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Вырождения сферических подалгебр и
сферические корни

Роман Авдеев
НИУ ВШЭ

suselr@yandex.ru

Аннотация

Пусть 𝐺—связная редуктивная алгебраическая группа и 𝐵—её борелевская под-
группа. Замкнутая подгруппа𝐻 ⊂ 𝐺 называется сферической (а однородное простран-
ство 𝐺/𝐻 — сферическим), если группа 𝐵 имеет открытую орбиту в 𝐺/𝐻. Известная
классификация Луны сферических однородных пространств даётся биекцией между
всеми такими пространствами и наборами комбинаторных инвариантов, называе-
мыми однородными сферическими данными. В этом контексте открытой проблемой
является нахождение явных формул и/или алгоритмов, позволяющих вычислять од-
нородные сферические данные сферического однородного пространства 𝐺/𝐻 исходя
из явного вида сферической подгруппы 𝐻, стандартным способом задания которой
является регулярное вложение в некоторую параболическую подгруппу группы 𝐺.
К настоящему моменту докладчику удалось свести эту проблему к вычислению толь-
ко одного комбинаторного инварианта — набора сферических корней. В свою оче-
редь, для вычисления сферических корней в работе [1] предложена общая стратегия,
заключающаяся в нахождении вырождений алгебры Ли подгруппы 𝐻, обладающих
некоторыми специальными свойствами. В докладе планируется обсудить получен-
ные в рамках этой стратегии результаты и остающиеся открытыми вопросы.

Ключевые слова — сферическое многообразие, сферическая подгруппа, сферические
корни.
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[1] Roman Avdeev, Degenerations of spherical subalgebras and spherical roots, Comm. Cont.

Math. 26 (2024), no. 6, 2350029, 53 pp.



Подгруппы Бореля групп автоморфизмов
аффинных торических поверхностей

Иван Аржанцев
ФКН НИУ ВШЭ
arjantsev@hse.ru

Аннотация

Подгруппой Бореля группы автоморфизмов алгебраического многообразия 𝑋 на-
зывается максимальная по включению связная разрешимая ind-подгруппа в Aut(𝑋).
Мы описываем с точностью до сопряженности все подгруппы Бореля в группе авто-
морфизмов нормальной аффинной торической поверхности. Описание базируется
на изучении действия группы автоморфизмов на дереве Басса-Серра. Доклад осно-
ван на совместной работе с Михаилом Зайденбергом.

Исследования поддержаны грантом РНФ 25-11-00302.



О числе Пикара и размерности однородных
пространств

Иван Бельдиев
НИУ ВШЭ, Москва
ivbeldiev@gmail.com

Аннотация

Алгебраическое многообразие 𝑋 называется однородным пространством, если на
𝑋 имеется транзитивное регулярное действие алгебраической группы. Алгебраиче-
ские однородные пространства— классический объект, который изучался во многих
работах. В частности, недавно в [1] было доказано, что числоПикара 𝜌(𝑋) (то есть ранг
группы Пикара) аффинного однородного пространства 𝑋 не превосходит его размер-
ности. Вопрос о связи числа Пикара и размерности однородного пространства также
связан с обобщённой гипотезой Мукаи (см. [3], утверждающей следующее: для мно-
гообразия Фано 𝑋 выполняется неравенство 𝜌(𝑋) ⋅ (𝑖𝑋 − 1) ⩽ dim𝑋 , где 𝑖𝑋 — псевдо-
индекс многообразия 𝑋 .

В случае, когда 𝑋 — аффинное однородное пространство для простой или, в бо-
лее общем случае, полупростой группы, мы доказываем более сильные неравенства.
Один из результатов работы— следующая теорема.

Теорема 1. Пусть 𝑋 — аффинное однородное пространство для простой группы
ненулевой размерности. Тогда выполняются следующие неравенства:

1. 𝜌(𝑋) ⩽ 1
rk(𝐺)+1

dim𝑋 ;

2. 𝜌(𝑋) < √dim𝑋 .
Также мы доказываем аналогичные неравенства для проективных пространств.

Теорема 2. Пусть 𝑋 —проективное однородное пространство для простой группы
ненулевой размерности. Тогда выполняются следующие неравенства:

1. 𝜌(𝑋) ⩽ 2
rk(𝐺)+1

dim𝑋 ;

2. 𝜌(𝑋) < √2 dim𝑋 .
Из этих теорем несложно вывести следующие результаты, дающие оценки на 𝜌(𝑋)

в случае, когда 𝑋 — однородное пространство для полупростой группы 𝐺.
Предложение 1. Пусть 𝐺—полупростая группа, изоморфная почти прямому про-
изведению простых групп𝐺 = 𝐺1 ⋅ 𝐺2 ⋅… ⋅𝐺𝑚. Если 𝑋—аффинное (соответственно,
проективное) однородное пространство для 𝐺, то выполнено неравенство

𝜌(𝑋) ⩽ 1
1 +min rk𝐺𝑖

dim𝑋 (соответственно, 𝜌(𝑋) ⩽ 2
1 +min rk𝐺𝑖

dim𝑋).



Следствие 1. Пусть𝑋—аффинное (соответственно, проективное) однородное про-
странство для полупростой группы 𝐺. Тогда выполняется неравенство

𝜌(𝑋) ⩽ 1
2 dim𝑋 (соответственно, 𝜌(𝑋) ⩽ dim𝑋).

Ключевые слова — аффинное многообразие, проективное многообразие, группа Пика-
ра, алгебраическая группа, полупростая группа, однородное пространство.
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Группа бирациональных автоморфизмов
поверхностей Севери–Брауэра над полем ℚ

Викулова Анастасия Вадимовна
Математический институт им. В.А. Стеклова Российской академии наук,

119991, г. Москва, ул. Губкина, д. 8

Лаборатория алгебраической геометрии и ее приложений,
Национальный исследовательский университет “Высшая школа экономики”,

119048, г.Москва, ул. Усачева, д. 6
vikulovaav@gmail.com

Аннотация

Группа бирациональных автоморфизмов поверхностей Севери–Брауэра является
непростым объектом для изучения. Но несмотря на это, последние несколько десят-
ков лет бирациональные геометры очень активно исследуют свойства этой группы.
Одним из подходов к изучению подобных групп является исследование конечных
подгрупп. В докладе мы предъявим все конечные подгруппы в группе бирациональ-
ных автоморфизмов поверхности Севери–Брауэра над полем ℚ и поговорим о ко-
нечных подгруппах в группе бирациональных автоморфизмов поверхностейСевери–
Брауэра над полями характеристики, отличной от 2 и 3. Работа основана на статье [1].

Ключевые слова — поверхности Севери–Брауэра, группа автоморфизмов

Список литературы
[1] A. V. Vikulova, Birational automorphism groups of Severi-Brauer surfaces over the field of

rational numbers, Int. Math. Res. Not. IMRN (2024), no. 24, 14638–14654.



Гибкость триномиальных многообразий

Тимофей Владиславович Вилкин
НИУ ВШЭ

tvilkin@hse.ru

Аннотация

Доклад основан на совместной работе автора с М.В. Игнатьевым.
Пусть 𝕂— алгебраически замкнутое поле нулевой характеристики. 𝑋 — аффин-

ное алгебраическоемногообразие, SAut(𝑋)—подгруппа в группе автоморфизмовмно-
гообразия 𝑋 , порождённая всеми алгебраическими подгруппами, изоморфными ад-
дитивной группе поля𝔾𝑎. Напомним, что аффинноемногообразие𝑋 называется гиб-
ким, если на множестве его гладких точек транзитивно действует группа специаль-
ных автоморфизмов SAut(𝑋). Из гибкости аффинного алгебраическогомногообразия
следует бесконечная транзитивность действия группы SAut(𝑋) на множестве гладких
точек.

Постерный доклад посвящен триномиальным многообразиям, то есть таким аф-
финным многообразиям, которые задаются системами уравнений следующего вида:

𝑐0𝑇𝑙0
0 + 𝑐1𝑇𝑙1

1 + 𝑐2𝑇𝑙2
2 = 0,

где 𝑇𝑙𝑖
𝑖 = 𝑇𝑙𝑖1

𝑖1 …𝑇
𝑙𝑖𝑛𝑖
𝑖𝑛𝑖 — некоторые мономы от переменных 𝑇𝑖𝑗 , константы 𝑐𝑖 ∈ 𝕂 ∖ {0}

c некоторыми условиями, 𝑛0 ⩾ 0, 𝑛1, 𝑛2 > 0, а 𝑙𝑖𝑗 — положительные целые числа. Ес-
ли 𝑛0 = 0, то первый моном считается равным единице. В работе [2] были доказаны
достаточные условия гибкости триномиальных гиперповерхностей. В работе [3] по-
лучено обобщение этого результата на произвольные триномиальные многообразия.

В постерном докладе будут представлены достаточные условия гибкости произ-
вольных триномиальных многообразий.

Работа была выполнена при поддержке проекта в рамках программы "Междуна-
родное академическое сотрудничество "Гибкость и вычислительные методы"" НИУ
ВШЭ.

Ключевые слова — алгебраическое многообразие, триномиальное многообразие, гиб-
кое многообразие, локально нильпотентные дифференцирования.

Список литературы
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[2] S. Gaifullin. On rigidity of trinomial hypersurfaces and factorial trinomial varieties.
Preprint, arxiv: math.AG/1902.06136 (2019).
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Локально изотропные группы Стейнберга

Егор Воронецкий
Санкт-Петербургский государственный университет, лаборатория им. П.Л. Чебышева

voronetckiiegor@yandex.ru

Аннотация

Рассмотрим редуктивную групповую схему 𝐺 над кольцом 𝐾. Абстрактная груп-
па точек 𝐺(𝐾) достаточно хорошо изучена, когда 𝐺 расщепляется и имеет ранг хо-
тя бы 2. В этом случае корневые унипотентны порождают элементарную подгруппу
E𝐺(𝐾) ⩽ 𝐺(𝐾), которая оказывается нормальной и совершенной (с несколькими ис-
ключениями), а факторгруппа 𝐺(𝐾)/E𝐺(𝐾) — разрешимой, когда 𝐾 конечномерное.
Также есть классификация подгрупп 𝐺(𝐾), нормализуемых E𝐺(𝐾).

При ранге хотя бы 3 у элементарной подгруппы есть каноническое центральное
расширение St𝐺(𝐾) → E𝐺(𝐾), называемое группой Стейнберга, оно задаётся явными
образующими и соотношениями. Более того, это универсальное центральное расши-
рение при ранге хотя бы 5, а для групп рангов 3 и 4 можно явно посчитать мульти-
пликаторШура St𝐺(𝐾) в терминах кольца 𝐾.

В нерасщепимом случае ситуация сложнее. Если 𝐺 глобально изотропная, то есть
в ней существует всюду собственная параболическая подгруппа, томожно легко опре-
делить E𝐺(𝐾)и доказать её нормальность, совершенность, а также классифицировать
подгруппы 𝐺(𝐾), которые ей нормализуются [3, 4, 5, 6, 7]. Этот случай уже обобщает
все изотропные группы над полями, в том числе конечные простые группы типа Ли
(кроме групп Судзуки, Ри и Титса).

В докладе будет рассказано про локально изотропный случай, когда 𝐺 достаточно
изотропна локально по Зарисскому, но глобально в ней может не быть собственных
параболических подгрупп. Примером такой группы 𝐺(𝐾) является группа автомор-
физмов конечно порождённого проективного модуля 𝑃𝐾 постоянного ранга хотя бы
3. Оказывается [1, 2], в такой общности всё ещё можно построить группы E𝐺(𝐾) и
St𝐺(𝐾), обладающие ожидаемыми свойствами.

Работа выполнена при поддержке Российского научного фонда, грант 19-71-30002.

Ключевые слова — изотропная редуктивная группа, элементарная подгруппа, группа
Стейнберга
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Аффинные SL(𝑛)-вложения с действием тора
сложности один
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Аннотация

В 1972 году В.Л. Попов получил классификацию нормальных аффинных трёхмер-
ных квазиоднородных SL(2)-многообразий. Он показал, что все такие многообразия
параметризуются парами (𝑛, ℎ), где 𝑛 – натуральное число, равное порядку стабили-
затора, а ℎ ∈ (0, 1] – рациональное число, названное высотой данного многообразия.
Более того было показано, что стабилизатор точки открытой орбиты циклический, и
потому данный многообразия названы SL(2)/ℤ𝑛-вложениями.

В работе [1] описаны те SL(2)/ℤ𝑛-вложения, которые являются торическими. В ра-
боте [5] даннаядеятельностьпродолженадлянормальных аффинныхSL(𝑛)-вложений.
В работе [3] описаны кольца Кокса SL(2)/ℤ𝑛-вложений. Оказывается, что тотальное
координатное кольцо нормального аффинного SL(2)/ℤ𝑛-вложения может быть зада-
но как гиперповерхность в 5-мерном аффинном пространстве, заданная уравнением

𝑥1𝑥2 + 𝑥3𝑥4 = 𝑦𝑏.

Данная гиперповерхность является частным случаем так называемых триномиаль-
ных многообразий, которые появляются как тотальные координатные пространства
многообразий с действием тора сложности один, см. [4]. Основной результат, кото-
рый будет рассказан в докладе – это новое доказательство результата В.Л. Попова о
классификации нормальных аффинных SL(2)/ℤ𝑛-вложений с помощью теории ко-
лец Кокса и результатов работы [4]. Идеей является поднятие действия группы на
тотальное координатное кольцо так, чтобы поднятое действие нормализовалось есте-
ственным тором, действующим на триномиальном многообразии. Также будут рас-
сказаны некоторые обобщения этого результата, которые можно получить тойже тех-
никой.

Ключевые слова— SL(2)-вложение, локальнонильпотентное дифференцирование, дей-
ствие тора, сложность действия.
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Действия неаффинных алгебраических групп и
свойство Жордана для групп бирациональных
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Аннотация

Пусть 𝑋 – проективное многообразие над алгебраически замкнутым полем нуле-
вой характеристики, а Bir(𝑋) – группа бирациональных автоморфизмов многообра-
зия 𝑋 . Известно, что для некоторых важных классов многообразий группы Bir(𝑋) об-
ладают свойством Жордана: существует константа 𝐽 = 𝐽(𝑋), такая что каждая конеч-
ная подгруппа𝐺 ⊂ Bir(𝑋) содержит нормальную абелеву подгруппу𝐴◁𝐺 индекса, не
превосходящего 𝐽(𝑋). В то же время, Ю. Г. Зархин показал, что группа бирациональ-
ных автоморфизмов произведения проективной прямой и эллиптической кривой не
жорданова. Я расскажу о гипотетической характеризации многообразий, группы би-
рациональных автоморфизмов которых не являются жордановыми, а также о неко-
торых частичных результатах в этом направлении.

Ключевые слова — группа бирациональных автоморфизмов, алгебраическая группа,
абелево многообразие, свойство Жордана.



Существенные полугруппы и правила ветвления

Горницкий А.А.
МГУ им. М.В. Ломоносова

gnomage@mail.ru

Аннотация

Пусть 𝔤— полупростая комплексная алгебра Ли конечной размерности, а 𝔥— ее
полупростая подалгебра. Задача о разложениинеприводимого конечномерного пред-
ставления алгебры 𝔤 в суммунеприводимыхпредставленийподалгебры 𝔥называется
задачей ветвления, а ее решение — правилом ветвления. Часто правило ветвления
оказывается тесно связанным с некоторыми базисами в пространствах представле-
ний алгебры 𝔤, что видно, скажем, на примере базисов Гельфанда-Цейтлина. В 2005 г.
Э.Б. Винберг предложил метод построения базисов во всех неприводимых представ-
лениях произвольной полупростой алгебры Ли 𝔤. Базисные векторы параметризуют-
ся полугруппой 𝛴, называемой существенной полугруппой. Пусть 𝐴 ∶= ℂ[𝐺/𝑈], где 𝐺
— односвязная связная алгебраическая группа, причем Lie𝐺 = 𝔤, а 𝑈 —максималь-
ная унипотентная подгруппа в 𝐺. Тогда 𝐴 = ⨁𝜆 𝑉(𝜆)∗ — сумма всех конечномерных
неприводимых представлений 𝔤. Полугруппа 𝛴 параметризует линейный базис в 𝐴,
а некоторая ее подполугруппа 𝛴′ ⊂ 𝛴 параметризует линейный базис в подалгебре
всех старших векторов относительно 𝔥. В докладе планируется обсудить связь подпо-
лугруппы 𝛴′ с задачей ветвления.

Ключевыеслова—полупростая алгебраЛи, алгебраическая группа, представление, пра-
вило ветвления.
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Аннотация

Пуcть 𝑋 — алгебраическое многообразие с действием связной редуктивной груп-
пы𝐺. При исследовании группы автоморфизмов особую роль играют действия адди-
тивной группы, поскольку полупростая часть группы автоморфизмов в случае, ко-
гда она алгебраична, может быть восстановлена с помощью этих действий. В слу-
чае, когда на многообразии действует группа 𝐺, то для описания разложения алгеб-
ры Ли группы автоморфизмов в сумму неприводимых 𝐺-модулей достаточно опи-
сать множество старших векторов, которые порождают 𝐵-нормализуемые действия
на многообразии 𝑋 . Для сферического многообразия 𝑋 , то есть многообразия на ко-
тором борелевская подгруппа 𝐵 действует с открытой орбитой задача описания 𝐵-
нормализуемых действий была поставлена в работе Р.С.Авдеева и И.В.Аржанцева
[1]. В случае, когда 𝑋 аффинно в работе [2] был получен набор данных, включаю-
щий комбинаторные и непрерывные объекты, в терминах которых можно задать 𝐵-
нормализуемое аддитивное действие единственнымобразом. Такжев этойработе бы-
ли получены достаточные условия на этот набор данных, при которых существует со-
ответствующее аддитивное действие.

В настоящемдокладе я расскажу, какимобразом задача об описании𝐵-нормализу-
емых действий на сферическоммногообразии сводится к описанию аддитивных дей-
ствий на аффинных сферических многообразиях.

Во второй части доклада я обсужу вопрос о том как 𝐵-нормализуемое аддитивное
действие может быть продолжено на орисферическое многообразие, которое получа-
ется с помощью конструкции орисферического стягивания (деформации) многооб-
разия 𝑋 .

Доклад основан на серии совместных работ с Р.С.Авдеевым.

Ключевые слова — сферические многообразия, корни Демазюра, группы автоморфиз-
мов, аддитивные действия.
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Теория нормальных форм для дифференциальных
операторов и гипотеза Диксмье для первой

алгебры Вейля
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Аннотация

Гипотеза Диксмье для первой алгебрыВейля была сформулирована в статье Дикс-
мье 1968 года [2] и сейчас известна какперваяиз сериипохожих гипотезДиксмье (они
появились позже) для алгебр Вейля 𝐴𝑛 = 𝐾[𝑥1, ..., 𝑥𝑛][∂1,… , ∂𝑛], 𝑛 > 1, 𝑐ℎ𝑎𝑟(𝐾) = 0.

Все эти гипотезы, как известно, стабильно эквивалентны другой серии известных
гипотез о якобиане [5], [7]. Все эти гипотезы до сих пор остаются открытыми.

В докладе я планируюрассказать схему доказательства гипотезыДиксмье для пер-
вой алгебрыВейля, изложеннойвпрепринте [9]. Это доказательствополученонесколь-
ко неожиданно, с использованием новой техники – теории нормальных форм для
дифференциальных операторов [4], создание которой задумывалось для совершенно
другого типа задач (явная параметризация пространств модулей пучков без кручения
на спектральных алгебраических многообразиях), [1], [8]. Доказательство существен-
но использует новый результат, полученный с помощью теории нормальных форм,
о связи между решениями уравнения струны не взаимно простых порядков и ком-
мутирующими дифференциальными операторами ранга один (обобщающий извест-
ный результат для взаимно простых порядков из работы [6]), а также опирается на
некоторые оценки для потенциальных контрпримеров к гипотезе Диксмье и технику
многоугольников Ньютона [3], в значительной степени давно известные как фольк-
лор.

Ключевые слова — уравнение струны, алгебра Вейля, гипотеза Диксмье.
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Многообразия минимальных рациональных
касательных орисферических многообразий Фано
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Аннотация

Пусть 𝑋 — гладкое 𝑛-мерное комплексное многообразие Фано с числом Пикара 1.
Тогда его группаПикара Pic𝑋 порождена обильным линейным расслоениемℒ → 𝑋 и
изоморфна ℤ. Для антиканонического расслоения имеем⋀𝑛 𝒯𝑋 ≃ ℒ⊗𝑟, где 𝑟 = ind𝑋
—индекс многообразия Фано. Мыможем определить степень замкнутой кривой 𝐶 ⊂
𝑋 :

deg𝐶 = degℒ|𝐶 ,
где 𝐶—нормализация кривой 𝐶.

Среди рациональных кривых на 𝑋 большой интерес представляют кривые мини-
мальной степени. Многообразие касательных направлений к минимальным рацио-
нальным кривым в точке 𝑥 называется многообразием минимальных рациональных
касательных (variety of minimal rational tangents), или, сокращенно, VMRT. Алгебро-
геометрические свойства многообразий минимальных рациональных касательных,
а также их применения в алгебраической геометрии можно найти в обзоре [1].

Следующая гипотеза утверждает, что вложенное орисферическое многообразие
Фано с числом Пикара 1 характеризуется его VMRT в точке общего положения:

Гипотеза. Пусть 𝑄— гладкое многообразие Фано с числом Пикара 1, и его VMRT
𝒞𝑞 ⊂ ℙ(𝑇𝑞𝑄) в общей точке проективно изоморфноVMRT𝒞𝑥 ⊂ ℙ(𝑇𝑥𝑋) в точке общего
положения орисферического многообразия 𝑋 с числом Пикара 1. Тогда 𝑄 ≃ 𝑋 .

Аналогичная гипотеза характеризации однородных многообразий флагов, ассо-
циированных с длинным корнем была доказана ранее [2].

В своем докладе я расскажу о начальных шагах доказательства гипотезы. Мы най-
дем VMRT орисферических многообразий. Они также окажутся проективными ори-
сферическими многообразиями и будут иметь ранг 1 или 2. Далее, имея гладкое мно-
гообразиеФано𝑄 с числомПикара 1, VMRT𝒞𝑞 которого в его общей точке совпадает с
VMRT некоторого орисферического многообразия, мы вычислим два его интересных
инварианта: алгебру символов системы распределений, порожденнойVMRT в точках
общего положения, и группу автоморфизмов VMRT.

Ключевые слова — многообразие Фано, орисферическое многообразие, многообразие
минимальных рациональных касательных.
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Аннотация

Я расскажу о полученной классификации структур алгебраических моноидов на
трёхмерном аффинномпространстве. Результат основанна редукции общего случая к
коммутативным моноидам. Также изучены различные алгебраические свойства всех
моноидов, появляющихся в классификации. Доклад основан на совместной работе с
Р.С. Авдеевым и И.В. Аржанцевым.

Ключевые слова — Аффинное пространство, алгебраическая группа, алгебраический
моноид, групповое вложение.
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Аннотация

Пусть 𝐺— простая комплексная алгебраическая группа, 𝑇 — максимальный тор
в 𝐺, 𝐵— борелевская подгруппа в 𝐺, содержащая 𝑇. Пусть 𝛷— система корней груп-
пы 𝐺, 𝛷+ — множество положительных корней, 𝛥— множество простых корней,𝑊
— группа Вейля. Обозначим через ℱ = 𝐺/𝐵 многообразие флагов, а через 𝑋𝑤 ⊆ ℱ —
подмногообразие Шуберта, отвечающее элементу 𝑤 группы Вейля𝑊 . Все такие под-
многообразия содержат точку 𝑝 = 𝑒 mod 𝐵; пусть 𝐶𝑤 = 𝐶𝑝𝑋𝑤 — касательный конус
к 𝑋𝑤 в точке 𝑝; заметим, что

𝐶𝑤 ⊆ 𝑇𝑝𝑋𝑤 ⊆ 𝑇𝑝ℱ,
где 𝑇𝑝 обозначает касательное пространство в точке 𝑝. Основной вопрос, который бу-
дет нас интересовать, — выяснить, для каких элементов группы Вейля касательные
конусы могут совпадать. К примеру, 𝐶𝑤 = 𝐶𝑤−1 для любого элемента 𝑤 ∈ 𝑊 . Отме-
тим, что в работе [4] были получены достаточные условия совпадения касательных
конусов для𝐴𝑛−1. В 2013 году Д.Ю. Елисеев и А.Н. Панов в работе [2] вычислили явно
все касательные конусы для систем корней 𝛷 = 𝐴𝑛−1 при 𝑛 ⩽ 6. Основываясь на этих
вычислениях, Панов выдвинул следующую гипотезу.

Гипотеза. Пусть 𝐼(𝑊) — множество инволюций (то есть, элементов, квадрат
которых равен id) в группе Вейля, 𝑤1, 𝑤2 ∈ 𝐼(𝑊), 𝑤1 ≠ 𝑤2. Тогда 𝐶𝑤1 ≠ 𝐶𝑤2 .

В 2014 году Елисеев и М.В. Игнатьев в статье [3] доказали эту гипотезу для типов
𝐴𝑛−1, 𝐹4 и 𝐺2; в 2016 году М.А. Бочкарёв, Игнатьев и А.А. Шевченко доказали [1] её
для типов 𝐵𝑛 и 𝐶𝑛; в том же году Игнатьев и Шевченко проверили, что она верна в
случае 𝐷𝑛 для так называемых базисных инволюций [5]. В 2020 году те же авторы
проверили [6], что гипотеза верна для некоторых пар инволюций, удовлетворяющих
дополнительным условиям, в типах 𝐸6, 𝐸7 и 𝐸8. Основным инструментом, который
использовался при доказательстве гипотезы, являются так называемые многочлены
Костанта–Кумара. Они были определены в работе Б. Костанта и С. Кумара [7]. Оказы-
вается, с каждымэлементов𝑤 ∈ 𝑊 можно связать некоторыймногочлен 𝑑𝑤 , который
зависит только от касательного конуса, поэтому, чтобы показать, что 𝐶𝑤1 ≠ 𝐶𝑤2 , до-
статочно проверить, что 𝑑𝑤1 ≠ 𝑑𝑤2 . Именно это и было сделано в указанных выше
статьях.

В 1996 году Кумар в статье [8] показал, что аналогичные вопросы можно поставит
и для бесконечномерных групп Каца–Муди. Более того, для них касательные конусы
будут конечномерными, и для их несовпадения тоже достаточно проверить несовпа-



дение аналогов многочленов Костанта–Кумара. В докладе я планирую обсудить эти
вопросы и, в частности, доказать, что эти многочлены не совпадают для инволюций
в группе ̃𝑆𝑛 аффинных перестановок для небольших значений 𝑛.

Доклад основан на совместной работе с С. Бондарем.
Работа выполнена при поддержке проекта в рамках программы «Международное

академическое сотрудничество “Гибкость и вычислительные методы”» НИУ ВШЭ.

Ключевые слова — группа Каца–Муди, многочлен Костанта–Кумара, касательный ко-
нус, группа аффинных перестановок.

Список литературы
[1] M.A. Bochkarev, M.V. Ignatyev, A.A. Shevchenko. Tangent cones to Schubert varieties in

types 𝐴𝑛, 𝐵𝑛 and 𝐶𝑛. J. Algebra 465 (2016), 259–286.

[2] D.Yu. Eliseev, A.N. Panov. Tangent cones to Schubert varieties for𝐴𝑛 of lower rank. J.Math.
Sci. 188 (2013), no. 5, 596–600.

[3] D.Yu. Eliseev, M.V. Ignatyev. Kostant–Kumar polynomials and tangent cones to Schubert
varieties for involutions in 𝐴𝑛, 𝐹4 and 𝐺2. J. Math. Sci. 199 (2014), no. 3, 289–301.

[4] D. Fuchs, A. Kirillov, S. Morier-Genoud, V. Ovsienko. On tangent cones to Schubert
varieties. Arnold Math. J. 3 (2017), no. 4, 451–482.

[5] M.V. Ignatyev, A.A. Shevchenko. On tangent cones to Schubert varieties in type 𝐷𝑛. St.
Petersburg Math. J. 27 (2016), no. 4, 609–623.

[6] M.V. Ignatyev, A.A. Shevchenko. On tangent cones to Schubert varieties in type 𝐸. Comm.
in Math. 28 (2020), no. 2, 179–197.

[7] B. Kostant, S. Kumar. The nil-Hecke ring and cohomology of 𝐺/𝑃 for a Kac–Moody
group 𝐺. Adv. Math. 62 (1986), 187–237.

[8] S. Kumar. The nil-Hecke ring and singularities of Schubert varieties. Invent. Math. 123
(1996), 471–506
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Аннотация

Пусть 𝑋—гиперповерхность вℙ4 степени 𝑑, которая имеет только обыкновенные
двойные точки (ноды) в качестве особенностей. Такая гиперповерхность называется
нодальной. Можно задаться вопросом, является ли она факториальной или, эквива-
лентно,ℚ-факториальной. Это свойство имеет важное значение для изучения рацио-
нальности (см. [2]). Ч. Чильберто и В. Ди Дженнаро сформулировали в [1] следующую
гипотезу. Если 𝑋 ⊂ ℙ4 — нодальная гиперповерхность степени 𝑑, имеющая не более
2(𝑑 − 2)(𝑑 − 1) особых точек, то верно одно из утверждений:
(1) 𝑋 факториальна;
(2) 𝑋 содержит плоскость и имеет не менее (𝑑 − 1)2 нодов;
(3) 𝑋 содержит квадратичную поверхность и имеет ровно 2(𝑑 − 2)(𝑑 − 1) нодов.
Гипотеза была доказана для 𝑑 = 3 Г. Финкельбергом иЮ. Вернером [6], для 𝑑 = 4

И. Чельцовым и К. Шрамовым [3, 8], а для 𝑑 ⩾ 7 Р. Клустерманом в [7]. Кроме того, в
[4, 5] было показано, что нефакториальное нодальное трёхмерное многообразие 𝑋 ⊂
ℙ4 степени 𝑑 должно иметь не менее (𝑑 − 1)2 нодов; более того, если имеет место
равенство, то 𝑋 содержит плоскость.

Используя подход Клустермана, можно доказать гипотезу и для степени 𝑑 = 6.
Переходя к алгебраическим методам, мы разбиваем доказательство Клустермана

на несколько частей и исправляем ту часть, которая не работает в нашем случае. А
именно пусть𝑋—трёхмерная нодальная гиперповерхность степени 𝑑 ⩾ 6 в Proj(𝑅) ≃
ℙ4, и пусть 𝐽 ⊂ 𝑅 — однородный идеал Sing(𝑋). Пусть {ℓ = 0} — общая гиперплос-
кость, не проходящая через Sing(𝑋). Взяв идеал 𝐽, соответствующий этому гиперплос-
костному сечению, и, возможно, добавив другие однородные полиномы 𝑓𝑗 степени
𝑑𝑗 , где 𝑑 − 1 ⩽ 𝑑𝑗 ⩽ 2𝑑 − 4, мы можем построить такой идеал 𝐼 ⊃ 𝐽 в 𝑆 = 𝑅/(ℓ), что
соответствующее фактор кольцо 𝑆/𝐼 будет артиновым горенштейновым кольцом цо-
кольной степени 2𝑑 − 4. Другими словами, мы получаем некоторое локальное коль-
цо, имеющее симметричную функцию Гильберта ℎ𝐼(𝑘) для 𝑘 ⩽ 2𝑑 − 4 и ℎ𝐼(𝑘) = 0
для 𝑘 ⩾ 2𝑑 − 3. Тогда нижняя граница на число #Sing(𝑋) может быть найдена через
значения ℎ𝐼(𝑘). Оказывается, что Sing(𝑋) содержит полное пересечение мультисте-
пени либо (1, 1, 𝑑 − 1, 𝑑 − 1), либо (1, 2, 𝑑 − 2, 𝑑 − 1), если ℎ𝐼(𝑑 − 4) не превосходит
2𝑑 − 7. В противном случае Клустерман показал, что 𝑋 степени 𝑑 ⩾ 7 имеет боль-
ше особых точек, чем предполагалось в гипотезе. Последующая оценка на #Sing(𝑋)
через значения ℎ𝐼 , а затем через функцию Гильберта идеала полного пересечения



𝐼𝐶𝐼 мультистепени (1, 2, 𝑑 − 2, 𝑑 − 1) отлично работает в случае 𝑑 > 7. Для 𝑑 = 7 эта
нижняя граница в точности равна 2(𝑑 − 2)(𝑑 − 1). Таким образом, существует только
один ”плохой” вариант для значений ℎ𝐼 (т.е. когда все неравенства для ℎ𝐼(𝑘) стано-
вятся равенствами). Как показывает геометрический анализ, проведённый в [7], этот
вариант не реализуется. Однако этот анализ не применим для гиперповерхностей
шестой степени, для которых существует более одного варианта, дающего #Sing(𝑋)
меньше, чем 2(𝑑 − 2)(𝑑 − 1) + 1. Согласно теоремам об унимодальности для такого
идеала 𝐼, с которым мы работаем, если ℎ𝐼(𝑘) ⩽ ℎ𝐼(𝑘 + 1) для некоторого 𝑘 ⩽ 𝑑 − 4, то
ℎ𝐼(𝑘 + 1) ⩽ ℎ𝐼(𝑘 + 2). Следовательно, мы сводим все возможные ”плохие” последова-
тельности ℎ𝐼(𝑘) к двум случаям и исключаем их также, анализируя размерность пере-
сечения гиперповерхностей фиксированной степени 𝑡, проходящих через подсхему,
определённую 𝑡-однородной компонентой 𝐼.

Ключевые слова — факториальность нодальных гиперповерхностей, артиновы горен-
штейновы кольца.
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Аннотация

Доклад основан на работе [1]. Пусть 𝕂— алгебраически замкнутое поле нулевой
характеристики, а 𝑋 — алгебраическое многообразие над полем 𝕂, через Aut(𝑋) обо-
значим группу регулярных автоморфизмов многообразия 𝑋 . В общем случае группа
Aut(𝑋) не является алгебраической группой. Однако для неё можно определить по-
нятие связности, см. [2] и [3].

Известны примеры аффинных торических многообразий как со связной, так и с
несвязной группой автоморфизмов. В [4, лемма 4] и [3, теорема 6] доказывается, что
группа автоморфизмов 𝑛-мерного аффинного пространства при любом натуральном
𝑛 является связной. Примером аффинного торического многообразия с несвязной
группой автоморфизмов является алгебраический тор 𝑇 = (𝕂×)𝑛. В данном контек-
сте уместно поставить вопрос о связности группы автоморфизмов произвольного аф-
финного торического многообразия.

В докладе мы обсудим критерий связности группы автоморфизмов аффинного
торического многообразия, сформулированный в комбинаторных терминах и в тер-
минах группы классов дивизоров многообразия. Доказано, что группа автоморфиз-
мов вырожденного аффинного торического многообразия несвязна, а группа авто-
морфизмов невырожденного аффинного торического многообразия связна тогда и
только тогда, когда не существует нетривиальных автоморфизмов группы классов
дивизоров многообразия, переставляющих классы 𝑇-инвариантных простых диви-
зоров. Для таких многообразий описана группа компонент группы автоморфизмов.
В частности, доказано, что она является конечной.

При поддержке проекта в рамках программы ”Международное академическое со-
трудничество «Гибкость и вычислительные методы»” НИУ ВШЭ.

Ключевые слова — группа автоморфизмов, торическое многообразие, группа классов
дивизоров, кольцо Кокса.
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Аннотация

Пусть𝐴—векторное пространство над полем 𝕜 характеристики нуль, снабженное
одним или несколькими билинейными операциями ∘𝑖 , 𝑖 ∈ 𝐼, где 𝐼 — конечное мно-
жество. Для удобства будем полагать, что для любого 𝑗 ∈ 𝐼 найдется такое 𝑖 ∈ 𝐼, что
𝑦∘𝑗 𝑥 = ±𝑥∘𝑖 𝑦 для всех 𝑥, 𝑦 ∈ 𝐴. Таким образом, например, некоммутативную ассоци-
ативную алгебру надо рассматривать как систему с двумя операциями умножения.

Формальнымраспределениемнад𝐴называется (формальный) степеннойряд, бес-
конечный в обе стороны:

𝑎(𝑧) = ∑
𝑛∈ℤ

𝑎𝑛𝑧−𝑛−1, 𝑎𝑛 ∈ 𝐴,

через 𝐴[[𝑧, 𝑧−1]] обозначается пространство всех формальных распределений.
Говорят, что два формальных распределения 𝑎(𝑧), 𝑏(𝑧) ∈ 𝐴[[𝑧, 𝑧−1]] образуют ло-

кальную пару, если найдется такое целое 𝑁 ⩾ 0, что

𝑎(𝑤) ∘𝑖 𝑏(𝑧)(𝑤 − 𝑧)𝑁 = 0

в прострастве 𝐴[[𝑧, 𝑧−1, 𝑤, 𝑤−1]] для любого 𝑖 ∈ 𝐼. Свойство локальности формальных
распределений над алгебрами Ли играет ключевую роль в теории вертексных алгебр
(см., например, [1]). В частности, если 𝑎(𝑧), 𝑏(𝑧)— локальная пара, то

𝑎(𝑤) ∘𝑖 𝑏(𝑧) =
𝑁−1
∑
𝑛=0

𝑐𝑖,𝑛(𝑧)
1
𝑛! ∂

𝑛
𝑧𝛿(𝑤 − 𝑧),

где 𝛿(𝑤 − 𝑧)— формальная дельта-функция. Ряды 𝑐𝑖,𝑛(𝑧) называются конформными
𝑛-произведениями формальных распределений 𝑎(𝑧) и 𝑏(𝑧), 𝑐𝑖,𝑛 = (𝑎𝑖(𝑛)𝑏).

Классическая леммаДонга утверждает, что если 𝑎(𝑧), 𝑏(𝑧), 𝑐(𝑧)—три попарно вза-
имно локальных формальных распределения над алгеброй Ли (|𝐼| = 1), то [𝑎(𝑛)𝑏](𝑧) и
𝑐(𝑧) тоже образуют локальную пару. Поскольку применение дифференцирования ∂𝑧
также не нарушает локальности, лемма Донга позволяет порождать конформные ал-
гебры формальных распределений любым семейством попарно взаимно локальных
рядов над алгебрами Ли.

Утверждение, аналогичное лемме Донга, также верно для формальных распреде-
ленийнад ассоциативной алгеброй. С другой стороны, для правосимметричных (пре-
лиевых) алгебр это утверждение неверно. Возникает естественный вопрос: как опре-
делить, для каких многообразий алгебр аналог леммыДонга верен. Понятно, что этот



вопрос касается тождеств степени два и три, выполняющихся на всех алгебрах такого
многообразия. Следовательно, речь идет о свойствах бинарной квадратичной опера-
ды [2], определяющей данное многообразие.

Именно, пусть 𝒫 = 𝒫(𝑉, 𝑅)—бинарная квадратичная операда, где 𝑉 —простран-
ство бинарных операций (dim𝑉 = |𝐼| < ∞), 𝑅— 𝑆3-модуль определяющих соотноше-
ний. Говорим, что 𝒫 обладает свойством Донга, если для любой 𝒫-алгебры 𝐴 и для
любых попарно взаимно локальных формальных распределений 𝑎, 𝑏, 𝑐 ∈ 𝐴[[𝑧, 𝑧−1]]
ряды (𝑎𝑖(𝑛)𝑏)(𝑧) и 𝑐(𝑧) образуют локальную пару для всех 𝑖 ∈ 𝐼, 𝑛 ⩾ 0.

Нам удалось установить следующий критерий.

Теорема 1 [3]. Бинарная квадратичная операда𝒫(𝑉, 𝑅) обладает свойствомДон-
га тогда и только тогда, когда в дуальной операде 𝒫! = 𝒫(𝑉∗, 𝑅⟂) операции вида
(𝑥1 ∘𝑖 𝑥2) ∘𝑗 𝑥3, 𝑖, 𝑗 ∈ 𝐼, линейно независимы.

Например, операды, управляющие многообразиями алгебр Ли (Lie), ассоциатив-
ных алгебр (As), алгебр Новикова (Nov), алгебр Пуассона (Pois) и Новикова–Пуассона
(NP), обладают свойством Донга. Наоборот, все многообразия, полученные дендри-
формнымрасщеплением (например, preLie, preAs=Dend, preCom=Zinb), не обладают
свойством Донга.

Классические конструкции теории квадратичных ассоциативных алгебр (черное
• и белое ∘ произведения Манина) естественно переносятся на бинарные квадратич-
ные операды (см. [2]). Свойство Донга не сохраняется при белом произведении: так,
например, As∘Lie изоморфна свободной бинарной операде, задающей многообразие
всех неассоциативных алгебр, она не обладает свойством Донга. Оказалось, что чер-
ное произведение сохраняет свойство Донга.

Следствие. Если 𝒬 и 𝒫 — бинарные квадратичные операды, обладающие свой-
ством Донга, то их черное произведение Манина 𝒬 • 𝒫 также обладает свойством
Донга.

Также была обнаружена любопытная связь свойства Донга для операды𝒫 со стро-
ением свободной алгебры производного многообразия 𝐷𝒫 = Nov ∘ 𝒫, где ∘ означает
белое произведение Манина операд. В общем случае, белое произведение Манина
𝒬 ∘ 𝒫 двух бинарных операд — это бинарная подоперада в их тензорном (адамаро-
вом) произведении 𝒬 ⊗ 𝒫. Случай, когда Nov ∘ 𝒫 = Nov⊗𝒫, характерен тем, что для
такой 𝒫 легко найти явное описание свободной 𝐷𝒫-алгебры, порожденной некото-
рым множеством 𝑋 [4].

Оказывается, что эти два свойства (лемма Донга и полнота белого произведения
с Nov) эквивалентны друг другу.

Теорема 2. Бинарная квадратичная операда 𝒫 обладает свойством Донга тогда
и только тогда, когда Nov ∘ 𝒫 = Nov⊗𝒫.

Доклад основан на совместной работе с Б. К. Сартаевым (Университет Нархоз, Ал-
маты, Казахстан). Работа выполнена при частичной поддержке Программы фунда-
ментальных исследований РАН (проект FWNF-2022-0002).

Ключевые слова— локальность, формальное распределение, неассоциативная алгебра,
операда.
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Свойство симметрии одного класса унитарных
унипотентных матриц над кольцами многочленов
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Аннотация

Пусть (𝑅, 𝜆, 𝛬) – унитарное кольцо, где 𝑅 – ассоциативное кольцо с 1, на котором
задана инволюция 𝑥 → 𝑥, 𝜆 – центральный элемент кольца 𝑅 такой, что 𝜆 ⋅ 𝜆 = 1 и 𝛬 –
аддитивнаяподгруппа𝑅, удовлетворяющаянекоторымусловиям. Еслиположить𝛬 =
{𝑥, 𝑥 ∈ 𝛬}, то получаем еще одно унитарное кольцо (𝑅, 𝜆, 𝛬). Продолжим инволюцию
на кольцо матриц𝑀𝑟(𝑅) стандартным способом, положив (𝑎𝑖𝑗)∗ = (𝑎𝑗𝑖).

Определение 1.Матрица 𝑎(∈ 𝑀𝑟(𝑅)) называется 𝛬-эрмитовой, если она является
(−𝜆)-эрмитовой, то есть 𝑎 = −𝜆𝑎∗, и все ее диагональные элементы содержатся в 𝛬.

В работе мы будем использовать блочную форму записи матриц. Более точно, за-

пись 𝛼 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ 𝑀2𝑟(𝑅) означает, что 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑀𝑟(𝑅). Для натурального 𝑟

положим 𝐼𝜆𝑟 = ( 0 𝑒𝑟
𝜆𝑒𝑟 0 ), где 𝑒𝑟 (соответственно 0) обозначает единичную (соот-

ветственно нулевую) матрицу порядка 𝑟.

Определение 2. Матрица 𝛼 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ 𝑀2𝑟(𝑅) называется унитарной, если

𝛼∗𝐼𝜆𝑟𝛼 = 𝐼𝜆𝑟 и называется𝛬-унитарной, если, кроме того, диагональные элементымат-
риц 𝑎∗𝑐 и 𝑏∗𝑑 содержатся в 𝛬.

Множество 𝑈𝜆
2𝑟(𝑅, 𝛬) всех 𝛬-унитарных матриц порядка 2𝑟 образует группу, кото-

рая называется (гиперболической) 𝛬-унитарной группой.

Определение 3. Ненулевая матрица вида 𝛼 = ( 𝑎 −𝑏
𝑐 −𝑎∗ ) , где 𝑎, 𝑏, 𝑐 ∈ 𝑀𝑟(𝑅),

называется нильпотентом степени 2 𝛬-унитарного типа, если она удовлетворяет сле-
дующим условиям:

1) матрицы 𝑏 и 𝑎𝑏 являются 𝛬-эрмитовыми, причем 𝑎𝑏 = 𝑏𝑎∗;
2) матрицы 𝑐 и 𝑐𝑎 являются 𝛬-эрмитовыми,причем 𝑐𝑎 = 𝑎∗𝑐;
3) 𝑏𝑐 = 𝑎2 и 𝑐𝑏 = (𝑎∗)2.
Отметим, что при выполнении условий 1)-3), матрица 𝛼 является нильпотентной

степени нильпотентности 2.
Предложение ([1], Теорема 1).Пусть 𝑘 – натуральное число,𝛼(∈ 𝑀2𝑟(𝑅)) – ненуле-

вая матрица. Матрица 𝑒2𝑟 −𝛼𝑋𝑘 является 𝛬[𝑋]-унитарной тогда и только тогда, когда
матрица 𝛼 является нильпотентом степени 2 𝛬-унитарного типа.

Пусть 𝜋 обозначает перестановку из симметрической группы 𝑆𝑛, равную произве-
дению транспозиций (1 𝑛)(2 𝑛 − 1)… (𝑘 𝑘 + 1), если 𝑛 = 2𝑘 и равную произведению



(1 𝑛)(2 𝑛 − 1)… (𝑘 𝑘 + 2), если 𝑛 = 2𝑘 + 1. Для матричного многочлена 𝛼 = 𝛼(𝑋) =
𝑎1 + 𝑎2𝑋𝑘2 +… + 𝑎𝑛𝑋𝑘𝑛 ∈ 𝑀2𝑟(𝑅[𝑋]), где 1 ⩽ 𝑘2 < … < 𝑘𝑛, положим 𝛼(𝑋) = 𝛼(𝑋)𝜋 =
𝑎𝑛 + 𝑎𝑛−1𝑋𝑘2 +…+ 𝑎1𝑋𝑘𝑛 .

Теорема. В обозначениях выше, 𝛼(𝑋)2 = 0 тогда и только тогда, когда 𝛼(𝑋)
2
= 0. В

этом случае, для произвольного натурального 𝑘, матрица 𝑒2𝑟−𝛼(𝑋)𝑋𝑘 является 𝛬[𝑋]-
унитарной тогда и только тогда, когда матрица 𝑒2𝑟−𝛼(𝑋)𝑋𝑘 является𝛬[𝑋]-унитарной,
причем матрицы 𝑎1 и 𝑎𝑛 являются нильпотентами степени 2 𝛬-унитарного типа.

В [1] автором была введена ниль-подгруппа 𝑈𝑛𝑖𝑝1𝐾1𝑈𝜆(𝑅, 𝛬) унитарной нильпо-
тентнойпоБассу𝐾1−группы𝑁𝐾1𝑈𝜆(𝑅, 𝛬), порожденная всеми классами с представи-
телями вида 𝑒2𝑟 −𝛼𝑋𝑘 при некоторых натуральных 𝑟, 𝑘, где 𝛼(∈ 𝑀2𝑟(𝑅)) – нильпотент
степени 2 𝛬-унитарного типа. Для построенной ниль-группы в [1] был получен ряд
структурных результатов, аналогичных хорошоизвестным свойствамнильпотентной
по Бассу 𝐾1−группы 𝑁𝐾1(𝑅) из алгебраической 𝐾-теории. Теорема позволяет расши-
рить построенную (унитарную) ниль-группу путем добавления новых образующих с
представителями, описанными в теореме и получить для данной группы аналогич-
ные свойства.
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Аннотация

Трёхмерное многообразие Фано типа 4-1 является гладким дивизором мультисте-
пени (1, 1, 1, 1) в произведении четырёх проективных прямых ℙ1×ℙ1×ℙ1×ℙ1. Такое
многообразие 𝑋 содержит шесть выделенных кривых рода 1 и шестнадцать выделен-
ных точек. Эти конфигурации позволяют явно описать модульный стек трёхмерных
многообразийФано типа 4-1, их трёхмерное грубоемодульное пространство и группы
автоморфизмов.

Группа Aut(𝑋) содержит нормальную подгруппу

𝑁 ≅ (ℤ/2ℤ)4,

действующуюсвободнои транзитивнона 16 выделенных точках. Стабилизатор одной
из этих точек изоморфен одной из групп

ℤ/2ℤ, ℤ/3ℤ, ℤ/4ℤ, ℤ/6ℤ, 𝑆3,

и
Aut(𝑋) ≃ 𝑁 ⋊ 𝐺.

Постер основан на работе, находящейся в стадии подготовки.

Ключевые слова — Группы автоморфизмов, трёхмерные многообразия Фано, модули,
производные категории.
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Категории Делиня и их приложения к теории
представлений и квантовой теории поля
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Аннотация

Основным техническим инструментом в нашей работе являются категории Дели-
ня, которые интерполируют категории представлений 𝑅𝑒𝑝(𝐺𝐿𝑁 ), 𝑅𝑒𝑝(𝑂𝑁 ), 𝑅𝑒𝑝(𝑆𝑝𝑁 )
для натурального𝑁, а также позволяют аналитически продолжить эти категории для
любого комплексного числа. В частности, можно говорить о матрицах комплексного
размера, что бывает полезно для вычислений в теоретической физике.

В своей работе мы изучаем важный объект теории представлений – центр на кри-
тическом уровне для 𝔤𝔩𝔱, где 𝑡 ∈ ℂ. У нас получилось реализовать центр какПуассоно-
ву алгебру в Ind-замыкании категории Делиня. Мы также разработали метод реали-
зации универсальных обертывающих алгебр Ли комплексного ранга, проиллюстри-
ровав этот метод на примерах.

Еще одним аспектом нашей работы являются квантовые теории поля, обладаю-
щие категорными симметриями. В своём докладе я расскажу об известных результа-
тах и о наших продвижениях в доказательстве категорной теоремы Голдстоуна.

Работа поддержана грантом фонда ”Базис” 24-10-3-23-1.

Список литературы
[1] B. Feigin, E. Frenkel ”Affine Kac-Moody algebras at the critical level and Gelfand-Dikii

algebras”.

[2] A. Chervov, A. Molev ”On higher order Sugawara operators”, arXiv: 0808.1947

[3] Damon J. Binder, Slava Rychkov ”Deligne Categories in LatticeModels andQuantumField
Theory, or Making Sense of O(N) Symmetry with Non-integer N”, arXiv: 1911.07895



Инвариантные симплектические структуры на
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Аннотация

Мы будем обсуждать левоинвариантные симплектические структуры на нильпо-
тентных группах (алгебрах) Ли. Известно, что при помощи симплектической фор-
мы можно определить одномерное центральное расширение ̃𝐺 ( ̃𝔤) симплектической
группы (алгебры) Ли 𝐺 (𝔤). Всегда ли можно (с увеличением индекса нильпотентно-
сти) центрально расширить группу (алгебру Ли) ̃𝐺 ( ̃𝔤) до следующей симплектиче-
ской группы (алгебры) Ли? В работе Бабенко-Тайманова [1] была рассмотрена бес-
конечная башня последовательных одномерных центральных расширений нильпо-
тентных групп (алгебр) Ли с чередованием ”симплектическая – контактная (груп-
па) алгебра Ли”. Эта башня последовательных центральных расширений строится по
положительной части W+ алгебры Витта W. В недавней работе Тайманова [2] было
сформулировано несколько интересных открытых вопросов о свойствах подобных ба-
шен в духе сформулированного выше вопроса. Доклад будет посвящен ответам на эти
вопросы, с использованием, в частности, результатов [3].

Ключевые слова—нильпотентная группаЛи, симплектическая структура, центральное
расширение, аффинный коцикл.
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Инволюции Маркова на треугольных и
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Аннотация

Данная работа сделана совместно с ДмитриемЧунаевымиДанииломШуниными
поддержана грантомФонда развития теоретическойфизикииматематики «БАЗИС».

В последнее время появилось много обобщений поверхности Маркова, задавае-
мой уравнением 𝑥𝑦𝑧 = 𝑥2 + 𝑦2 + 𝑧2 в 𝔸3. В первую очередь они интересны нали-
чием тройки инволюций, свободно порождающих подгруппу конечного индекса в
PGL(2, ℤ).

Мы вводим класстреугольных аффинных поверхностей, то есть допускающих по-
полнение треугольником из (−1)-кривых, который включает в себя большинство та-
ких обобщений, и приводим эти поверхности к каноническому виду.

Теорема. Пусть 𝑆 — нормальная аффинная поверхность, допускающая пополне-
ние треугольником из (−1)-кривых. Тогда она изоморфна кубической поверхности

{𝑥𝑦𝑧 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑} ⊂ 𝔸3

для некоторых 𝑎, 𝑏, 𝑐, 𝑑 из основного поля.
Мы также приводим полное описание группы автоморфизмов поверхности 𝑆 в

зависимости от параметров 𝑎, 𝑏, 𝑐, 𝑑.
Наконец, мы рассматриваем более общий случай квазипроективной поверхности

сизолированнымиособенностями, допускающейпополнение треугольникомиз (−1)-
кривых. В этом случае мы приводим бинарное дерево из ℙ1-расслоений на такой по-
верхности и выражаем её группу автоморфизмов как конечное расширение подгруп-
пы в PGL(2, ℤ), действующей на данном дереве и включающей указанные выше ин-
волюции.

Ключевые слова — аффинная поверхность, группа автоморфизмов, пополнение, инво-
люция.
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Гибкость цилиндров над триномиальными
гиперповерхностями

М.В. Петров
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Аннотация

Пусть 𝕂— алгебраически замкнутое поле нулевой характеристики, 𝑋 — аффин-
ное алгебраическое многообразие. Цилиндром над аффинным многообразием 𝑋 на-
зывается многообразие 𝑋 × 𝔸1. Группа специальных автоморфизмов SAut(𝑋)— это
подгруппа в Aut(𝑋), порождённая всеми однопараметрическими унипотентными ал-
гебраическими подгруппами, то есть подгруппами, изоморфными аддитивной груп-
пеполя𝔾𝑎. Аффинное алгебраическоемногообразие𝑋 называется гибким, если груп-
па SAut(𝑋) действует на множестве гладких точек 𝑋 транзитивно. Многообразие на-
зывается жёстким, если на нём нет нетривиальных 𝔾𝑎-действий.

Триномиальная гиперповерхность задаётся одним уравнением вида

𝑇𝑙0
0 + 𝑇𝑙1

1 + 𝑇𝑙2
2 = 0,

где 𝑇𝑙𝑖
𝑖 = 𝑇𝑙𝑖1

𝑖1 …𝑇
𝑙𝑖𝑛𝑖
𝑖𝑛𝑖 — мономы от независимых переменных 𝑇𝑖𝑗 , 𝑛0 ⩾ 0, 𝑛1, 𝑛2 ⩾ 1

— натуральные числа, а 𝑙𝑖𝑗 — положительные целые числа. Если 𝑛0 = 0, то соот-
ветствующий моном 𝑇0 полагается равным единице. В работе [2] получен критерий
жёсткости триномиальной гиперповерхности. В ещё не опубликованной совместной
работе с С.А. Гайфуллинымбыло доказано необходимое условие гибкости цилиндров
над триномиальнымимногообразиями, а именно тривиальность инвариантаМакар-
Лиманова. В докладе будет рассказано о том, что нежёсткость равносильна гибкости
цилиндра в случае триномиальных гиперповерхностей, которые сами по себе не яв-
ляются цилиндрами.

Ключевые слова — алгебраическое многообразие, триномиальное многообразие, гиб-
кое многообразие, локально нильпотентное дифференцирование.
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Двухсторонние идеалы в универсальных
обёртывающих алгебрах алгебр петель
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Аннотация

В своём докладе я хотел поговорить о моей совместной работе с С. Сьеррой, по-
свящённой двухстороннимидеалам в универсальных обёртывающих алгебрах алгебр
петель. Ключевая теорема для всех таких идеалов 𝐽 в том, что существует счётная по-
следовательность двухсторонних идеалов 𝐽1, 𝐽2,… такая, что 𝐽 содержит все элементы
последовательности 𝐽1, 𝐽2,…, начиная с некоторого места (конструкция напоминает
конструкцию предела последовательности). Таким образом, изучение двухсторонних
идеалов для универсальных обёртывающих алгебр алгебр петель сводится к изуче-
нию идеалов в счётном числе факторов по идеалам 𝐽1, 𝐽2,…. В данном случае эти фак-
торы являются ассоциативными подалгебрами в универсальных обёртывающих ал-
гебрах конечномерных алгебр Ли. Полностью аналогичное утверждение выполнено
и для симметрических алгебр алгебр петель, рассматриваемых как пуассоновы алгеб-
ры. Для этих пуассоновых алгебр радикальныепауссоновыидеалыдопускают класси-
фикацию и описание в терминах орбит действия некоторой конечномерной группы
на подходящем аффинном многообразии.

Похожие результаты могут быть получены для разных многих классов бесконеч-
номерных алгебр Ли (алгебры Витта и Вирасоро, локально простые алгебры, локаль-
но нильпотентные алгебры) и всё это может рассматриваться в контексте “расшире-
ния метода орбит Кириллова на бесконечмерные алгебры Ли” [1, 2, 3, 4, 5].

Ключевые слова — двухсторонние идеалы, пуассоновы алгебры, алгебры петель, аф-
финные алгебры.
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Аффинные моноиды с активной группой
обратимых элементов

Екатерина Преснова
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Аннотация

Пусть 𝑋 — нормальное неприводимое аффинное алгебраическое многообразие,
и пусть дан морфизм 𝑋 × 𝑋 → 𝑋, (𝑥, 𝑦) ↦ 𝑥 ∗ 𝑦. Тогда 𝑋 называется алгебраическим
моноидом, если для всех 𝑥, 𝑦, 𝑧 ∈ 𝑋 выполнено 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧 и найдется такая
точка 1 ∈ 𝑋 , что 𝑥 ∗ 1 = 1 ∗ 𝑥 = 𝑥. Группа обратимых элементов 𝐺 алгебраического
моноида 𝑋 является алгебраической группой и открыта по Зарисскому в 𝑋 .

Нас интересует случай, когда 𝐺 = 𝑈 ⋋ 𝑇, где 𝑇 — тор, 𝑈 — унипотентная груп-
па, полупрямое произведение задается гомоморфизмом 𝜓∶ 𝑇 → Aut𝑈 . Полупрямое
произведение 𝐺 = 𝑈 ⋋ 𝑇 называется активным, если dim𝑇 + dimℑ𝜓 = dim𝐺. По-
нятие активного полупрямого произведения было введено в работе [YZ], и показано,
что любой аффинный моноид с активной группой обратимых элементов является
аффинным торическим многообразием.

В совместной работе [PZ] сЮ. Зайцевоймыописали все активныемоноиды. Более
точно, любой активный моноид строится по конусу 𝜎 соответствующего торического
многообразия, 𝑘-мерной регулярной грани 𝜏 ⊂ 𝜎 и некоторому набору корней Дема-
зюра конуса 𝜎.
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𝑇-однородные локально нильпотентные
дифференцирования на триномиальных
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Аннотация

Известно, что если алгебраически замкнутое поле 𝕂 имеет нулевую характери-
стику, то существует биекция между алгебраическими действиями аддитивной груп-
пы𝔾𝑎 поля𝕂на аффинноммногообразии𝑋 и локально нильпотентнымидифферен-
цированиями (ЛНД) на 𝕂[𝑋]. Поэтому задачи описания этих классов объектов экви-
валентны. Еслина𝑋 задано действие алгебраического тора𝑇, то на на𝕂[𝑋] возникает
градуировка группой характеров тора 𝑇, а ЛНД, однородным относительно этой гра-
дуировки, соответствуют 𝑇-нормализуемые 𝔾𝑎-действия на 𝑋 .

Мы получили явный вид однородных ЛНД на𝕂[𝑋] в случае, когда 𝑋 является три-
номиальным многообразием типа 2, а градуировка соответствует естественному дей-
ствию тора 𝑇 размерности dim𝑋 −1. В работах [1, 2] аналогичная задача была решена
для градуировки, заданой действием максимального квазитора (связной компонен-
той которого является тор 𝑇).

На группе характеров тора можно задать отношение линейного порядка. Тогда
всякое ЛНД раскладывается в сумму однородных дифференцирований, где слагае-
мые наибольшей и наименьшей степени будут локально нильпотентными. Поэтому
описание 𝑇-однородных ЛНД может стать первым шагом к описанию всех ЛНД на
𝕂[𝑋].

Ключевые слова— локально нильпотентное дифференцирование,𝔾𝑎-действие, трино-
миальное многообразие.

Список литературы
[1] Sergey Gaifullin and Yulia Zaitseva. On homogeneous locally nilpotent derivations of

trinomial algebras. J. Algebra Appl. 18 (2019), no. 10, 1950196:1-19.



[2] Кирилл Рассолов. Однородные локально нильпотентные дифференцирования на
триномиальных многообразиях. Конференция «Алгебраические группы: сезон бе-
лых ночей». Сборник тезисов. (2024), 26–27.



Комбинаторика характеров Эйлера для
супералгебры 𝔤𝔩(𝑚, 𝑛)
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Аннотация

Работапосвященаисследованиюхарактеровнеприводимыхконечномерныхпред-
ставлений общей линейной супералгебры 𝔤𝔩(𝑚, 𝑛). Пусть 𝐾(𝔤𝔩(𝑚, 𝑛)) - кольцо Гротен-
дика конечномерных представлений. Известна формула для разложения неприводи-
мого характера в виде бесконечной суммы характеров модулей Каца с некоторыми
коэффициентами. Характеры Эйлера образуют базис в кольце 𝐾(𝔤𝔩(𝑚, 𝑛)). В работе
доказывается комбинаторная формула для коэффициентов разложения неприводи-
мых характеров по характерам Эйлера. Как следствие дается новое доказательство
формулы для суперразмерности неприводимого модуля и формулы ограничения на
подалгебру.

Ключевые слова — характер Эйлера, супералгебра, кольцо Гротендика.
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Кольца Пухликова–Хованского и многогранники
Гельфанда–Цетлина
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Аннотация

В работе А. В.Пухликова и А. Г. Хованского [3] было предложено описание кольца
когомологий торического многообразия 𝑋 как фактора кольца дифференциальных
операторов с постоянными коэффициентамипо аннуляторумногочлена объемамно-
гогранникамоментовмногообразия𝑋 . Эта конструкциябылаобобщенаК. Кавехом [1],
который заметил, что кольцо когомологий многообразия полных флагов может быть
полученоврезультатеприменения аналогичнойконструкциикомногогранникуГель-
фанда–Цетлина. Впоследствии это описание было использовано в совместной рабо-
те докладчика с В.А. Кириченко и В.А. Тимориным [2], в которой была предложена
реализация исчисления Шуберта на многообразиях полных флагов при помощи пе-
ресечения определенных наборов граней многогранников Гельфанда–Цетлина.

Доклад будет посвящен обобщению этих результатов на случай 𝐾-теории глад-
ких торических и флаговых многообразий. При этом для 𝐾-теории вместо алгебры
дифференциальных операторов нужно рассматривать алгебру, порожденную опера-
торами сдвига на решетке, и факторизовать ее по аннулятору многочлена Эрхарта
многогранника. Я собираюсь подробно остановиться на случае многообразия флагов
GL(𝑛)/𝐵 и разобрать алгоритм для вычисления произведений классов структурных
пучковмногообразийШуберта (или, в комбинаторных терминах, произведениймно-
гочленов Гротендика): для этого мы предъявим в кольце многогранника Гельфанда–
Цетлина элементы, отвечающие классам структурных пучков многообразий Шубер-
та, и опишемихпроизведения в терминах гранеймногогранников Гельфанда–Цетли-
на. Полученные результаты обобщают основной результат работы [2]. Кроме того, бу-
дет рассказано про аналогичное описание для колец 𝑇-инвариантных когомологий
и 𝑇-инвариантной 𝐾-теории гладких торических многообразий и многообразий пол-
ных флагов.

Доклад основан на совместной работе с Л. В.Мониным ([4, 5]).

Ключевые слова — 𝐾-теория, многообразие флагов, торическое многообразие, много-
гранник моментов.
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Конечные подгруппы в группе автоморфизмов
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Аннотация

Алгебраическое многообразие 𝑋 размерности 𝑛 над полем 𝕜 называется много-
образием Севери—Брауэра, если оно становится изоморфным ℙ𝑛

𝕜
после расширения

скаляровдо алгебраического замыкания𝕜поля𝕜.МыназываеммногообразиеСевери–
Брауэра нетривиальным, если оно не изоморфноℙ𝑛

𝕜 над исходнымполем 𝕜. Многооб-
разие Севери–Брауэра над полем 𝕜 является тривиальным тогда и только тогда, когда
оно имеет 𝕜-точку. Для заданного поля 𝕜 и натурального числа 𝑛 существует взаим-
но однозначное соответствие между многообразиями Севери–Брауэра размерности
𝑛−1 и центральными простыми алгебрами степени 𝑛, которое, более того, сохраняет
группы автоморфизмов [1, Глава 5].

Нетривиальные многообразия Севери–Брауэра имеют сложные группы автомор-
физмов. Естественный вопрос: «Какие конечные группы могут быть подгруппами
этих группавтоморфизмов?»Однако в такойобщностивопроснеимеет особого смыс-
ла.

Согласно теореме Веддербёрна (см., напр., [1, Теорема 2.1.3]), каждая конечномер-
ная центральная простая алгебра над полем𝕜изоморфнаматричной алгебреMat𝑛(𝐷)
с коэффициентами в центральной алгебре с делением 𝐷 над 𝕜. Поэтому естественна
следующая версия общего вопроса: «Каковы конечные подгруппы групп автоморфиз-
мов многообразий Севери–Брауэра, соответствующих алгебрам с делением?».

Такие многообразия Севери–Брауэра называются минимальными и имеют гео-
метрический смысл: это в точности те многообразия Севери–Брауэра, которые не со-
держатнетривиальных скрученныхлинейныхподмногообразийСевери–Брауэра (см.,
напр., [1, Следствие 5.3.5]).

Из теоремыВеддербёрна следует, что каждоенетривиальноемногообразиеСевери–
Брауэра размерности 𝑝 − 1 является минимальным, если 𝑝—простое число.

Обозначим за 𝜇𝑛 циклическую группу порядка 𝑛. В статье [4] было доказано сле-
дующее утверждение. Пусть 𝑋 — нетривиальное многообразие Севери–Брауэра раз-
мерности 𝑞−1над полем 𝕜, где 𝑞 ⩾ 3—простое число. Пусть𝐺—конечная подгруппа
в Aut(𝑋). Тогда существует натуральное число 𝑛 такое, что 𝐺 изоморфна подгруппе в
𝜇𝑞 × (𝜇𝑛 ⋊ 𝜇𝑞), где полупрямое произведение является сбалансированным.

Этот вопрос впервые возник в работе [2], где была получена полная классифика-
цияконечныхподгрупп группыавтоморфизмовнетривиальныхповерхностейСевери–
Брауэра над полями характеристики ноль. Более того, в [3] было доказано, что любая



конечная подгруппа в Bir(𝑆), где 𝑆 — нетривиальная поверхность Севери–Брауэра,
сопряжена либо подгруппе в Aut(𝑆), либо подгруппе в 𝜇33.

В своем докладе я развиваю результат, полученный Анной Савельевой, а именно
строю пример, показывающий, что над полем характеристики 0 существует нетри-
виальное многообразие Севери–Брауэра, подгруппами группы автоморфизмов кото-
рого являются все возможные конечные подгруппы. Также были найдены дополни-
тельные ограничения на конечные подгруппы для многообразий над полями поло-
жительной характеристики и построены соответствующие примеры, показывающие,
что больше ограничений на подгруппы нет.

Ключевыеслова—многообразияСевери–Брауэра,минимальныемногообразияСевери–
Брауэра, конечные подгруппы группы автоморфизмов.
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Аннотация

Пусть𝑅—коммутативное кольцо с 1.Пусть𝐺—редуктивная групповая схема (для
краткости называемая редуктивной группой) над 𝑅 в смысле [5]. Типичным приме-
ром такой группы 𝐺 является полная линейная группа 𝐺𝐿𝑛.

Элементарнаяподгруппа𝐸𝑛(𝑅) группы𝐺𝐿𝑛(𝑅)—этоподгруппа, порожденнаямат-
рицами элементарных преобразований I рода, т.е.

𝐸𝑛(𝑅) = ⟨1𝑛 + 𝑡𝑒𝑖𝑗 , 1 ⩽ 𝑖 ≠ 𝑗 ⩽ 𝑛, 𝑡 ∈ 𝑅⟩ .

Эта подгруппа была положена Х. Бассом [3] в основу построения алгебраической 𝐾-
теории. В частности, нестабильный 𝐾1-функтор определяется как фактор-группа
𝐺𝐿𝑛(𝑅)/𝐸𝑛(𝑅), а 𝐾2 — как ядро некоторого центрального расширения 𝐸𝑛(𝑅). В опре-
делении элементарной подгруппы участвует фиксированный базис модуля 𝑅𝑛, но,
согласно теореме Суслина [2], 𝐸𝑛(𝑅) не зависит от выбора базиса при 𝑛 ⩾ 3, и, в част-
ности, нормальна в 𝐺𝐿𝑛(𝑅).

В общемслучае редуктивных группнадкольцамимыиспользуем следующееопре-
деление элементарной подгруппы [1]. Пусть 𝑃 — собственная параболическая под-
группа редуктивной группы 𝐺 над 𝑅, 𝑈𝑃 — ее унипотентный радикал. Определим
элементарную подгруппу 𝐸𝑃(𝑅), соответствующую 𝑃, как подгруппу в 𝐺(𝑅), порож-
денную 𝑈𝑃(𝑅) и 𝑈𝑃− (𝑅), где 𝑃− — некоторая противоположная к 𝑃 параболическая
подгруппа в 𝐺 (известно, что такая подгруппа существует и 𝐸𝑃(𝑅) не зависит от ее
выбора). Подгруппа 𝑃 называется строго собственной, если она пересекает собствен-
ным образом каждую нетривиальную нормальную полупростую подгруппу в𝐺. Если
𝑃 ⩽ 𝑄 — две строго собственные параболические подгруппы, то 𝐸𝑃(𝑅) = 𝐸𝑄(𝑅). Ес-
ли, сверх того, 𝐺 имеет изотропный ранг ⩾ 2 локально в топологии Зариского, что
𝐸𝑃(𝑅) = 𝐸(𝑅) не зависит от выбора 𝑃 и нормальна в 𝐺(𝑅).

В случае, когда 𝑅 является полем, унипотентный радикал 𝑈𝑃 любой параболи-
ческой подгруппы изоморфен как многообразие аффинному пространству, и 𝑈𝑃(𝑅)
находится в биекции с 𝑅𝑛, 𝑛 ⩾ 1. В общем случае 𝑈𝑃(𝑅) можно отождествить с точ-
ками некоторого проективного 𝑅-модуля [5]. Как следствие, элементарная подгруп-
па обладает следующим полезным свойством: для любого идеала 𝐼 в 𝑅 отображение
𝐸𝑃(𝑅) → 𝐸𝑃(𝑅/𝐼) сюръективно (при том, что для 𝐺(𝑅) → 𝐺(𝑅/𝐼) это, вообще говоря,
неверно).



Это простое наблюдение часто оказывается полезным для изучения главных 𝐺-
расслоений.Напомним, что гладкая𝑅-схема𝑋 с действием группы𝐺 называется глав-
ным𝐺-расслоением, еслиморфизм𝐺×𝑅𝑋 → 𝑋×𝑅𝑋 , (𝑔, 𝑥) ↦ (𝑔𝑥, 𝑥), является изомор-
физмом (иначе говоря, действие просто транзитивно). Такое расслоение в общем слу-
чае локально тривиально в этальной топологии, но не в топологии Зариского. Следу-
ющие результаты существенным образом используют свойство сюръективности для
элементарной подгруппы.

Теорема 3. [6] Пусть 𝐶—относительная гладкая проективная кривая над гензеле-
вым локальным кольцом 𝑅 с полем вычетов 𝑘, и пусть 𝐶𝑘 = 𝐶 ×𝑅 𝑘— соответству-
ющая кривая над 𝑘. Пусть 𝐺— односвязная редуктивная группа над 𝐶. Если главное
𝐺-расслоение𝐸 над𝐶тривиально при ограничении на𝐶𝑘, то онотривиально локаль-
но в топологии Зариcкого на 𝐶.
Теорема 4. [9] Пусть 𝐺 — редуктивная группа над локальным кольцом 𝑅 с полем
вычетов𝑘. Пусть𝐺—редуктивная группанад𝑅 ипусть𝐸—главное𝐺-расслоениена
ℙ1
𝑅 . Если 𝐸 тривиально на бесконечности, то оно локально тривиально в топологии

Зариского на ℙ1
𝑅 .

Последняя теорема обобщает различные результаты о расслоениях наℙ1
𝑅 , которые

используются в большинстве современных доказательств гипотезы Гротендика–Сер-
ра, таких как [7, 4]. Напомним, что гипотеза Гротендика–Серра утверждает, что если𝐸
— главное 𝐺-расслоение над произвольной регулярной схемой 𝑋 , которое тривиаль-
но в общих точках 𝑋 , то оно, опять же, локально тривиально в топологии Зариского.

Приведем еще одно, менее очевидное, свойство элементарной подгруппы.

Лемма 1. [11, 8] Пусть 𝑅 — подкольцо коммутативного кольца 𝑅′, и ℎ ∈ 𝑅 — не
делитель нуля в 𝑅′, такой, что 𝑅/ℎ ≅ 𝑅′/ℎ, так что имеет место декартов квадрат

𝑅 //

��

𝑅ℎ

��
𝑅′ // (𝑅′)ℎ

(1)

Пусть 𝐺—линейная редуктивная группа над 𝑅, 𝑃—ее собственная параболическая
𝑅-подгруппа. Тогда 𝐸𝑃((𝑅′)ℎ) ⊆ 𝐺(𝑅′) ⋅ 𝐸𝑃(𝑅ℎ).

Типичные примеры троек 𝑅, 𝑅′, ℎ такого типа возникают в следующих двух случа-
ях:

1. 𝑅′ = 𝑅𝑓 для некоторого элемента 𝑓 ∈ 𝑅, такого что 𝑓𝑅 + ℎ𝑅 = 𝑅;
2. 𝑅—нетерова область и 𝑅′ = 𝑅̂— ℎ-адическое пополнение 𝑅′ (например, 𝑅 = ℤ,

𝑅′ = ℤ𝑝).
В этих случаях декартов квадрат (1) задает покрытие 𝑆𝑝𝑒𝑐(𝑅) в строго плоской тополо-
гии Гротендика (в первом случае—даже в топологии Зариского) и позволяет строить
главные𝐺-расслоения над 𝑅 при помощи склейки главных𝐺-расслоений над 𝑅′ и 𝑅ℎ
при помощи изоморфизма (функции склейки) 𝑔 ∈ 𝐺((𝑅′)ℎ). Cоответственно, приве-
денная лемма гласит, что если функция склейки содержится в 𝐸𝑃((𝑅′)ℎ), то склейка
двух тривиальных расслоений будет тривиальным расслоением над 𝑅. Существует и
аналогичный результат для элементарных выделенных квадратов топологии Нисне-
вича.

При помощи данной леммы доказывается следующая теорема.

Теорема 5. [10] Пусть 𝐷 — произвольное дедекиндово кольцо, 𝐺 — односвязная ре-
дуктивная группанад𝐷, имеющая строго собственнуюпараболическую𝐷-подгруппу.



Тогда все главные𝐺-расслоения над𝐷, локальнотривиальные втопологии Зариского,
тривиальны.
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Аннотация

Для аффинной нескрученной супералгебры Ли 𝔤(𝐴), задаваемой матрицей Карта-
на 𝐴, с системой простых корней 𝛱, мы определяем суперянгиан 𝑌 ℏ(𝔤(𝐴)) как кван-
тование супербиалгебры 𝔤(𝐴)[𝑡] и явно описываем его как супералгебру Хопфа в тер-
минах минималистской ситемы образующих и соотношений в случае когда 𝔤(𝐴) =
̂𝑠𝑙(𝑚|𝑛,𝛱).Мыопределяемдействие группоидаВейляна аффинном суперянгиане как
деформацию действия на 𝔤(𝐴)[𝑡], уважающую структуру супералгебры Хопфа и пока-
зываем, что такая деформация единственна. Используя это действие мы доказываем,
что суперянгианы, определяемые различными системами простых корней изоморф-
ны как супералгебры Хопфа. Мы вводим также аффинный суперянгиан Дринфель-
да 𝑌𝐷

ℏ ( ̂𝑠𝑙(𝑚|𝑛, 𝛱)) и явно строим изоморфизм между ним и аффинным суперянгиа-
ном 𝑌 ℏ( ̂𝑠𝑙(𝑚|𝑛, 𝛱)). Используя построенный изоморфизм мы определяем структуру
супералгебры Хопфа на 𝑌𝐷

ℏ ( ̂𝑠𝑙(𝑚|𝑛, 𝛱)). Как следствие получаем, что янгианы Дрин-
фельда, определяемые разными матрицами Картана изоморфны. В докладе уточня-
ются результаты работ [1], [2].

Ключевые слова — аффинный суперянгиан, супералгебра Хопфа, группоид Вейля.
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Аннотация

Я расскажу о недавнем результате, полученным совместно с В.В. Соколовым в ра-
боте [1].Мыпостроили семейство совместныхквадратичных скобокПуассонана 𝔤𝔩(𝑛),
обобщающее скобку Склянина. Подобные скобки появились в нескольких работах
в 90-х годах в рамках квантового метода обратной задачи [2], связаны с группами
Ли-Пуассона, алгебрами уравнения отражения [3] и многими обобщениями. Для лю-
бой из скобок в семействе сдвиг аргумента определяет также совместимую линейную
скобку. Большое внимание будет уделено бигамильтоновому формализму для неко-
торых пучков из этого семейства как методу построения инволютивных подалгебр
для линейной скобки. Я приведу несколько интересных примеров семейств такого
типа, имеющих отношение как к теории интегрируемых систем, так и к общей зада-
че об инвариантах.

Еще один феномен предлагаемой конструкции состоит в особом условии на скоб-
ки антидиагональных миноров матрицы Лакса для всего рассматриваемого семей-
ства квадратичных скобок: эти скобки имеют лог-канонический вид. Это свойство
родственно каноническим Пуассоновым структурам на кластерных алгебрах и суще-
ственно используется нами для построения инволютивных подалгебр.

Ключевые слова— квадратичные скобкиПуассона, группыЛи-Пуассона, алгебры урав-
нения отражения.
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Аннотация

Разложениеполупростой алгебрыЛи 𝔤 в прямуюсумму двух подалгебрЛи 𝔤 = 𝔣⊕𝔥
определяет пучок согласованных скобок Пуассона на симметрической алгебре 𝑆(𝔤),
из которого по схеме Ленарда–Магри строится коммутативная подалгебра Пуассона
𝐴 ⊂ 𝑆(𝔤). Панюшев и Якимова доказали в [1], что алгебра 𝐴 имеет максимальную
возможную степень трансцендентности тогда и только тогда, когда индексы сжатий
Инёню–Вигнера алгебры Ли 𝔤 вдоль подалгебр Ли 𝔣 и 𝔥 равны рангу алгебры 𝔤. Мы
получимявнуюформулу дляиндекса сжатияИнёню–Вигнера 𝔤0 = 𝔥⊕(𝔤/𝔥)ab алгебры
𝔤 вдоль подалгебры 𝔥 (здесь 𝔥 рассматривается как подалгебра Ли, а (𝔤/𝔥)ab — абелев
идеал в 𝔤0, на котором 𝔥 действует как на факторпространстве 𝔤/𝔥). В частности, мы
докажем, что алгебра𝐴имеетмаксимальнуювозможнуюстепень трансцендентности
тогда и только тогда, когда обе подалгебры Ли 𝔣, 𝔥 ⊂ 𝔤 являются сферическими. Это
обобщает результаты Панюшева и Якимовой [1]. Доклад основан на работе [2].

Ключевые слова — полупростая алгебра Ли, сжатие Инёню–Вигнера, коприсоединён-
ное представление, индекс, согласованные скобки Пуассона, вполне интегрируемая си-
стема.

Список литературы
[1] D. I. Panyushev andO. S. Yakimova,Compatible Poisson brackets associatedwith 2-splittings

and Poisson commutative subalgebras of 𝑆(𝔤), J. London Math. Soc. (2) 103 (2021), no. 4,
1577–1595.

[2] D. A. Timashev, Index of Inönü–Wigner contractions of semisimple Lie algebras, Russian J.
Math. Phys. 32 (2025), no. 1, 189–195.



Стабилизаторы однородных локально
нильпотентных дифференцирований на

торических многообразиях

Чунаев Д.А.
МГУ им. М.В. Ломоносова, НИУ ВШЭ

dchunaev@hse.ru

Аннотация

Доклад основан на совместной работе с П. Евдокимовой.
Пусть 𝕂 — алгебраически замкнутое поле нулевой характеристики. Рассмотрим

аффинное алгебраическоемногообразие𝑋 с алгебройрегулярныхфункций𝐵 ∶= 𝕂[𝑋].
Обозначим как LND(𝐵) множество всех локально нильпотентных дифференцирова-
ний (ЛНД) алгебры 𝐵, то есть таких дифференцирований 𝛿∶ 𝐵 → 𝐵, что для любого
𝑓 ∈ 𝐵 найдётся такое натуральное число 𝑛, что 𝛿𝑛(𝑓) = 0.

Существует естественное действие группы автоморфизмов Aut(𝐵) алгебры 𝐵 на
LND(𝐵) сопряжениями.ОбозначимстабилизаторЛНД 𝛿приэтомдействиикакAut𝛿(𝐵).
Ранее изучались стабилизаторыЛНДна некоторых классах многообразий, например,
в [3] были описаны стабилизаторы простых дифференцирований на алгебре много-
членов от двух переменных, в [1] изучались стабилизаторы ЛНД на поверхностях Да-
нилевского, а в [2] — стабилизаторы ЛНД на некоторых почти жестких многообрази-
ях.

В докладе будет представлен способ описания Aut𝛿(𝐵), основанный на вычисле-
нии Ker(𝛩), Im(𝛩) для естественного гомоморфизма ограничения

𝛩∶ Aut𝛿(𝐵) → Aut(Ker(𝛿)).

Если для 𝛿 нет коммутирующих с ним, но не эквивалентных ему ЛНД, то, используя
технику, аналогичную технике работы [4], можно показать, что все максимальные то-
ры в группе, порожденной связными алгебраическими подгруппами Aut𝛿(𝐵), сопря-
жены. С помощью этой техники удается описать Aut𝛿(𝐵) для таких однородных ЛНД
на торических многообразиях. Также в работе в комбинаторном виде описано усло-
вие того, что для данного однородного ЛНД на торическом многообразии нет комму-
тирующих с ним, но не эквивалентных ему ЛНД.

Ключевые слова — аффинное алгебраическое многообразие, локально нильпотентное
дифференцирование, торическое многообразие.
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Аннотация

Полная симметрическая системаТоды—этопрямолинейное (можнодаже сказать
«наивное») обобщение обычной цепочки Тоды. Она задаётся уравнением Лакса

𝐿̇ = [𝑀(𝐿), 𝐿],

где 𝐿— симметричная вещественная матрица с нулевым следом, а 𝑀(𝐿) = 𝐿+ − 𝐿−
—её наивная антисимметризация: разность её верхне- и нижне-треугольных частей.
Эту систему можно обобщить на произвольные вещественные полупростые алгебры
Ли.

Эта система оказывается примером интегрируемой гамильтоновой системы: пер-
вые интегралы этой системы оказываются (рациональными) функциями от матрич-
ных элементов, инвариантнымиотносительно сопряженийверхнетреугольнымимат-
рицами. Я расскажу о том, почему такпроисходитиприведу примерытакихфункций.
Кроме того, я расскажу о том, как построить симметрии этой системы (векторные по-
ля, сохраняющие систему): эта конструкция связана с представлениями алгебры Ли
𝔰𝔩𝑛 и позволяет, в частности, проверить критерий Ли-Бианки интегрируемости этой
системы. Доклад основан на совместных работах с Ю.Черняковым и Д.Талалаевым
[1], [2].

Ключевые слова — интегрируемые системы, алгебры Ли, представления алгебр Ли
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Аннотация

Аддитивным действием на алгебраическоммногообразии𝑋 называется действие
группы ℂ𝑛 на 𝑋 с открытой в топологии Зарисского орбитой. На одном алгебраиче-
ском многообразии может быть много неэквивалентных аддитивных действий. Так,
например, Б. Хассетт и Ю. Чинкель показали, что на проективном пространстве ℙ6

есть бесконечно много аддитивных действий (см. [1]). Задача описания всех адди-
тивных действий на заданном многообразии 𝑋 может быть достаточно сложной. По-
этому разумно попытаться описать аддитивные действия, обладающие некоторыми
дополнительными условиями.

В 2023 году К. Кроули в [2] описал все алгебраические многообразия, на которых
есть аддитивное действие, удовлетворяющее следующим двум условиям. Первое —
число орбит конечное. Второе — для каждой орбиты 𝑂1 есть одномерная подгруппа
𝐻 = ⟨𝑣⟩ ⊆ ℂ𝑛 и точка 𝑥 из открытой орбиты, такие что замыкание орбиты 𝐻𝑥 содер-
жит некоторую точку из 𝑂1. В своем докладе я расскажу про аддитивные действия,
удовлетворяющие второму условию. В частности, я опишу все проективные гиперпо-
верхности, на которых есть аддитивное действие, удовлетворяющее второму условию.
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Двойственные линейные представления 𝑉 и 𝑉∗ комплексной связной линейной
алгебраической группы 𝐺 одновременно имеют либо бесконечное, либо конечное
число орбит. В последнем случае между орбитами в 𝑉 и 𝑉∗ имеется биективное соот-
ветствие, называемое двойственностью Пясецкого [1]. Оно устанавливается при по-
мощи коммутационного многообразия

ℭ = {(𝑣, 𝑣∗) ∣ ⟨𝑣∗, 𝑇𝑣(𝐺𝑣)⟩ = 0} ⊂ 𝑉 ⊕ 𝑉∗,

где ⟨⋅, ⋅⟩ обозначает спаривание между 𝑉 и 𝑉∗. Это замкнутое подмногообразие, каж-
дая из неприводимых компонент ℭ𝑖 которого совпадает с замыканием конормально-
го расслоения 𝑁∗𝑂 = {(𝑣, 𝑣∗) ∣ 𝑣 ∈ 𝑂, ⟨𝑣∗, 𝑇𝑣(𝐺𝑣)⟩ = 0} однозначно определенной
орбиты 𝑂 ⊂ 𝑉 . И наоборот, замыкание множества 𝑁∗𝑂 для каждой орбиты 𝑂 сов-
падает с одной из компонент ℭ𝑖 . Точно так же, орбиты 𝑄 в 𝑉∗ находятся во взаим-
но однозначном соответствии с неприводимыми компонентами ℭ𝑖 многообразия ℭ.
Сквозная биекция между орбитами в 𝑉 и 𝑉∗ и задает двойственность Пясецкого.

Кпримеру, в случае действия группыGL𝑛(ℂ) впространстве𝑉 квадратичныхформ
на ℂ𝑛 орбитами являются множества 𝑂𝑘 форм ранга 𝑘. Аналогично, рангом 𝑘 опре-
деляются и орбиты𝑄𝑘 в двойственномпространстве𝑉∗ квадратичныхформна (ℂ𝑛)∗.
Можнопоказать, что двойственнымипоПясецкому здесь являются орбиты𝑂𝑘 и𝑄𝑛−𝑘,
𝑘 = 0,… , 𝑛. В общем случае, соответствие может быть устроено весьма разнообразно.

Обозримым классом представлений с заведомо конечным числом орбит является
класс сферических представлений, т.е. векторных пространств с линейным действи-
ем связной редуктивной группы, на которых борелевская подгруппа имеет открытую
орбиту. В серии работ [2, 3, 4] получена классификация таких представлений. С ее по-
мощьюмы даем полное описание двойственности Пясецкого для орбит сферических
линейных представлений.

Ключевые слова — двойственность Пясецкого, сферическое представление.
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Аннотация

Пусть 𝔖(𝑠, 𝑤) — граф, вершинами которого являются все 𝑤-подвыражения фик-
сированного выражения 𝑠 от простых порождающих группы Кокстера, а рёбрами —
пары подвыражений с расстоянием Хэмминга 2. Мы доказываем, что 𝔖(𝑠, 𝑤) связен
и его пространство циклов порождено циклами длин 3,4 и 𝑛+2, где 𝑛 пробегает мно-
жество всех конечных порядков произведений двух (не обязательно простых) отраже-
ний.

Напомним, что для неориентированного графа 𝐺 = (𝑉, 𝐸) пространство циклов
— это векторное пространство над полем из двух элементов, состоящее из подмно-
жествмножества рёбер𝐸, определяющихподграф с чётными степенями всех вершин,
относительно операции симметрической разности.

Пусть (𝑊, 𝑆) – система Кокстера. Кратчайшее представление элемента 𝑤 ∈ 𝑊 в
виде 𝑤 = 𝑠1⋯𝑠𝑚, где 𝑠𝑖 ∈ 𝑆, называется редуцированным выражением. Один и тот
же элемент𝑤 может иметь несколько редуцированных выражений, и все они образу-
ют вершины графа, рёбрами которого служат пары выражений полученных друг из
друга следующим преобразованием своего подслова:

𝑠𝑡𝑠⋯⏟
𝑚 множителей

→ 𝑡𝑠𝑡⋯⏟
𝑚 множителей

,

где𝑚— порядок произведения 𝑠𝑡. Теорема Мацумото [5] утверждает, что такой граф
связен. Более того, пространствоциклов этого графапорождаетсянезависимымицик-
ламиициклами, целикомпринадлежащимиконечнымпараболическимподгруппам
𝑊𝐽 группы 𝑊 ранга три [6, Theorem 2.17]. Это важный результат, использованный
Дж. Уильямсоном и Б. Элайсом для определения диаграматических категорий в [4].

Мырассматриваеманалогичные задачидля графовподвыражений, которыеопре-
деляются следующимобразом. Рассмотримконечнуюпоследовательность 𝑠 = (𝑠1, .., 𝑠𝑚)
элементов из 𝑆, которую мы назовём выражением. Её подвыражение— это последо-
вательность 𝑒 = (𝑒1,… , 𝑒𝑚), где каждый элемент 𝑒𝑖 равен либо 0 либо 1. Оно называ-
ется𝑤-подвыражением, если 𝑠𝑒11 𝑠𝑒22 ⋯𝑠𝑒𝑚𝑚 = 𝑤. Все𝑤-подвыражения фиксированного
выражения 𝑠 образуют вершины неориентированного графа 𝔖(𝑠, 𝑤). Подвыражения
играют важную роль в теории представлений, отражая комбинаторику многочленов
Каждана-Люстига и бимодулей Зёргеля, см. например [3] и [4]. Рёбрами графа𝔖(𝑠, 𝑤)
являются пары𝑤-подвыражений, находящиеся друг от друга на расстоянии Хэммин-
га 2 (то есть, отличающиеся ровно на двух позициях). Такое определение рёбер имеет
следующую геометрическую интерпретацию: пара {𝑒, 𝑒′} вершин графа 𝔖(𝑠, 𝑤) явля-
ется его ребром тогда и только тогда, когда галерея 𝛤′ камер комплекса Кокстера си-



стемы (𝑊, 𝑆), отвечающая подвыражению 𝑒′, получается из галереи 𝛤 , отвечающей
подвыражению 𝑒, сгибом относительно некоторой стенки. Заметим, что обе галереи
𝛤 и 𝛤′ начинаются в фундаментальной камере 𝐶 и заканчиваются в камере 𝑤𝐶.

Мною получены следующие результаты:

Теорема 1. Любой граф 𝔖(𝑠, 𝑤) связен.
Теорема 2. Пространство циклов графа𝔖(𝑠, 𝑤) порождено циклами длин 3,4 и 𝑛+2,
где 𝑛 пробегаетмножество всех конечных порядков произведений двух (не обязатель-
но простых) отражений.

Более того, все циклы последней теоремы явно описаны при помощи циклов, воз-
никающих в графах подвыражений для конечных групп диэдра.

Для группВейля конечномерныхпростых комплексных алгебрЛипорядкипроиз-
ведений отражений хорошоизвестны [2, гл. VI, x1, н. 3]. Отсюда получаем следующую
таблицу:

система корней 𝐴1 𝐴𝑛, 𝑛 ⩾ 2 𝐵2, 𝐶2 𝐵𝑛, 𝐶𝑛, 𝑛 ⩾ 3 𝐷𝑛, 𝐸6, 𝐸7, 𝐸8 𝐹4 𝐺2

длины циклов 3 3,4,5 3,4,6 3,4,5,6 3,4,5 3,4,5,6 3,4,5,8
В ходе доказательства теорем 1 и 2 использовались геометрическое представле-

ние групп Кокстера [2, гл. V, x4] и теория линейных групп Кокстера, разработанная
Э. Б. Винбергом [1].

Ключевые слова — группа Кокстера, подвыражения, пространство циклов.
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