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Ветвящиеся процессы в случайной среде

η = (η1, . . . , ηn, . . . ) — последовательность независимых
одинаково распределенных (н.о.р.) невырожденных случайных
величин;

{fy (s), y ∈ R} — семейство производящих функций;
{Xi,j , i , j ∈ N} — семейство неотрицательных целочисленных
случайных величин. Для фиксированного η Xi,j являются н.о.р.
для каждого i , Xi,j ∼ fηi .
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Ветвящиеся процессы в случайной среде

Определение

Ветвящийся процесс в случайной среде (ВПСС)

Z0 = 1, Zn =

Zn−1∑
i=1

Xn,i , n > 0.

Определение

Пусть ξi = ln f ′ηi
(1). Тогда сопровождающее случайное блуждание

для {Zn}

S0 = 0, Sn =
n∑

i=1

ξi , n > 0.
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ВПСС и случайное блуждание
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Классификация

ВПСС называется

надкритическим, если Eξ1 > 0;
критическим, если Eξ1 = 0;
докритическим, если Eξ1 < 0:

слабо докритическим, если Eξ1eξ1 > 0;
умеренно докритическим, если Eξ1eξ1 = 0;
строго докритическим, если Eξ1eξ1 < 0.
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строго докритическим, если Eξ1eξ1 < 0.

Мы будем рассматривать критический ВПСС.
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Теорема (Козлов, 1976)

Пусть {Zn} критический ВП в случайной среде η с геометрическим
законом распределения числа потомков {fy}, ξ1 = ln f ′η1

(1), Eξ1 = 0,
Eξ2

1 ∈ (0,∞) и пусть ζ := f ′′η1
(1)/(2f ′η1

(1)2), Eζ < ∞, Eζξ1 < ∞. Тогда
при n → ∞

P (Zn > 0) ∼ C√
n
,

где C — некоторая константа.
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Теорема (Afanasyev, Geiger, Kersting, Vatutin, 2005)

Пусть {Zn} критический ВП в случайной среде η с п.ф. {fy},
ξ1 = ln f ′η1

(1), Eξ1 = 0, Eξ2
1 ∈ (0,∞) и пусть

ζ := f ′′η1
(1)(1 + ln+ f ′η1

(1))/(f ′η1
(1))2, Eζ < ∞. Тогда при n → ∞

P (Zn > 0) ∼ C√
n
,

где C — некоторая константа.

Нас интересуют похожие результаты для критического ВПСС

P (Zn > 0|minSn = −k) .
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k ∼
√
n, n → ∞;

k/
√
n → ∞ и k/n → 0, n → ∞;

k = o(
√
n), n → ∞.
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Пусть Mn = max {S0,S1, . . . ,Sn}, Tn = max {0 ≤ k ≤ n : Sk = Mn}, и
пусть Ln = min {S0,S1, . . . ,Sn}, τn = max {0 ≤ k ≤ n : Sk = Ln}.
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Нас интересуют похожие результаты для критического ВПСС

P (Zn > 0|Ln = −k) .

Мы рассмотрим критический ВПСС с геометрическим законом
распределения числа потомков {fy} и арифметическими сл.вел.
ξi = ln f ′ηi

(1). Рассмотрим случай k/
√
n → y > 0, n → ∞.
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Вспомогательные результаты

Теорема (Caravenna, 2005)

Пусть X1,X2, . . . — н.о.р. арифметические сл.в. с EX1 = 0,
EX 2

1 = σ2 ∈ (0,∞). Тогда при n → ∞

P (Sn = k |Si > 0, i ≤ n) =
k

σ2n
e−

k2
2σ2n + o

(
1√
n

)
,

где o(·) равномерно мало по k ∈ N.
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Вспомогательные результаты

Теорема

Пусть X1,X2, . . . — н.о.р. арифметические сл.в. с EX1 = 0,
EX 2

1 = σ2 ∈ (0,∞), m ∈ N0. Тогда при n → ∞

P (Sn = k ,Si > −m, i ≤ n) =
CkU(m)

n3/2 e−
k2

2σ2n + o

(
1
n

)
,

где o(·) равномерно мало по k ∈ N, U(m) — функция
восстановления, C = e−c1/(σ2√π), c1 — некоторая константа.

Функция восстановления

U(x) = 1{x≥0} +
∞∑
n=1

P (Sn ≥ −x ,Si < 0, i ≤ n) , x ∈ R.

.
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Теорема

Пусть {Zn, n ∈ N0} — ВПСС с геометрическим законом
распределения числа потомков {fy (s), y ∈ R}, ξ1, ξ2, . . . — н.о.р.
арифметические сл.в. с нулевым средним и конечной
положительной дисперсией σ2, Sn =

∑n
i=1 ξi , Ln = mini≤n Si . Пусть

kn — целочисленная последовательность, такая что kn/
√
n → y > 0,

kn → ∞, n → ∞. Тогда

eknP (Zn > 0|Ln = −kn) → C , n → ∞,

где C — некоторая константа.
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Доказательство

Заметим, что

P (Zn > 0|Ln = −k) =
n∑

l=1

P (Zn > 0, τmin = l |Ln = −k) =

=
n∑

l=1

E

1{τmin=l}
n∑

j=0
e−Sj

∣∣∣∣∣∣∣∣Ln = −k

 = e−k
n∑

l=1

E

 1{τmin=l}
n∑

j=0
eLn−Sj

∣∣∣∣∣∣∣∣Ln = −k

 =

= e−k
n∑

l=1

P (τmin = l |Ln = −k)E

 1
n∑

j=0
eLn−Sj

∣∣∣∣∣∣∣∣Ln = −k, τmin = l

 .
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Доказательство

Пусть S̃j = Sl−j − Ln, j ∈ [0, . . . , l ], и Ŝj = Ln − Sl+j , j ∈ [1, . . . , n − l ].

Тогда

P (Zn > 0|Ln = −k) = e−k
n∑

l=1

P (τmin = l |Ln = −k)×

E

 1
l∑

j=0
e−S̃j +

n−l∑
j=1

e Ŝj

∣∣∣∣∣∣∣∣∣S̃l = k, S̃i ≥ 0, i ≤ 0, Ŝi < 0, i ≤ n − l

 .

М.А. Анохина МГУ
Вероятность невырождения критического ВПСС при фиксированном значении минимума



Введение Вспомогательные результаты Основной результат Заключение

Доказательство

Пусть S̃j = Sl−j − Ln, j ∈ [0, . . . , l ], и Ŝj = Ln − Sl+j , j ∈ [1, . . . , n − l ].
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Доказательство

Поскольку

P

(
n∑

i=0

e Ŝi ≤ x

∣∣∣∣∣ Ŝi < 0, i ≤ n

)
→ P−

 ∞∑
j=0

e Ŝj ≤ x

 , n → ∞,

и

P

(
n∑

i=0

e−S̃i ≤ x

∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

)
→ P+

 ∞∑
j=0

e−S̃j ≤ x

 , n → ∞,

получаем, что при n → ∞ и l → ∞

E

 1
l∑

j=0
e S̃j +

n−l∑
j=1

e−Ŝj

∣∣∣∣∣∣∣∣∣S̃l = k, S̃i ≥ 0, i ≤ 0, Ŝi < 0, i ≤ n − l

→ C .
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e Ŝj ≤ x

 , n → ∞,

и

P

(
n∑

i=0

e−S̃i ≤ x

∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

)
→ P+

 ∞∑
j=0

e−S̃j ≤ x

 , n → ∞,

получаем, что при n → ∞ и l → ∞

E

 1
l∑

j=0
e S̃j +

n−l∑
j=1

e−Ŝj

∣∣∣∣∣∣∣∣∣S̃l = k , S̃i ≥ 0, i ≤ 0, Ŝi < 0, i ≤ n − l

→ C .
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Лемма
В условиях теоремы при n → ∞ имеем:

P

(
n∑

i=0

e Ŝi ≤ x

∣∣∣∣∣ Ŝi < 0, i ≤ n

)
→ P−

 ∞∑
j=0

e Ŝj ≤ x

 ,

P

(
n∑

i=0

e−S̃i ≤ x

∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

)
→ P+

 ∞∑
j=0

e−S̃j ≤ x

 ,

где
P+(A) = E (U(Sn)1Si≥0,i≤n1A) .
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Доказательство

При n → ∞

P

 n∑
j=0

e−S̃j ≤ x

∣∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

 ∼

∼ P

 n∑
j=0

e−S̃j ≤ x ,
n∑

j=k1

e−S̃j < ε

∣∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

 .
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Доказательство

При n → ∞

P

 n∑
j=0

e−S̃j ≤ x

∣∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

 ∼

∼ P

 n∑
j=0

e−S̃j ≤ x ,
n∑

j=k1

e−S̃j < ε

∣∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

 ∼

∼ P

 k1−1∑
j=0

e−S̃j ≤ x − ε

∣∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

 .
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Доказательство

С учетом

Q := P

 k1−1∑
j=0

e−S̃j ≤ x − ε

∣∣∣∣∣∣ S̃i ≥ 0, i ≤ n, S̃n = k

 =

=
1

P
(
S̃i ≥ 0, i ≤ n, S̃n = k

)×
×
∑

m∈N0

P
(
S̃n−k1+1 = k −m, S̃i > −m, i ≤ n − k1 + 1

)
×

× P

k1−1∑
j=0

e−S̃j ≤ x − ε, S̃i ≥ 0, i ≤ k1 − 1, S̃k1−1 = m

 .

и аналога теоремы Каравенна,
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Доказательство

имеем

lim
n→∞

Q =
M∑

m=0

U(m)P

k1−1∑
j=0

e−S̃j ≤ x − ε, S̃i ≥ 0, i ≤ k1 − 1, S̃k1−1 = m

 .

Получаем, что

lim
n→∞

Q =

=
∞∑

m=0

U(m)P

k1−1∑
j=0

e−S̃j ≤ x − ε, S̃i ≥ 0, i ≤ k1 − 1, S̃k1−1 = m

 =

= EU(S̃k1−1)1∑k1−1
j=0 e−S̃j≤x−ε

1S̃i≥0,i≤k1−1 = P
+

k1−1∑
j=0

e−S̃j ≤ x − ε

 .
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Доказательство

имеем

lim
n→∞

Q =
M∑

m=0

U(m)P

k1−1∑
j=0

e−S̃j ≤ x − ε, S̃i ≥ 0, i ≤ k1 − 1, S̃k1−1 = m

 .

Получаем, что

lim
n→∞

Q =

=
∞∑

m=0

U(m)P

k1−1∑
j=0

e−S̃j ≤ x − ε, S̃i ≥ 0, i ≤ k1 − 1, S̃k1−1 = m

 =

= EU(S̃k1−1)1∑k1−1
j=0 e−S̃j≤x−ε

1S̃i≥0,i≤k1−1 = P
+

k1−1∑
j=0

e−S̃j ≤ x − ε

 .
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Теорема (Vatutin, Kersting)

Пусть {Zn} критический ВП в случайной среде η с п.ф. {fy},
ξ1 = ln f ′η1

(1), Eξ1 = 0, Eξ2
1 ∈ (0,∞) и Eζ < ∞. Тогда при n → ∞

L
(
e−Sτn P (Zn > 0)

) ω−→ L± (ζ−1) ,
где случайная величина ζ ∈ (1,∞) с вероятностью 1.
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