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The talk is devoted to applications to the theory of the Korteweg�de Vries hierarchy

of the following results:

V.M. Buchstaber, V.Z. Enolskii, D.V. Leykin:

1. Construction of hyperelliptic analogs of Weierstrass elliptic functions;

2. Description of all algebraic relations in the �eld of hyperelliptic functions;

V.M. Buchstaber, D.V. Leykin:

3. Construction of the polynomial Lie algebras theory;

4. Construction for each g > 0 of a system of 2g multidimensional Schr�odinger

equations, which determines the sigma function of a hyperelliptic curve

of genus g in the model Vλ =
{

(x , y) ∈ C2 : y 2 = x2g+1 +
2g+1∑
k=2

λ2kx2g−k+1
}
;

5. Construction of a polynomial Lie algebra SchΛg , the generators of which

are 2g Schr�odinger operators Q0,Q2, . . . ,Q4g−2 over Λ = C[λ4, . . . , λ4g+2];

V.M. Buchstaber, E.Yu. Bunkova:

6. Explicit description of structure polynomials of the Lie algebras SchΛg ;

7. Explicit description of operators Q0,Q2,Q4;

8. Recurrence formulas for Q2k , k > 2, in terms of Lie brackets of operators Q0,Q2,Q4.
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The stationary Korteweg�de Vries equation (KdV for short)

u′′′ = 6u′u

de�nes a dynamical system in C3 with coordinates x1,1, x2,1 and x3,1:

x ′1,1 = x2,1, x ′2,1 = x3,1, x ′3,1 = 12x2,1x1,1.

The �rst integral of this system is the �rst integral of the Newton equation

u′′ = 3u2 + α4, where α4 is a constant parameter.

Solution of this system can be given in the form

u = 2x1,1; x1,1 = ℘, x2,1 = ℘′, x3,1 = ℘′′; ℘ = −(log σ)′′

where σ and ℘ are the Weierstrass functions of a non-singular elliptic curve

y2 = 4x3 − g2x − g3, g3
2 − 27g2

3 6= 0,

with constant parameters g2, g3. In the coordinates of the space C3,
this curve is the intersection of two hypersurfaces given by the equations

2(6x2
1,1 − x3,1) = g2, 2x3,1x1,1 − 8x3

1,1 − x2
2,1 = g3.
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We will describe the KdV-hierarchy with an in�nite set of parameters α4, α6, . . .
and for each g = 1, 2, . . . introduce the stationary parametric g-equation.
This equation corresponds to an ordinary di�erential equation of order 2g ,
which is called the universal Novikov g-equation.
Each such g-equation de�nes a polinomial dynamical system in C3g

with coordinates
x1,2k−1, x2,2k−1, x3,2k−1, k = 1, . . . , g .

Let ℘2k(z , λ) = − ∂2

∂z1∂z2k−1
lnσ(z , λ) be the hyperelliptic function

of non-singular hyperelliptic curves

Vλ =
{

(x , y) ∈ C2 : y2 = x2g+1 + λ4x2g−1 + . . .+ λ4gx + λ4g+2
}

where z = (z1, . . . , z2g−1), λ = (λ4, . . . , λ4g+2).
It will be shown that our dynamical system has the solution of the form

x1,2k−1 = ℘2k , x2,2k−1 = ℘′2k , x3,2k−1 = ℘′′2k , k = 1, . . . , g ,

if the parameters {α2k} are given by the recursion

2α2k+2 = λ2k+2 −
k−2∑
i=1

α2i+2α2k−2i , k > 3, 2α4 = λ4, 2α6 = λ6.
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The resulting dynamic system has 2g polynomial integrals.

Thus we realize the Jacobian of a nonsingular hyperelliptic curve
of genus g as a g-dimensional submanifold in C3g given by
the system of 2g polynomial equations

λ2k(x1,1, . . . , xs,2q−1) = λ2k , s + 2q − 1 6 2k, k = 2, . . . , 2g + 1, s = 1, 2, 3.

We obtain that for any g > 2 the function

u = 2℘1,1(z , λ)

of a hyperelliptic curve of genus g satis�es the parametric hierarchy.

This hierarchy begins with KdV-equation

4u̇ = u′′′ − 6uu′

where u̇ = ∂u
∂z3
, u′ = ∂u

∂z1
.
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KdV-equation in the Lax form

Set ∂
∂x = ∂, u′ = ∂(u) and L = ∂2 − u.

In 1968 P.Lax showed that for the operator A3 = ∂3 − 3
2 u∂ − 3

4 u′,
the commutator [A3, L] is the operator of multiplication
by the di�erential polynomial

−1
4 (u′′′ − 6uu′).

Using that ∂t(L) = [∂t , L] = −[∂t , u] = −ut , he obtained that the KdV-equation

4u̇ = u′′′ − 6uu′,

where u = u(x , t), u̇ = ∂u
∂t , u′ = ∂u

∂x

is equivalent to the equation

∂t(L) = [A3, L].
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The graded commutative di�erential polynomial algebra

Consider a graded commutative di�erential polynomial algebra

A0 = (C[u0, u1, . . .], D),

where D is a derivation of C[u0, u1, . . .] such that D(uk) = uk+1, k = 0, 1, . . .
Set |u0| = 2, |D| = 1 and |uk | = k + 2, k ∈ N. Thus,

A0 = ⊕
k>0

A0,k

where A0,k is a graded linear space generated by homogeneous polynomials
of weight k,

A0,0 = C{1}, A0,1 = ∅, A0,2 = C{u0}, A0,3 = C{u1}, A0,4 = C{u2, u2
0}, . . .

For further constructions, it is important that

the operator D de�nes monomorphisms D : A0,k → A0,k+1 for all k > 1.
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A-KdV-equation

Let us consider a homogeneous di�erential operator of order n

A =
n∑

i=0
aiDi , ai ∈ A0,|an|+n−i , an 6= 0,

such that [L,A] is an operator of multiplication by a polynomial
PA([u]) ∈ A0,|an|+n+2. We will call such operators the KdV-operators.

Denote by Vn the set of all KdV-operators of order at most n.
It is clear that Vn is a linear space over C.

Let A ∈ Vn and [L,A] = PA([u]).
We will call by A-KdV-equation the equation

∂t(u) = PA([u])

which is equivalent to the equation ∂t(L) = [A, L].
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Algebra of homogeneous pseudodi�erential operators

The set of homogeneous pseudodi�erential operators (in short, pd-operators)

AD
0 =

{
A =

∑
i6m

aiDi | ai ∈ A0,|am|+m−i , am 6= 0, m ∈ Z
}

= ⊕
k∈Z

AD
0,k ,

where |A| = |am| + m, deg A = m, is a non-commutative associative graded
algebra over C with an additive homogeneous basis {aDn, |aDn| = |a|+ n}.
The homogeneous polynomial a ∈ A0 is considered as the multiplication operator

a : A0 → A0 : a(b) = ab, b ∈ A0.

The multiplication rule in AD
0 is given by commutation relations

[D, uk ] = uk+1, [D−1, uk ] =
∑
i>0

(−1)i−1uk+iD−(i+1).

The set of homogeneous di�erential operators

A0[D] =
{

A =
m∑

i=0
aiDi | ai ∈ A0,|am|+m−i , am 6= 0, m > 0

}
is a subalgebra in AD

0 .
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Multiplication rule and residues

bDka Dl =
∑
i>0

(
k
i

)
ba(i)Dk+l−i (1)

Here a(i) = Di (a) ∈ A0 and
(0

0
)

= 1,
(k

0
)

= 1,(
k
i

)
= k(k − 1) · · · (k − i + 1)

i! = (−1)i
(
−k + i − 1

i

)
, k ∈ Z, i > 0.

For negative k the series (1) is in�nite.

For any A ∈ AD
0 the coe�cient a−1 of the term a−1D−1

is called the residues of A and denoted res A.

For any A ∈ AD
0 we have [D,A] =

∑
i6m

D(ai )Di = D(A).

Corollary.

For any A ∈ AD
0 , res [D,A] = D(res A).
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The skew-symmetric bilinear form

Lemma 1.
On the space of pd-operators, a homogeneous skew-symmetric bilinear over C
form

σ(·, ·) : AD
0 ⊗ AD

0 → A0, |σ(A,B)| = |A|+ |B|,
is de�ned, such that for n,m ∈ Z

σ(aDn, bDm) =
{

0 if n + m < 0,( n
n+m+1

)∑n+m
s=0 (−1)sa(s)b(n+m−s) if n + m > 0.

(2)

The formula (2) is extended to pd-operators since

σ(aDn, bDm) = 0 if nm > 0 or n + m < 0.

For example: σ(Dn, bDm) =
( n

n+m+1
)
b(n+m).

Therefore σ(D,D−1) = 1 and σ(D,A) = res A, A ∈ AD
0 .
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Cocycle equation

Corollary.

For any A,B ∈ AD
0

res [A,B] = D
(
σ(A,B)

)
.

Corollary.

For any A,B,C ∈ AD
0

σ([A,B],C) + σ([B,C ],A) + σ([C ,A],B) = 0.

For A =
∑

i6m
aiDi , am 6= 0, we put A = A+ + A− where A+ = 0 if m < 0

and A+ =
m∑

i=0
aiDi if m > 0.

For any A,B ∈ AD
0 we have σ(A,B) = σ(A+,B−) + σ(A−,B+).

V. M. Buchstaber Lie algebras, Schr�odinger operators 12 / 45



The square root of the Schr�odinger operator

Let us consider a homogeneous operator L = D2 − u, |L| = 2.

The equation L2 = L uniquely de�nes homogeneous pd-operator

L = D +
∑
n>1

I1,nD−n, |L| = 1, I1,n ∈ A0,n+1.

The polynomials I1,n can be calculated by the recursion

2I1,n + I ′1,n−1 +
n−2∑
k=1

I1,k
n−k−2∑

i=0

(
−n
i

)
I(i)
1,n−k−i−1 = 0, n > 3,

with initial conditions I1,1 = − 1
2 u, I1,2 = 1

4 u1. Thus,

L = D − 1
2uD−1 + 1

4u1D−2 − 1
8 (u2 + u2)D−3 + 1

16 (u3 + 6uu1)D−4−

− 1
32 (u4 + 14u2u + 11u2

1 + 2u3)D−5 + . . .
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Let us de�ne a sequence of homogeneous di�erential operators

A2k = L2k
+ = Lk , A2k−1 = L2k−1

+

and homogeneous di�erential polynomials ρ2k ∈ A0,2k ,

ρ0 = 1, ρ2k = resL2k−1, k = 1, 2, . . .

Thus,
L2k−1 = A2k−1 + ρ2kD−1 + . . . , k > 0.

We have A1 = D and

A2k−1 = D2k−1 − 1
2 (2k − 1)uD2k−3 + · · ·+ a2k−1, k = 2, . . .

where a2k−1 = A2k−1(1) ∈ A0,2k−1.
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Canonical KdV-operators

We have [A2k , L] = [Lk , L] = 0. It is easy to show that [L2k−1, L] = 0
and therefore the commutator

[A2k−1, L] = [L2k−1 − L2k−1
− , L] = 2D(ρ2k) ∈ A0

is the operator of multiplication on the function 2D(ρ2k).
Thus, we have obtained a sequence of homogeneous KdV-operators

A0 = 1, A1 = D, An = Dn +
n∑

k=1
an,kDn−k , n > 1.

Lemma 2.

Any KdV-operator A ∈ A0 ⊗ F of order n, where F is a �eld of constants,
can be uniquely written in the form

A =
n∑

k=0
ckAk , where Ak = Lk

+ and ck ∈ F.

Since [A2k , L] = [Lk , L] = 0, then under considering A-KdV-equations
it is su�cient to deal with operators A such that c2m = 0 for all m.

The operators A2k−1, k > 1, will be called canonical KdV-operators.
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Canonical KdV-derivations ∂2k−1

Let's de�ne

∂t2k−1 (u) = ∂2k−1(u) = [L,A2k−1] = −2D(ρ2k) ∈ A0,2k+1, k ∈ N.

The operator ∂2k−1 on A0 extends to the di�erentiation operator on AD
0

which we will also denote by ∂2k−1.

Let A =
∑

i6m
aiDi . Then ∂2k−1(A) = [∂2k−1,A] =

∑
i6m

∂2k−1(ai )Di .

Lemma 3.

∂2k−1(L) = [A2k−1,L],
and therefore,

∂2k−1(L2n−1) = [A2k−1,L2n−1], k, n ∈ N.

Lemma 4.

For any A,B ∈ AD
0

∂2k−1
(
σ(A,B)

)
= σ

(
∂2k−1(A),B

)
+ σ

(
A, ∂2k−1(B)

)
.
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Canonical evolutionary derivations ∂2k−1 commute

A derivation ∂t of the ring A0 is said to be evolutionary if [∂t ,D] = 0.
To set a homogeneous evolutionary derivation ∂t , it is necessary and su�cient
to choose a polynomial P([u]) ∈ A0,k , k > 0, and put ∂t(u) = P([u]).
Let k, n ∈ N. Let's put

σ2k−1,2n−1 = σ(A2k−1,L2n−1) ∈ A0,2k+2n−2.

We obtain
σ1,2n−1 = ρ2n, σ2k−1,2n−1 = σ2n−1,2k−1.

Lemma 5.

∂2k−1(ρ2n) = ∂2n−1(ρ2k) = D(σ2k−1,2n−1).

Corollary.

[∂2k−1, ∂2n−1] = 0.
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Canonical KdV-hierarchy

The in�nite system of compatible homogeneous di�erential equations

∂2k−1(u) = −2D(ρ2k), k ∈ N,

is called the canonical KdV-hierarchy.

This system is written in the form of conservation laws for the KdV-equation
and is equivalent to the system of compatible homogeneous operator equations
in the Lax form

∂2k−1(L) = [A2k−1, L].

Namely,

∂1(u) = D(u) = u1,
4 ∂3(u) = D(u2 − 3u2) = u3 − 6uu1,

16 ∂5(u) = D(u4 − 10u2u − 5u2
1 + 10u3) = u5 − 10uu3 − 20u1u2 + 30u2u1,

and so on.
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The universal Novikov's N-equation

For �xed N ∈ N, let A = C[α2, α4, . . . , α2N+2], |α2n| = 2n, n > 1,
be a graded algebra of parameters and A = A[u0, u1, . . .] = ⊕A2k , k > 0.
By de�nition D(α2n) = 0.
Let us de�ne the universal N-symmetry of the KdV-equation

∂τ (u) = ∂2N+1(u) +
N∑

k=1
α2(N−k+1)∂2k−1(u).

We have ∂τ (u) = −2D(F2N+2) where

F2N+2 = ρ2N+2 +
N∑

k=0
α2(N−k+1)ρ2k ∈ A2N+2, ρ0 = 1.

Equation ∂τ (u) = 0 is called the universal Novikov's N-equation.

Let us restrict ourselves with the solution u of the KdV-hierarchy
such that ∂τ (u) = 0. It implies that

ρ2N+2 +
N∑

k=0
α2(N−k+1)ρ2k = 0, ρ0 = 1.
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Since 22k−1ρ2k = −u2k−2 + . . . , k ∈ N, the equation F2N+2 = 0
can be written in the form

u2N = f2N+2(u0, u1, . . . , u2N−2; α2, . . . , α2N+2), f2N+2 ∈ A2N+2. (3)

Equation (3) with α2k ∈ C is called Novikov's N-equation.
These equations depend linearly on α2, α4, . . . , α2N+2.

Let us assume α2 = 0, then:

N = 1 : u2 = 3u2 + 8α4,

N = 2 : u4 = 10(u2 − u2)u + 5u2
1 − 16α4u + 32α6,

N = 3 : u6 = 14(u4−5u2u+5u2
1)u + 28u1u3 + 21u2

2 + 35u4−
− 16α4(u2−3u2)− 64α6u + 128α8.

Since uk = Dk(u), then for the function u = u(x)
the Novikov's N-equation is an homogeneous ordinary nonlinear di�erential
equation of the 2N-th order with graded parameters α4, . . . , α2N+2.
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Let IN = (F2N+2) ⊂ A be a di�erential ideal generated by the polynomial F2N+2
and its derivatives Dk(F2N+2). For any element of A the canonical projection

πN : A 7→ A�IN

is the result of the elimination of variables uk , k > 2N, using equation (3)
and equation u2N+k = Dk(u2N) = Dk(f2N+2) recursively.
Thus A�IN = A[u0, . . . , u2N−1].

Proposition 1.

The ideal IN is invariant with respect to evolutionary derivations ∂2k−1, k ∈ N.

The canonical operators ∂2k−1, k = 1, 2, . . ., on A0 induce operators on A0�IN .
These operators, which we will also denote by ∂2k−1, one can write in the form

∂1 = D =
2N−2∑
i=0

ui+1
∂

∂ui
+ f2N+2

∂

∂u2N−1
,

∂2k−1 = −2
2N−1∑
i=0
Di+1(ρ2k) ∂

∂ui
, 2 6 k 6 N,
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The universal Novikov's N-hierarchy

Corollary.

In C3N with coordinates u0, u1, . . . , u2N−1;α4, . . . , α2N+2,
the operators ∂1 = D and ∂2k−1, k = 2, . . . ,N, (see above) de�ne
N compatible dynamical systems with parameters α4, . . . , α2N+2

∂2k−1(us) = −2Ds+1(ρ2k), s = 0, . . . , 2N − 1, k = 1, . . . ,N,

which we will call universal Novikov's N-hierarchy.

The system given by the operator ∂1 is the dynamic system corresponding
to the Novikov's N-equation

∂1(us) = us+1, s = 0, . . . , 2N − 1,
∂1(u2N−1) = f2N+2.
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Theorem 1.

The Novikov's N-equation possesses N �rst integrals

H2n+1,2N+1 = σ2n+1,2N+1 +
N−1∑
k=1

α2N−2k+2σ2n+1,2k−1, n = 1, . . . ,N.

The polynomials H2n+1,2N+1 ∈ A2N+2n+2 are algebraically independent.

Proof. Since ∂2n+1(ρ2k) = D(σ2n+1,2k−1) (see Lemma 5), then for any n ∈ N
we have:

H2n+1,2N+1 /∈ IN , D(H2n+1,2N+1) = ∂2n+1(F2N+2) ∈ IN .

Thus, the polynomials H2n+1,2N+1 give the �rst integrals for all n > 1.

A direct veri�cation shows that in the ring A�IN only the polynomials
H2n+1,2N+1, 1 6 n 6 N, are algebraically independent.
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Liouville-integrable polynomial dynamical systems

Let us consider C3N with coordinates

[u] = (u0, u1, . . . , u2N−1), [α] = (α4, α6, . . . , α2N+2)

and CN with coordinates

[H] = (H3,2N+1, . . . ,H2N+1,2N+1).

Corollary.

The N �rst integrals of the Novikov's N-equation de�ne a polynomial mapping

πN : C3N → CN : πN([u], [α]) = [H].

For �xed values of [α], we obtain a Liouville-integrable polynomial system.
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Example for N = 1

The Novikov's 1-equation gives a dynamical system in C3

with coordinates u, u1, α4

∂1u = u1, ∂1u1 = 3u2 + 8α4.

According Theorem 1 we get one �rst integral

H3,3 = − 3
16

(
1
2u2

1 − u3 − 8α4u
)
.

Thus the Novikov's 1-equation coincides with the Newton equation

u′′ = 3u2 + 8α4

with cubic potential.

The remaining �rst integrals of this equation are polynomials in H3,3.
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Klein problem.

The problem of constructing a multidimensional analogue
of the Weierstrass σ-function is classical.

In 1886, F.Klein proposed the following problem:
Modify multidimensional θ-function θ(z; ΓV ) in order to obtain an entire function
which is:
(1) independent of a choice of basis in the lattice ΓV ;
(2) covariant with respect to the M�obius transformations of the curve V .

On this problem, Klein published 3 works (1886�1890).

In 1923, a 3-volume collection of Klein's scienti�c works was published.
In the preface to the works on the problem under discussion, he emphasized
that the theory of hyperelliptic functions is still far from complete.
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The covariance requirement (2) immediately led to the need to con�ne ourselves
to the class of hyperelliptic curves. But even this case caused arti�cial di�culties.

H.F.Baker (1903) disregarded requirement (2) and showed that
in the case of curves of genus 2, it is possible to construct analogues
of elliptic σ-functions without using θ-functions.

Since 1990, in a cycle of works, V.M. Buchstaber, V.Z. Enolskii and D.V. Leykin
have been developed a theory of multidimensional σ-functions associated
with given models of plane algebraic curves.
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Hyperelliptic sigma function

V.M. Buchstaber, V.Z. Enol'skii, D.V. Leikin constructed the theory
of sigma functions σ(z, λ) of non-singular hyperelliptic curves

y2 = x2g+1 + λ4x2g−1 + . . .+ λ4gx + λ4g+2, |x | = 2, |y | = 2g + 1, |λ2s | = 2s,

where z = (z1, . . . , z2g−1), λ = (λ4, . . . , λ4g+2).

Let's put |z2k−1| = −2k + 1, |λ2k | = 2k, ω = (i1, . . . , ig ).
The function σ(z, λ) is an entire function given by the homogeneous series

σ(z, λ) =
∑

pω(λ)zω, |σ(z, λ)| = −1
2g(g + 1),

where zω = z i1
1 · · · z

ig
2g−1, and pω(λ) is a homogeneous polynomial of degree

|pω(λ)| = i1 + · · ·+ (2g − 1)ig −
1
2g(g + 1).

Initial condition: σ(z∗, 0) = z
1
2 g(g+1)

1 , where z∗ = (z1, 0, . . . , 0).
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Hyperelliptic ℘-function

Denote by Fg the �eld of meromorphic functions on the Jacobian
of the general nonsingular hyperelliptic curve,

and by Pg ⊂ Fg the subring generated over C by all logarithmic derivatives
of the function σ(z, λ) of order 2 and higher.

The �eld Fg is a fractions �eld of the ring Pg .

Let's put

℘2k = ℘2k(z, λ) = − ∂2

∂z1∂z2k−1
lnσ(z, λ), |℘2k | = 2k, k = 1, . . . , g .

Denote by B ⊂ Pg the subring generated by 3g functions

℘2k , ℘′2k , ℘′′2k , k = 1, . . . , g ,

where f ′ = ∂f
∂z1

.
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Let ℘2i−1,2k−1 = ℘2i−1,2k−1(z) = −∂2i−1∂2k−1 lnσ(z) where i 6= 1 or k 6= 1.

Theorem 2.

All algebraic relations between hyperelliptic functions ℘ω of genus g follow
from the relations

℘′′2i = 6(℘2i+2 + ℘2℘2i )− 2(℘3,2i−1 − λ2i+2δi,1). (4)

℘′2i℘
′
2k = 4(℘2i℘2k+2 + ℘2i+2℘2k + ℘2℘2i℘2k + ℘2i+1,2k+1)−

− 2(℘2i℘3,2k−1 + ℘2k℘3,2i−1 + ℘2i−1,2k+3 + ℘2i+3,2k−1)+
+ 2(λ2i+2℘2kδi,1 + λ2k+2℘2iδk,1) + 2λ2(i+j+1)(2δi,k + δi,k−1 + δi−1,k). (5)

Here δi,k is the Kronecker symbol, deg δi,k = 0.

V. M. Buchstaber Lie algebras, Schr�odinger operators 30 / 45



Corollary.

For all g > 1, we have the following relations:

1. Setting i = 1 in (4), we obtain

℘′′2 = 6℘2
2 + 4℘4 + 2λ4. (6)

2. Setting i = 2 in (4), we obtain

℘′′4 = 6(℘2℘4 + ℘6)− 2℘3,3.

3. Setting i = k = 1 in (5), we obtain

(℘′2)2 = 4
[
℘3

2 + (℘4 + λ4)℘2 + ℘3,3 − ℘6 + λ6
]
.

We have ℘′2i = ∂2i−1(℘2). Then from (6) we obtain:

Corollary.

For any g > 1, the function u = 2℘(z) is a solution of KdV equation

u′′′ = 6uu′ + 4u̇, where u̇ = 2∂3(℘2).
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Theorem 3.

• The functions ℘(s)
2k , k = 1, . . . , g , s = 0, 1, 2, are algebraically independent,

and so B ' C[℘(s)
2k , k = 1, . . . , g , s = 0, 1, 2].

• The embedding B ⊂ Pg is an isomorphism.

• The embedding C[λ] ⊂ B is de�ned.

Examples:

For any g > 2, λ4 = 1
2℘
′′
2 − 3℘2

2 − 2℘4,

for g = 1 we must put ℘4 = 0.

For any g > 3, λ6 = −2℘6 + 1
2℘
′′
4 − 4℘4℘2 + 1

4 [(℘′2)2 − 4℘3
2 − 4λ4℘2],

for g = 2 we must put ℘6 = 0; and for g = 1 we must put ℘6 = 0 and ℘4 = 0.
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Denote by AΛ ⊂ B the subring C[λ][℘2, ℘
′
2, ℘
′′
2 , . . .].

Theorem 4.

The embedding AΛ ⊂ B is an isomorphism.

For example: for any g > 2, 2℘4 = 1
2℘
′′
2 − 3℘2

2 − λ4.

Theorem 5.

The homomorphism

η : A→ AΛ : η(uk) = 2℘(k)
2 , k = 1, . . . , 2g − 1,

induces an isomorphism A�Ig → AΛ, where
the image of the parameters α2k , k = 2, . . . , 2g + 2, is given by recursion

2α2k+2 = λ2k+2 −
k−2∑
i=1

α2i+2α2k−2i , k > 3, 2α4 = λ4, 2α6 = λ6.

Corollary.

The constructed dynamical systems have the solutions of the form

x1,2k−1 = ℘2k , x2,2k−1 = ℘′2k , x3,2k−1 = ℘′′2k , k = 1, . . . , g .
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Polynomial integrable system in C6

The system in C6:

x ′1,1 = x2,1, x ′2,1 = x3,1, x ′3,1 = 4(3x1,1x2,1 + x2,3),

x ′1,3 = x2,3, x ′2,3 = x3,3, x ′3,3 = 4(2x1,1x2,3 + x2,1x1,3).

The solution to this system:

x1,1 = ℘2, x1,3 = ℘4

where ℘2k , k = 1, 2, are the hyperelliptic functions de�ned
by the sigma function of the hyperelliptic curve

y2 = x5 + λ4x3 + λ6x2 + λ8x + λ10.

The intersection of four hypersurfaces in C6, which are the level surfaces
of the values of homogeneous polynomials

λ2k(x) = λ2k , x = (xs,2i−1), s = 1, 2, 3, i = 1, 2, k = 2, . . . , 5,

de�nes the realization of the Jacobian variety of a curve of genus 2 in C6.
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The hyperelliptic σ-function of genus g .
Theorem 6.

For any g > 1, there exists the function σ(z, λ) such that:

(a) σ(z, λ) is an entire quasiperiodic function of z ∈ Cg , λ ∈M = C2g \ ΣD.

(b) σ(z; 0) coincides with Adler-Moser polynomial up to a constant factor.

(c) σ(z, λ) is a solution to the system Q2j(σ(z, λ)) = 0, j = 0, . . . , 2g − 1,
where Q2j = `2j − 1

2 H2j − δ2j(λ), with `2j ∈ Lg and

H2j = αkl
j (λ)∂2k−1∂2l−1 + 2βl

jk(λ)z2k−1∂2l−1 + γjkl (λ)z2k−1z2l−1,

δ2j(λ) = 1
8`2j log det T (λ) + 1

2β
k
jk(λ),

where (k, l)-summation from 1 to g extends over the repeated indices.

Here αkl
j (λ) = αlk

j (λ), βl
jk(λ) and γjkl (λ) = γjlk(λ) are polynomials of λ.

(d) The initial condition σ(z∗; 0) = z
g(g+1)

2
1 , z∗ = (z1, 0, . . . , 0), uniquely

determines the entire function σ(z, λ) as the solution to the system
Q2j(σ(z, λ)) = 0, j = 0, 1, 2.
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The annihilators Q2j of the σ-function
and a quantum oscillator.

Write the system of equations Q2j(σ(z, λ)) = 0, j = 1, . . . , 2g − 1, in the form

of Schr�odinger equations `2j(σ) =
{

1
2 H2j + δ2j(λ)

}
(σ),

of a multidimensional quantum harmonic oscillator with multiple `times'.

The formalism of quantum oscillator:
H2j is a set of `quadratic Hamiltonians',

`2j are derivatives over `times',

δ2j is `the energy of an oscillator mode'.

The realization of the sigma-function in the form of an average
of the `ground state wave-function' (a multidimensional Gaussian function) over
a lattice suggests a natural interpretation of sigma-function
as the `wave-function of the coherent state' of the oscillator.
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Polynomial Lie algebras.

Set Λ = C[λ0, . . . , λn].

A polynomial Lie algebra over Λ is called an in�nite-dimensional Lie
algebra L with the structure of a free left Λ-module with a basis `0, . . . , `n
and a Lie bracket such that

[`i , `j ] =
n∑

k=0
ck

i,j(λ)`k , [`i , λq] = vi,q(λ), [λq, λr ] = 0,

where vi,q(λ), ck
i,j(λ) ∈ Λ.

In the Lie algebra L, the Jacobi identity is equivalent to the system

n∑
q=0

vi,q
∂cm

j,k
∂λq

+ vk,q
∂cm

i,j
∂λq

+ vj,q
∂cm

k,i
∂λq

+ cq
j,kcm

i,q + cq
i,jcm

k,q + cq
k,ic

m
j,q = 0,

n∑
q=0

cq
i,jvq,k + vj,q

∂vi,k
∂λq

− vi,q
∂vj,k
∂λq

= 0.
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Hyperelliptic curves.

Consider the curve

Vλ =
{

(x , y) ∈ C2 : y2 = f (x ;λ) = x2g+1 +
2g+1∑
k=2

λ2kx2g−k+1

}
,

where g > 1 and λ = (λ4, . . . , λ4g+2) ∈ C2g are the parameters.

Set ΣD = {λ ∈ C2g : f (x ;λ) has multiple roots} andM =Mg = C2g \ ΣD.

For any λ ∈M we have the Jacobian variety Jac(Vλ) = Cg/Γλ and
the �eld of meromorphic functions Fλ on Jac(Vλ).

Let us denote by Lg the in�nite-dimensional Lie algebra of polynomial vector
�elds in C2g that are tangent to the discriminant ΣD ⊂ C2g of the universal
hyperelliptic curve Vλ.
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Hyperelliptic polynomial Lie algebras.

The Lie algebra Lg is a polynomial Lie algebra over Λg = C[λ4, . . . , λ4g+2]
with the Λ-basis

`2k =
2g+1∑
s=2

v2k+2,2s−2(λ) ∂

∂λ2k
, k = 0, 2, . . . , 4g − 2, v2k+2,2s−2(λ) ∈ C[λ],

[`2i , λ2q] = v2i+2,2q−2(λ), [λ2q, λ2r ] = 0.

Set λs = 0 for s /∈ {0, 4, 6, . . . , 4g , 4g + 2} and λ0 = 1.
For k,m ∈ {1, 2, . . . , 2g}, k 6 m

v2k,2m(λ) =
k−1∑
s=0

2(k + m − 2s)λ2sλ2(k+m−s) −
2k(2g −m + 1)

2g + 1 λ2kλ2m,

and v2k,2m(λ) = v2m,2k(λ) for k > m.

We have

[`2, `2k ] = 2(k − 1)`2k+2 + 4(2g − k)
(2g + 1) (λ2k+2`0 − λ4`2k−2).
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Lie algebras of Schr�odinger operators.

Let Q2j = `2j − 1
2 H2j − δ2j(λ) be our Schr�odinger operators.

Theorem 7.

There exists a polynomial Lie algebra SchΛg over Λg with the basis
Q2j , j = 0, . . . , 2g − 1.
The correspondence Q2j → `2j de�nes an isomorphism of polynomial Lie
algebras SchΛg → Lg over Λg .

Corollary.

For k = 3, . . . , 2g − 1.

Q2k = 1
2(k − 2) [Q2,Q2k−2]− 2 2g − k + 1

(k − 2)(2g + 1) (λ2kQ0 − λ4Q2k−4).
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Examples

For g = 1

H0 = z1∂1 − 1; H2 = 1
2∂

2
1 −

1
6λ4z2

1 .

For g = 2

H0 = z1∂1 + 3z3∂3 − 3;

H2 = 1
2∂

2
1 −

4
5λ4z3∂1 + z1∂3 −

3
10λ4z2

1 +
(

3
2λ8 −

2
5λ

2
4

)
z2

3 ;

H4 = ∂1∂3 −
6
5λ6z3∂1 + λ4z3∂3 −

1
5λ6z2

1 + λ8z1z3 +
(

3λ10 −
3
5λ4λ6

)
z2

3 − λ4;

H6 = 1
2∂

2
3 −

3
5λ8z3∂1 −

1
10λ8z2

1 + 2λ10z1z3 −
3
10λ4λ8z2

3 −
1
2λ6.
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Explicit form for Schr�odinger operators H0 and H2

H0 =
g∑

s=1

(2s − 1)z2s−1∂2s−1 −
g(g + 1)

2 ;

H2 = 1
2∂

2
1 +

g−1∑
s=1

(2s − 1)z2s−1∂2s+1 −
4

2g + 1λ4

g−1∑
s=1

(g − s)z2s+1∂2s−1+

+
g∑

s=1

(
2s − 1

2 λ4s −
2(g − s + 1)

2g + 1 λ4λ4s−4

)
z2

2s−1;
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Explicit form for Schr�odinger operator H4

H4 = ∂1∂3 +
g−2∑
s=1

(2s − 1)z2s−1∂2s+3 + λ4

g−1∑
s=1

(2s − 1)z2s+1∂2s+1−

− 6
2g + 1λ6

g−1∑
s=1

(g − s)z2s+1∂2s−1+

+
g∑

s=1

(
(2s − 1)λ4s+2 −

3(g − s + 1)
2g + 1 λ6λ4s−4

)
z2

2s−1+

+
g−1∑
s=1

(2s − 1)λ4s+4z2s−1z2s+1 −
g(g − 1)

2 λ4.
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