]-

Theorem 4.

The embedding 2Ax C B is an isomorphism.

For example: for any g > 2, 2p4 = 205 — 303 — As.

Theorem 5.

The homomorphism
n: A — Axn = n(uk) :2p§k)7 k=1,...,2g —1,

induces an isomorphism 2, J; — A, where
the image of the parameters apx, k = 2,...,2g + 2, is given by recursion
k—2
2002442 = Aokt2 — Za2i+2a2k—2i, k >3, 204 = A4, 206 = N6.
i=1

The constructed dynamical systems have the solutions of the form
Xiok—1 = P2k, X22k—1 = Pk, X82k—1 = Pk, K=1,...,8.
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Polynomial integrable system in C°

The system in C8:
/ _ ! _ ! _
X1 = X1, X1 =X X1 =4(3x10,1 + x3),
/ ! !
X|3 = X3, Xp3=X33, X33=4(2x1,1%23+ x2,1x13).
The solution to this system:

X1,1 = 2, X13 = {4

where pox, k = 1,2, are the hyperelliptic functions defined
by the sigma function of the hyperelliptic curve

2=x5 + )\4X3 + >\6X2 + Agx + A1o.

The intersection of four hypersurfaces in C®, which are the level surfaces
of the values of homogeneous polynomials

)\Qk(x) = /\2k7 X = (Xs72,'_1), S = 1,2,3, i = 1,2, k = 2, e ,5,

defines the realization of the Jacobian variety of a curve of genus 2 in C°.
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The hyperelliptic o-function of genus g.

For any g > 1, there exists the function o(z, ) such that:
(a) o(z,)) is an entire quasiperiodic function of z € C&, A\ € M = C?§ \ Lp.

(b) o(z;0) coincides with Adler-Moser polynomial up to a constant factor.

(c) o(z,A) is a solution to the system @j(o(z,A)) =0, j=0,...,2g —1,
where QQJ' = ezj = %ng = 52j(>\), with €2J' € Eg and

Hyj = af’(/\)azk—162/—1 + 25J{k()\)22k—152/—1 + Yju(A) 22k—1221-1,
1 1
52i(N) = g2 log det T(\) + Eﬁfk(x),

where (k, /)-summation from 1 to g extends over the repeated indices.
ki

Here o/ () = a*(}), }k()\) and yjuw(A) = k() are polynomials of .

gle+l)
(d) The initial condition o(z.;0) =2z 2 , z, = (2,0,...,0), uniquely
determines the entire function o(z, A) as the solution to the system
@j(o(z,A)) =0, j=0,1,2.
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The annihilators @) of the o-function

and a quantum oscillator.

Write the system of equations Qj(c(z,A)) =0, j=1,...,2g — 1, in the form
of Schrodinger equations £y;(o) = {ész + 52j(/\)}(a),

of a multidimensional quantum harmonic oscillator with multiple ‘times’.

The formalism of quantum oscillator:
Hoj is a set of ‘quadratic Hamiltonians’,

lyj are derivatives over ‘times’,
0o is ‘the energy of an oscillator mode’.
The realization of the sigma-function in the form of an average
of the ‘ground state wave-function’ (a multidimensional Gaussian function) over

a lattice suggests a natural interpretation of sigma-function
as the ‘wave-function of the coherent state’ of the oscillator.
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Polynomial Lie algel

Set A = C[Ao, . ., An-

A polynomial Lie algebra over A is called an infinite-dimensional Lie
algebra L with the structure of a free left A-module with a basis g, ..., ¢,
and a Lie bracket such that

[6, 6] =D cliNks [l dgl = vig(A), gy A =0,
ps

where v; g(X), ¢f5(A) € A,
In the Lie algebra L, the Jacobi identity is equivalent to the system

n a m m m
c! ocm oc.
j k 1) k,i q _m q .m q _.m
E Vig + Vik,q + Vg +cl el e ¢y =0
’ ’ ) Jikisq i,j~k,q k,i~j.q ’
e SR g O\

8V,'k 8v-k

OVik s

g C,Jq,k—i—vj —V; =0.
q
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Consider the curve

2g+1
" {(X’” €Oy = fr ) =+ S A} ,
k=2

where g > 1 and A = (A4, ..., Aggt2) € C?€ are the parameters.
Set £p = {\ € C% : f(x; \) has multiple roots} and M = M, = C?€ \ Lp.

For any A € M we have the Jacobian variety Jac(Vy) = C&/I'y and
the field of meromorphic functions Fy on Jac(V)).

Let us denote by L, the infinite-dimensional Lie algebra of polynomial vector
fields in C2¢ that are tangent to the discriminant ¥p C C28 of the universal
hyperelliptic curve V).
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Hyperelliptic polynomial Lie algebras.

The Lie algebra L, is a polynomial Lie algebra over Ay = C[A4, ..., Aag12]
with the A-basis

2g+1

0
by = Z Vak+2.2s—2(A)
s=2

3 k= 03 23 s a4g - 2, V2k+272572()\) € (CP‘]»
Ok

(621, A2g] = vair229-2(A);  [A2g, A2r] = 0.

Set \s =0 for s ¢ {0,4,6,...,4g,4g + 2} and g = 1.
For k,me {1,2,....2g}, k< m

>~
Ju

2k(2g —m+1
Vakom(A) = > 2(k 4+ m — 25)Aas A o(ksm—s) — 2k(2g —m+1)

2511 A2k A2m,

«
Il
<}

and vak 2m(A) = vam2k(A) for k > m.
We have

4(2g — k
[£2, lor] = 2(k — 1)losio + (26 — k)

m(hkﬂ% — Aalop—2).
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Lie algebras of Schrédinger operators.

Let Qy = lo; — 1Ha; — 62;(\) be our Schrédinger operators.

There exists a polynomial Lie algebra SchA\, over A; with the basis
ng,jzo,...,Zg—l.

The correspondence Q»; — f»; defines an isomorphism of polynomial Lie
algebras SchA\, — L, over A,.

For k=3,...,2g — 1.

1 26 —k+1

Qok = =7 [ @2, Qak—2] — 2m

2(k —2) (A2k Qo — Aa Qok—a).

V. M. Buchstaber Lie algebras, Schrédinger operators



Examples

For g =1
1 2 1 2
Ho = 2181 - ].; H2 = 5(91 - 6)\421.
For g =2
Hy = 2001 + 32303 — 3;
1 4 3 3 2
H2 = 56% — g)\423(91 + 2183 - E)\4Z§ + (2)\8 — 5)\%) 232,
6 1., 3 )
Hy = 0105 — g>\62331 + Agz303 — g)\ﬁzl + Agz1z3 + | 310 — g>\4)\6 z3 — Aa;
1 3 1 3 1
He = 563% — g)\323(91 — E)\SZ% +2X\102123 — E)\4)\gz32 — 5)\6

Lie algebras, Schr
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licit form for Schrodinger operators Hy and H,

g
1
Ho = 2(25 — 1)z2s_1025—1 — @;

s=1

g—1
1
H, = Eaf F 2(25 —1)z25 102511 —

s=1

g—1
4
m)m z(g — 8)zos1100s 1+
5=

g
2s—1 2(g—s+1) 2
aF Z ( 5 Aas — 2211 Aadas—a | Zos_1;

s=1
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licit form for Schrodinger operator H,

g—2 g—1
Hy = 0105 + 2(25 — 1)zp5-1025+3 + s 2(25 — 1)z264102541—
s=1 s=1

g—1
6
——\ E — 5 5
2% +1 6 71(g 5)Z2s41025—1+

g
3(g—s+1
+ E ((25 — 1) Assy2 — %A6A45_4> Z._ i+
s=1

g—1

-1
+ 2(25 — 1) Mastaz2s—122641 — %)\4-

s=1
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