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Граф

Графом 𝐺 назовем пару множеств (𝑉,𝐸), где 𝑉 – множество
вершин, а 𝐸 – множество ребер (неупорядоченные пары вершин).

Если 𝑥 – конец ребра 𝑒, то 𝑥 и 𝑒 называются инцидентными, и при
этом пишется 𝑥|𝑒 = 𝑒|𝑥. Стрелка 𝑒⃗ выходит из вершины 𝑥 и входит
в 𝑦; при этом пишется 𝑥|𝑒⃗ и 𝑒⃗|𝑦, что то же самое (−𝑒⃗)|𝑥 и 𝑦|(−𝑒⃗).
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Разностный оператор акустики

Функция 𝑢 принадлежит классу ℓ2(𝑉 ), если

𝑢 : 𝑉 → C и ||𝑢||2 :=
∑︁
𝑥∈𝑉

|𝑢(𝑥)|2 <∞.

Мы будем рассматривать оператор следующего вида

(𝐴𝑢)(𝑥) :=
∑︁

𝑒∈𝐸:𝑒|𝑥

𝑎(𝑒)(𝑢(𝑥)− 𝑢(𝑥+ 𝑒)),

𝐴 := −div𝑎∇,

где функция 𝑎 : 𝐸 → C ограничена.

Pr. Оператор 𝐴 действует из ℓ2(𝑉 ) в ℓ2(𝑉 ), линеен и ограничен.
Если функция 𝑎 вещественна, то он самосопряжен.
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Цилиндр и фундаментальный граф

𝑥1,0 𝑥1,1

𝑒1,0 𝑒1,1

𝑇

Здесь 𝑥1,1 = 𝑥1,0 + 𝑇 , 𝑒1,1 = 𝑒1,0 + 𝑇 .

Фундаментальный граф

∙ 𝑥1 ∼ 𝑥2, если 𝑥1 = 𝑥2 + 𝑛𝑇

∙ 𝑒1 ∼ 𝑒2, если 𝑒1 = 𝑒2 +𝑚𝑇

∙ 𝐺* = (𝑉 *, 𝐸*), где 𝑉 * = 𝑉⧸∼, 𝐸* = 𝐸⧸∼

𝑥*1

𝑥*2

𝑥*3
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Нумерация и функция индекса ребра

∙ Выберем по одному представителю каждого класса из 𝑉 *;
множество таких вершин – 𝑉0.

∙ Введем 𝑛 : 𝑉 → Z; положим 𝑛(𝑥+𝑚𝑇 ) = 𝑚, ∀𝑥 ∈ 𝑉0, 𝑚 ∈ Z.
𝑛 – номер ячейки периодичности.

0−1 1
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𝑥*
2

𝑥*
1

𝑥*
3

⇓

𝑥 = (𝑥*, 𝑛), 𝑛 = 𝑛(𝑥), 𝑢(𝑥) = 𝑢(𝑥*, 𝑛)
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Нумерация и функция индекса ребра

Функция 𝜏(𝑒⃗) = 𝑛(𝑦)− 𝑛(𝑥), 𝑥|𝑒⃗|𝑦, – индекс ребра.
Она периодична на 𝐸, и потому корректно определена на 𝐸*.

Th. По пара (𝐺*, 𝜏) восстанавливается единственный цилиндр.

𝑒⃗*4

𝑒⃗*7

𝑒⃗*6

𝑒⃗*1

𝑒⃗*2
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3
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𝑥*
2

𝑥*
1

𝑥*
3

𝜏(𝑒⃗*4) = 1

𝜏(𝑒⃗*5) = 1

𝜏(𝑒⃗*6) = 1

𝜏(𝑒⃗*7) = 1

𝜏(𝑒⃗*1) = 0

𝜏(𝑒⃗*2) = 0

𝜏(𝑒⃗*3) = 0
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Задача в волноводе

Волновод 𝐺 = (𝑉,𝐸) – граф, который совпадает вне большого шара
с объединением конечного числа попарно не пересекающихся
полуцилиндров.

∙ Уравнение

−div𝑎∇𝑢 = 𝜇𝑢+ 𝑓

∙ Условия стабилизации

|𝑎(𝑒*𝑟 , 𝑛𝑟)− 𝑎𝑟(𝑒*𝑟)| = 𝑂(𝑒−𝛿𝑛𝑟 )

∙ Правая часть

𝑓(𝑥*𝑟 , 𝑛𝑟) = 𝑂(𝑒−𝛾𝑛𝑟 ), 0 < 𝛾 < 𝛿
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План работы

Назаров С. А., Пламеневский Б. А., Эллиптические задачи в
областях с кусочно гладкой границей. Наука, Москва, 1991.

Подход

∙ Модельная задача в цилиндре. Задача на ячейке

∙ Приходящие и уходящие волны

∙ Фредгольмовость задачи в волноводе

∙ Собственные функции непрерывного спектра, матрица
рассеяния

∙ Принцип излучения
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Задача в цилиндре

∙ Модельная задача в цилиндре

−div𝑎∇𝑢(𝑥*, 𝑛) = 𝜇𝑢(𝑥*, 𝑛).

Коэффициенты 𝑎 не зависят от 𝑛 (периодичен).

∙ Ищем решение в виде 𝑢(𝑥*, 𝑛) = 𝑒𝑖𝑛𝜆𝜓(𝑥*). Тогда

(𝐴𝑢)(𝑥*, 𝑛) = 𝑒𝑖𝑛𝜆(𝐴(𝜆)𝜓)(𝑥*) ⇒ (𝐴(𝜆)𝜓)(𝑥*) = 𝜇𝜓(𝑥*).

∙ Матричный оператор с параметром 𝜆 ∈ [0, 2𝜋):

(𝐴(𝜆)𝜓)(𝑥*) =
∑︁

𝑒*∈𝐸*

𝑒*|𝑥*

𝑎(𝑒*)
(︁
𝜓(𝑥*)− 𝑒𝑖𝜏(𝑒⃗

*)𝜆𝜓(𝑥* + 𝑒*)
)︁

(𝐴𝑢)(𝑥) =
∑︁
𝑒∈𝐸
𝑒|𝑥

𝑎(𝑒)
(︁
𝑢(𝑥)− 𝑢(𝑥+ 𝑒)

)︁
.
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Приходящие и уходящие волны

Пусть 𝜇 не является вырожденной зоной (flat band) и порогом.
𝜇 – вырожденная зона, если det(𝐴(𝜆)− 𝜇) ≡ 0 ∀𝜆. 𝜇 – порог, если
существуют присоединенные векторы для 𝜆 ↦→ 𝐴(𝜆)− 𝜇.

Тогда

∙ Оператор 𝜆 ↦→ 𝐴(𝜆)− 𝜇 имеет конечное число собственных
значений 𝜆 в вертикальной полосе [0, 2𝜋) + 𝑖R.

∙ Волнами назовем функции

𝑢𝑘(𝑥
*, 𝑛) = 𝜂(𝑛)𝐶𝑘𝑒

𝑖𝜆𝑘𝑛𝜓𝑘(𝑥
*), 𝜆𝑘 ∈ R.

Здесь 𝜂(𝑛) – срезка, 𝜂(𝑛) = 0 при 𝑛 ⩽ 0 и 𝜂(𝑛) = 1, если 𝑛 > 0.

∙ Приходящие волны 𝑢+𝑘 , уходящие 𝑢−𝑗 :

𝑖𝑞(𝑢±𝑗 , 𝑢
∓
𝑘 ) = 0, 𝑖𝑞(𝑢±𝑗 , 𝑢

±
𝑘 ) = ∓𝛿𝑗𝑘.

Здесь 𝑗, 𝑘 = 1, . . . ,κ. Величина 𝑖𝑞(𝑢, 𝑢) имеет смысл потока
энергии. Число приходящих и уходящих волн совпадает.
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Матрица рассеяния и принцип излучения

Th. ∃ решения 𝑌 +
𝑘 однородной задачи с асимптотикой

𝑌 +
𝑘 = 𝑢+𝑘 +

ϒ∑︁
𝑙=1

𝑆𝑘𝑙𝑢
−
𝑙 +𝑂(𝑒−𝛾𝑛), 𝑘 = 1, . . . ,Υ.

Здесь 0 < 𝛾 < 𝛿, 𝑆 – унитарная матрица рассеяния.
𝑌 +
𝑘 называются собственными функциями н.с.

Th. Пусть 𝜇 – не собственное число задачи в волноводе.
Тогда для любой 𝑓 = 𝑂(𝑒−𝛾𝑛) существует единственное решение
𝑢 уравнения 𝐴𝑢 = 𝜇𝑢+ 𝑓 с условиями излучения

𝑢 =
∑︁
𝑘

𝑐𝑘𝑢
−
𝑘 +𝑂(𝑒−𝛾𝑛),

где коэффициенты 𝑐𝑘 вычисляются по формулам

𝑐𝑘 = 𝑖
∑︁
𝑙

𝑆𝑙𝑘(𝑓, 𝑌
+
𝑙 ).
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Спасибо за внимание!
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