Данный доклад является прямым продолжением доклада о непрерывных селекторах.
В рамках доклада будут кратко сформулированы некоторые результаты об аппроксимации многозначного отображения. Затем будут рассмотрены свойства измеримой многозначной функции с образами в банаховом пространстве. В частности, будут рассмотрены условие Каратеодори и свойство Лузина. Основываясь на вспомогательных утверждениях, мы докажем лемму Филиппова о неявной функции, которая устанавливает существование измеримого селектора. Этот результат имеет множество применений в теории управляемых систем. Кроме того, по запросам слушателей прошлого доклада мы приведем наглядные примеры многозначных отображений.