
Representative Families and Algorithms

Fedor V. Fomin

School on Algorithms,
Combinatorics, Complexity 2021

Lecture 3

Week plan

- Bollobas Lemma
- Some combinatorial applications (critical graphs and

minimal separators)
- Representative Sets
- Few attempts to compute Reps
- Longest Path application
- Matroids
- One more attempt to compute Reps
- Kernelization application

Recap from the yesterday’s lecture

Let F be a family of a-sets, F′⊆F b-
represents F if for every B of size b such
that there exists an A∈F with A∩B=∅ there
exists an A′∈F′ with A′∩B=∅.

Corollary of Bollobás: For every F there

is an F′⊆F of size at most that

b-represents F.
(a + b

b)

Recap from the yesterday’s lecture

Algorithm computing
b-representative set

Output size:

Running time:

2a+b+o(a+b) log n

|F |2a+b log n

Let F be a family of a-sets, F′⊆F b-
represents F if for every B of size b such
that there exists an A∈F with A∩B=∅ there
exists an A′∈F′ with A′∩B=∅.

Corollary of Bollobás: For every F there

is an F′⊆F of size at most that

b-represents F.
(a + b

b)

Longest Path: Given a (directed) graph G and integer k, decide whether G
contains a path with at least k vertices?

Longest Path: Given a (directed) graph G and integer k, decide whether G
contains a path with at least k vertices?

Output size:

Running time:

2a+b+o(a+b) log n

|F |2a+b log n

Longest Path: Given a (directed) graph G and integer k, decide whether G
contains a path with at least k vertices?

Algorithm solving Longest Path
in time 4k+o(k) ⋅ poly(n)

Output size:

Running time:

2a+b+o(a+b) log n

|F |2a+b log n

Longest Path story

Monien [1982], kk· nO(1) representative
sets

Bodlaender [1984]: kk· nO(1) treewidth

Papadimitriou and Yannakakis
[1996]: Is in P for k=log n?

Burkhard Monien

Hans Bodlaender

Mihalis YannakakisChristos Papadimitriou

Color Coding [1995] O(2O(k)· n)

NOGA ALON

[nstltl[te jor A~iLatz~-edSt6{dy, Princeton, NcwJer-seyutal Te[-.4LiL UniLetxi~, Tel-A[l[, Israel

RAPHAEL YUSTER AND URI ZWICK

Tel-,4[1(lrnl[ersi~, Tel-,4[‘w,, Israel

Abstract. We describe a novel randomized method. the method of cobm-coding for finding simple
paths and cycles of a specified length k, and other small subgraphs, within a gwen graph
G = (1’, E). The randomized algorithms obtained using this method can be derandomlzcd using
kmihes of petfect hash f~wtctmns. Using the color-coding method we obtain. m particular, the
following new results:

—For every fixed k, if a graph G = (V. E) contains a simple cycle of size exactly k, then such a
cycle can be found m either 0(V’”) expected time or 0(L’”’ log P’) worst-case t]mc, where
w < ?,376]s the exponent of matrrx multiplication. (Here and in what follows we use V and E
instead of Ib’ and IEI whenever no confusion may arise.)

—For every fwed k, if a planar graph G = (P-, E) contains a simple cycle of size e.wrctly k, then
such a cycle cmr be found m either 0(V) expected time or 0(V log V) worst-case time. The
same algorithm applies, in fact, not only to planar gmphs, but to any mino~ closed family of
graphs which is not the f~mily of all graphs,

—If a grdph G = (V, E) contains a subgraph isomorphic to a boanded tree-width graph H =
(V~, E~) where IV, I = O(log V), then such a copy of H can be found in polyzonzml tune. This
was not prewously known even if H were Just a path of length O(log V).

These results improve upon previous results of many authors. The third result resolves in the
affirmative a conjecture of Papadimltnou and Yannakakis that the LOG PATH problem is m P.
We can show that it is even in NC.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theorygrqii al,o-
rtthtns; path and cwcalt problems

The work of these authors was supported in part by The Basic Research Foundation administered
by The Israel Academy of Sciences and Humamties and by grant no. 93-6-6 of the Sloan
Foundation.
A preliminary version of this paper appeared as Color-coding. A new method for finding simple
paths, cycles and other small subgraphs within large graphs m Proceedings of the 26th AMULJ1
.4CM ~Ywposumr on the Theon of Corrzpating (Montreal, Que., Canada, May 23-25). ACM, New
York, 1994, pp. 326–335.
Authors addresses: N. Alon, Inst]tute for Advanced Study, School of Mathematics, Princeton, NJ
08540, and School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel-Aviv University, Tel-A~iv 6~~78 Israel: R. Yuster and U. Zwlck, School of Mathe-
matical Sc]ences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University,
Tel-Aviv 64978 Israel. e-mad of authors: {noga, raphy, zwick}@math.tau. ac.il
Permission to make digital/hard copy of part or all of this work for personal or classroom use IS
granted without fee provided that copies are not made or distributed for prof]t or commercial
advantage, the copyright not]ce, the title of the pubhcation, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republisb, to post on
servers, or to redistribute to hsts, rcqunts prior speufic permlsston and/or a fee.
01995 ACM 0004-5411 /’95/0700-0844 $03.50

Journal c,f the Aswc~dt~on for CmnputIng L[:achmq, Vd J2, No 4, July lW5, pp 844-856

Longest Path Story

Determinant-sum

Representative sets

Algebraic fingerprints

Cut & count

Treewidth algorithms

Polynomial differentiation

Divide-and-color

Narrow sieves

Dynamic Programming Held-Karp, Bellman [1962]: O(2n)

Richard Bellman

Richard Karp

1 2 3 … i … n

v1

v2

v3

…

vj

…

vn

Dynamic Programming Held-Karp, Bellman [1962]: O(2n)

Richard Bellman

Richard Karp

1 2 3 … i … n

v1

v2

v3

…

vj

…

vn
F[vj,i]=[Vertex Sets of paths of length i ending in vj]

Dynamic Programming Held-Karp, Bellman [1962]: O(2n)

Richard Bellman

Richard Karp

1 2 3 … i … n

v1

v2

v3

…

vj

…

vn
F[vj,i]=[Vertex Sets of paths of length i ending in vj]

Sets, not sequences!!!

Dynamic Programming Held-Karp, Bellman [1962]: O(2n)

1 2 … i-1 i … n

v1

v2

v3

…

vj

…

vn F[vj,i]=[Vertex Sets of i-paths ending in vj]

F[vj, 1]={vj}

Dynamic Programming Held-Karp, Bellman [1962]: O(2n)

1 2 … i-1 i … n

v1

v2

v3

…

vj

…

vn F[vj,i]=[Vertex Sets of i-paths ending in vj]

F[vj, 1]={vj}

=[Vertex Sets of (i-1)-paths avoiding vj ending in
]vk ∈ N(vj) ∪ {vj}

All (i-1)-paths that can be extended by vj

Dynamic Programming for k-Path

0 1 2 … k … n

v1

v2

v3

…

vj

…

vn

k-Path, keep at most sets. Update time for each set polynomial(n
k)

Dynamic Programming for k-Path

0 1 2 … k … n

v1

v2

v3

…

vj

…

vn

k-Path, keep at most sets. Update time for each set polynomial(n
k)

Time nO(k)

Dynamic Programming for k-Path, Reps enter the game

Keep sets(n
k)

Time nO(k) Time 4k+o(k) ⋅ nO(1)

Keep sets2k+o(k) log n

Update time (n
k)n Update time

2k2k+o(k)n log n = 4k+o(k) ⋅ nO(1)

Reps

Dynamic Programming for k-Path with Reps

F[vj,i] All i-paths that end with vj

vj

i k-i

Dynamic Programming for k-Path with Reps

F[vj,i] All i-paths that end with vj

vj

i k-i

F’[vj,i] family (k-i)-representing F[vj,i]

Dynamic Programming for k-Path with Reps

F[vj,i] All i-paths that end with vj

vj

i k-i

F’[vj,i] family (k-i)-representing F[vj,i]

Output size:

Running time:

2k+o(k) log n

|F[vj, i] |2k log n = (n
k)2k log n

Reps

Dynamic Programming for k-Path with Reps

F[vj,i] All i-paths that end with vj

vj

i k-i

F’[vj,i] family (k-i)-representing F[vj,i]

Output size:

Running time:

2k+o(k) log n

|F[vj, i] |2k log n = (n
k)2k log n

Reps

Time nO(k)

not what we shoot for!

Dynamic Programming for k-Path with Reps

F’[vj,1]={vj}

Dynamic Programming for k-Path with Reps

F’[vj,1]={vj}

 X[vj, i] = ⋃
vkvj∈E(G)

F′ [vk, i − 1] ∪ {vj}

Sets not containing vj

Dynamic Programming for k-Path with Reps

F’[vj,1]={vj}

 X[vj, i] = ⋃
vkvj∈E(G)

F′ [vk, i − 1] ∪ {vj}

Sets not containing vj

F’[vj,i]=REDUCE(X[vj,i])

Output size:

Running time:

2k+o(k) log n

|X[vj, i] |2k log n = 2k+o(k)n2k log n

Dynamic Programming for k-Path with Reps

F’[vj,1]={vj}

 X[vj, i] = ⋃
vkvj∈E(G)

F′ [vk, i − 1] ∪ {vj}

Sets not containing vj

F’[vj,i]=REDUCE(X[vj,i])

Output size:

Running time:

2k+o(k) log n

|X[vj, i] |2k log n = 2k+o(k)n2k log n

Running time: 2k+o(k)n log n

Dynamic Programming for k-Path with Reps

F’[vj,1]={vj}

 X[vj, i] = ⋃
vkvj∈E(G)

F′ [vk, i − 1] ∪ {vj}

Sets not containing vj

F’[vj,i]=REDUCE(X[vj,i])

Output size:

Running time:

2k+o(k) log n

|X[vj, i] |2k log n = 2k+o(k)n2k log n

Running time: 2k+o(k)n log n

Total running time: 4k+o(k)nO(1)

Dynamic Programming for k-Path with Reps
Correctness:

We have to show that F’[vj,i] (k-i)-represents F[vj,i]

assuming for each vk, F’[vk,i-1] (k-i+1)-represents F[vk,i-1]

1 2 … i-1 i … n

v1 F’[v1,i-1]

v2

v3 F’[v3,i-1]

…

vj X[vj,i]->F’[vj,i]

…

vn F’[vn,i-1]

Dynamic Programming for k-Path with Reps Correctness:

Proof:

Dynamic Programming for k-Path with Reps Correctness:

Proof:

Further reading

Parameterized
Algorithms

Marek Cygan · Fedor V. Fomin
Łukasz Kowalik · Daniel Lokshtanov
Dániel Marx · Marcin Pilipczuk
Michał Pilipczuk · Saket Saurabh

Chapter 12.3
29

Efficient Computation of Representative Families with Applications
in Parameterized and Exact Algorithms

FEDOR V. FOMIN and DANIEL LOKSHTANOV, University of Bergen, Norway
FAHAD PANOLAN, Institute of Mathematical Sciences, India
SAKET SAURABH, Institute of Mathematical Sciences, India, and University of Bergen, Norway

Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets of E of size p. A subfamily Ŝ ⊆ S
is q-representative for S if for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with
X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. By the classic result of Bollobás, in a
uniform matroid, every family of sets of size p has a q-representative family with at most (p+q

p) sets. In his
famous “two families theorem” from 1977, Lovász proved that the same bound also holds for any matroid
representable over a field F. We give an efficient construction of a q-representative family of size at most
(p+q

p) in time bounded by a polynomial in (p+q
p), t, and the time required for field operations.

We demonstrate how the efficient construction of representative families can be a powerful tool for de-
signing single-exponential parameterized and exact exponential time algorithms. The applications of our
approach include the following:

—In the LONG DIRECTED CYCLE problem, the input is a directed n-vertex graph G and the positive integer k.
The task is to find a directed cycle of length at least k in G, if such a cycle exists. As a consequence of our
6.75k+o(k)nO(1) time algorithm, we have that a directed cycle of length at least log n, if such a cycle exists,
can be found in polynomial time.

—In the MINIMUM EQUIVALENT GRAPH (MEG) problem, we are seeking a spanning subdigraph D′ of a given
n-vertex digraph D with as few arcs as possible in which the reachability relation is the same as in the
original digraph D.

—We provide an alternative proof of the recent results for algorithms on graphs of bounded treewidth
showing that many “connectivity” problems such as HAMILTONIAN CYCLE or STEINER TREE can be solved in
time 2O(t)n on n-vertex graphs of treewidth at most t.

For the special case of uniform matroids on nelements, we give a faster algorithm to compute a representative
family. We use this algorithm to provide the fastest known deterministic parameterized algorithms for k-
PATH, k-TREE, and, more generally, k-SUBGRAPH ISOMORPHISM, where the k-vertex pattern graph is of constant
treewidth.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.2 [Graph Theory]: Graph Algorithms

General Terms: Algorithms, Design, Theory

Preliminary versions of this article appeared in the proceedings of SODA 2014 and ESA 2014. This work is
supported by Rigorous Theory of Preprocessing, ERC Advanced Investigator Grant 267959, and Parameter-
ized Approximation, ERC Starting Grant 306992.
Authors’ addresses: F. V. Fomin and D. Lokshtanov, Department of Informatics, University of Bergen, Post-
boks 7803 5020 Bergen, Norway; emails: {fomin, daniello}@ii.uib.no; F. Panolan and S. Saurabh, Theoretical
Computer Science, Institute of Mathematical Sciences, Chennai, India; emails: fahad.panolan@gmail.com,
saket@imsc.res.in.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0004-5411/2016/09-ART29 $15.00
DOI: http://dx.doi.org/10.1145/2886094

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

A generalization of Bollobas’ Lemma for matroids

- and not only for the sake of generality…

Chapter 12
Matroids

Tools and techniques from matroid theory have proven
very useful in the design of parameterized algorithms
and kernels. In this chapter, we showcase how a
polynomial-time algorithm for Matroid Parity can
be used as a subroutine in an FPT algorithm for
Feedback Vertex Set. We then define the notion of
representative sets, and use it to give polynomial ker-
nels for d-Hitting Set and d-Set Packing, and fast
(deterministic) FPT algorithms for Longest Path
and Long Directed Cycle.

Matroid theory unifies and generalizes common phenomena in two seem-
ingly unrelated areas: graph theory and linear algebra. For example, in a
certain technical sense, the notion of linear independence in a vector space
and acyclicity in graphs behave very similarly. As we shall see, the connec-
tion between the two areas can be exploited algorithmically by translating
graph-theoretic problems into the language of linear algebra and then we can
use efficient algebraic methods to solve them.

Many of the problems considered in this book are problems on graphs, or
on set systems, where input is a finite universe U and a family F of sets over
U . A family F of sets over a finite universe U is a matroid if it satisfies the
following three matroid axioms:

• ; 2 F ,
• if A 2 F and B ✓ A then B 2 F ,
• if A 2 F and B 2 F and |A| < |B| then there is an element b 2 B \A

such that (A [{b}) 2 F .

The second property is called the hereditary property of matroids, while
the third is called the exchange property.

377

ML Cosmonaut selection

Every cosmonaut has a vector of features
(common friends, favourite movies, etc.)

ML Cosmonaut selection

Every cosmonaut has a vector of features
(common friends, favourite movies, etc.)

If 3 cosmonauts will be ill, will at least
one team survive?

ML Cosmonaut selection

Every cosmonaut has a vector of features
(common friends, favourite movies, etc.)

If 3 cosmonauts will be ill, will at least
one team survive?

(
3
2

0.5)(
2
2
0) (

1
2
0)

(
0
2
0) (

2
1
0) (

2
−2
0.3)

1.5
2

1.5
(

3
2
0)

Survive: Means they do not intersect and
their features are independent

Matroids

Chapter 12
Matroids

Tools and techniques from matroid theory have proven
very useful in the design of parameterized algorithms
and kernels. In this chapter, we showcase how a
polynomial-time algorithm for Matroid Parity can
be used as a subroutine in an FPT algorithm for
Feedback Vertex Set. We then define the notion of
representative sets, and use it to give polynomial ker-
nels for d-Hitting Set and d-Set Packing, and fast
(deterministic) FPT algorithms for Longest Path
and Long Directed Cycle.

Matroid theory unifies and generalizes common phenomena in two seem-
ingly unrelated areas: graph theory and linear algebra. For example, in a
certain technical sense, the notion of linear independence in a vector space
and acyclicity in graphs behave very similarly. As we shall see, the connec-
tion between the two areas can be exploited algorithmically by translating
graph-theoretic problems into the language of linear algebra and then we can
use efficient algebraic methods to solve them.

Many of the problems considered in this book are problems on graphs, or
on set systems, where input is a finite universe U and a family F of sets over
U . A family F of sets over a finite universe U is a matroid if it satisfies the
following three matroid axioms:

• ; 2 F ,
• if A 2 F and B ✓ A then B 2 F ,
• if A 2 F and B 2 F and |A| < |B| then there is an element b 2 B \A

such that (A [{b}) 2 F .

The second property is called the hereditary property of matroids, while
the third is called the exchange property.

377

A family F of sets over a finite universe U is a matroid if it
satisfies the following three matroid axioms:

Matroids

Chapter 12
Matroids

Tools and techniques from matroid theory have proven
very useful in the design of parameterized algorithms
and kernels. In this chapter, we showcase how a
polynomial-time algorithm for Matroid Parity can
be used as a subroutine in an FPT algorithm for
Feedback Vertex Set. We then define the notion of
representative sets, and use it to give polynomial ker-
nels for d-Hitting Set and d-Set Packing, and fast
(deterministic) FPT algorithms for Longest Path
and Long Directed Cycle.

Matroid theory unifies and generalizes common phenomena in two seem-
ingly unrelated areas: graph theory and linear algebra. For example, in a
certain technical sense, the notion of linear independence in a vector space
and acyclicity in graphs behave very similarly. As we shall see, the connec-
tion between the two areas can be exploited algorithmically by translating
graph-theoretic problems into the language of linear algebra and then we can
use efficient algebraic methods to solve them.

Many of the problems considered in this book are problems on graphs, or
on set systems, where input is a finite universe U and a family F of sets over
U . A family F of sets over a finite universe U is a matroid if it satisfies the
following three matroid axioms:

• ; 2 F ,
• if A 2 F and B ✓ A then B 2 F ,
• if A 2 F and B 2 F and |A| < |B| then there is an element b 2 B \A

such that (A [{b}) 2 F .

The second property is called the hereditary property of matroids, while
the third is called the exchange property.

377

A family F of sets over a finite universe U is a matroid if it
satisfies the following three matroid axioms:

U edges of matroid
F independent sets of matroid
Maximal independent set - basis
Size of basis - rank

Matroids

Chapter 12
Matroids

Tools and techniques from matroid theory have proven
very useful in the design of parameterized algorithms
and kernels. In this chapter, we showcase how a
polynomial-time algorithm for Matroid Parity can
be used as a subroutine in an FPT algorithm for
Feedback Vertex Set. We then define the notion of
representative sets, and use it to give polynomial ker-
nels for d-Hitting Set and d-Set Packing, and fast
(deterministic) FPT algorithms for Longest Path
and Long Directed Cycle.

Matroid theory unifies and generalizes common phenomena in two seem-
ingly unrelated areas: graph theory and linear algebra. For example, in a
certain technical sense, the notion of linear independence in a vector space
and acyclicity in graphs behave very similarly. As we shall see, the connec-
tion between the two areas can be exploited algorithmically by translating
graph-theoretic problems into the language of linear algebra and then we can
use efficient algebraic methods to solve them.

Many of the problems considered in this book are problems on graphs, or
on set systems, where input is a finite universe U and a family F of sets over
U . A family F of sets over a finite universe U is a matroid if it satisfies the
following three matroid axioms:

• ; 2 F ,
• if A 2 F and B ✓ A then B 2 F ,
• if A 2 F and B 2 F and |A| < |B| then there is an element b 2 B \A

such that (A [{b}) 2 F .

The second property is called the hereditary property of matroids, while
the third is called the exchange property.

377

A family F of sets over a finite universe U is a matroid if it
satisfies the following three matroid axioms:

U edges of matroid
F independent sets of matroid
Maximal independent set - basis
Size of basis - rank

If you never saw matroid!!!

Think of U as vectors (over
some field) and F as linearly
independent sets of vectors.

Important Matroids

Take some field

In our applications we often use GF(s)

Important Matroids

Take some field

In our applications we often use GF(s)

Example GF(4), source Wikipedia

Important Matroids

Take some field

In our applications we often use GF(s)

Example GF(4), source Wikipedia

For edge -> vector
over some field

e ∈ U ve

Important Matroids

Take some field

In our applications we often use GF(s)

Example GF(4), source Wikipedia

For edge -> vector
over some field

e ∈ U ve

Declare independent if
and only if is
linearly independent

S ⊆ U
{ve : e ∈ S}

Important Matroids

Take some field

In our applications we often use GF(s)

Example GF(4), source Wikipedia

For edge -> vector
over some field

e ∈ U ve

Declare independent if
and only if is
linearly independent

S ⊆ U
{ve : e ∈ S}

Why this is a matroid?

Important Matroids. Linear matroid

Declare independent if
and only if is
linearly independent

S ⊆ U
{ve : e ∈ S}

Linear Matroids and Representable
Matroids

A matroid M = (E , I) is representable over a field F if there exist vectors
in F! that correspond to the elements such that the linearly independent
sets of vectors precisely correspond to independent sets of the matroid.
Let E = {e1, . . . , em} and ! be a positive integer.

e1 e2 e3 · · · em
1 ∗ ∗ ∗ · · · ∗
2 ∗ ∗ ∗ · · · ∗
3 ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
! ∗ ∗ ∗ · · · ∗

!×m

A matroid M = (E , I) is called representable or linear if it is
representable over some field F.

44

Elements of F
M=

Important Matroids. Linear matroid

Declare independent if
and only if is
linearly independent

S ⊆ U
{ve : e ∈ S}

Linear Matroids and Representable
Matroids

A matroid M = (E , I) is representable over a field F if there exist vectors
in F! that correspond to the elements such that the linearly independent
sets of vectors precisely correspond to independent sets of the matroid.
Let E = {e1, . . . , em} and ! be a positive integer.

e1 e2 e3 · · · em
1 ∗ ∗ ∗ · · · ∗
2 ∗ ∗ ∗ · · · ∗
3 ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
! ∗ ∗ ∗ · · · ∗

!×m

A matroid M = (E , I) is called representable or linear if it is
representable over some field F.

44

Elements of F
M=

M represents matroid over field F

Important Matroids. Linear matroid

Declare independent if
and only if is
linearly independent

S ⊆ U
{ve : e ∈ S}

Linear Matroids and Representable
Matroids

A matroid M = (E , I) is representable over a field F if there exist vectors
in F! that correspond to the elements such that the linearly independent
sets of vectors precisely correspond to independent sets of the matroid.
Let E = {e1, . . . , em} and ! be a positive integer.

e1 e2 e3 · · · em
1 ∗ ∗ ∗ · · · ∗
2 ∗ ∗ ∗ · · · ∗
3 ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
! ∗ ∗ ∗ · · · ∗

!×m

A matroid M = (E , I) is called representable or linear if it is
representable over some field F.

44

Elements of F
M=

M represents matroid over field F

Matroid is linear or representable

Uniform Matroid

A pair over an n-element ground set U, is a uniform matroid if
the family of independent sets is given by

where k is some constant. This matroid is also denoted as

ℳ = (U, ℱ)

ℱ = {A ⊆ U : |A | ≤ k}

Un,k

Example: U = {1,2,3,4} and k = 2
{{ }, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4},

{2, 3}, {2, 4}, {3, 4}}
ℱ = ∅

Uniform Matroid

A pair over an n-element ground set U, is a uniform matroid if
the family of independent sets is given by

where k is some constant. This matroid is also denoted as

ℳ = (U, ℱ)

ℱ = {A ⊆ U : |A | ≤ k}

Un,k

Why this is a matroid?

Example: U = {1,2,3,4} and k = 2
{{ }, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4},

{2, 3}, {2, 4}, {3, 4}}
ℱ = ∅

Uniform Matroid is representable

A pair over an n-element ground set U, is a uniform matroid if the family of
independent sets is given by

where k is some ≈. This matroid is also denoted as

ℳ = (U, ℱ)

ℱ = {A ⊆ U : |A | ≤ k}
Un,k

 is representable over GF(p), p>n. Un,k

Uniform Matroid is representable

A pair over an n-element ground set U, is a uniform matroid if the family of
independent sets is given by

where k is some ≈. This matroid is also denoted as

ℳ = (U, ℱ)

ℱ = {A ⊆ U : |A | ≤ k}
Un,k

 is representable over GF(p), p>n. Un,k

, for each assign non-zero field element and vector U = {e1, …, en} ei αi

1
α1

α2
1

⋮
αk−1

1

Uniform Matroid is representable

A pair over an n-element ground set U, is a uniform matroid if the family of
independent sets is given by

where k is some ≈. This matroid is also denoted as

ℳ = (U, ℱ)

ℱ = {A ⊆ U : |A | ≤ k}
Un,k

 is representable over GF(p), p>n. Un,k

, for each assign non-zero field element and vector U = {e1, …, en} ei αi

1
α1

α2
1

⋮
αk−1

1

 M =

1 1 ⋯ 1
α1 α2 ⋯ αn

α2
1 α2

2 ⋯ α2
n

⋮ ⋮ ⋱ ⋮
αk−1

1 αk−1
2 ⋯ αk−1

n

Uniform Matroid is representable

A pair over an n-element ground set U, is a uniform matroid if the family of
independent sets is given by

where k is some ≈. This matroid is also denoted as

ℳ = (U, ℱ)

ℱ = {A ⊆ U : |A | ≤ k}
Un,k

 is representable over GF(p), p>n. Un,k

, for each assign non-zero field element and vector U = {e1, …, en} ei αi

1
α1

α2
1

⋮
αk−1

1

 M =

1 1 ⋯ 1
α1 α2 ⋯ αn

α2
1 α2

2 ⋯ α2
n

⋮ ⋮ ⋱ ⋮
αk−1

1 αk−1
2 ⋯ αk−1

n

k+1 columns are linearly dependent

For set A of k columns, the determinant of the Vandermonde matrix
 isMA ∏

i<j, ei,ej∈A

αj − αi ≠ 0

Graphic Matroid

For a graph G, a graphic matroid is defined as where U = E(G) (edges of G are
elements of the matroid)

ℳ = (U, ℱ)

ℱ = {A ⊆ U : A is a forest}

Graphic Matroid

For a graph G, a graphic matroid is defined as where U = E(G) (edges of G are
elements of the matroid)

ℳ = (U, ℱ)

ℱ = {A ⊆ U : A is a forest}
Why this is a matroid?

Graphic Matroid

For a graph G, a graphic matroid is defined as where U = E(G) (edges of G are
elements of the matroid)

ℳ = (U, ℱ)

ℱ = {A ⊆ U : A is a forest}
Why this is a matroid?

Is it a representable matroid?

Representative Sets and Matroids

Reps for matroids

Let M be a matroid. Set A fits B
if A∩B=∅ and A B is independent.∪

Let M be a uniform matroid of
rank a+b. a-set A fits b-set B iff
A∩B=∅

Representative Sets and Matroids

Reps for matroids

Let M be a matroid and F be a
family of a-sets in M. A subfamily
F′⊆F b-represents F if for every B
of size b such that there exists an
A∈F that fits B, there exists an
A′∈F′ that also fits B.

Reps for matroids

Let M be a matroid. Set A fits B
if A∩B=∅ and A B is independent.∪

Reps for sets

Let F be a family of a-sets, a
subfamily F′⊆F b-represents F if
for every B of size b such that
there exists an A∈F with A∩B=∅
there exists an A′∈F′ with A′∩B=∅.

Representative Sets and Matroids

Reps for matroids

Let M be a matroid and F be a
family of a-sets in M. A subfamily
F′⊆F b-represents F if for every B
of size b such that there exists an
A∈F that fits B, there exists an
A′∈F′ that also fits B.

Reps for matroids

Let M be a matroid. Set A fits B
if A∩B=∅ and A B is independent.∪

Theorem There is an algorithm that, given a matrix M over a field
GF(s), representing a matroid of rank k, an a-family of
independent sets in , and an integer b such that a+b=k, computes a

b-representative family of of size at most using at most

 operations in GF(s).

ℳ = (U, ℱ) 𝒜
ℳ

𝒜′ 𝒜 (a + b
a)

O(|𝒜 | ((a + b
b)bω + (a + b

b)
ω−1

))

 matrix multiplication exponent ω = 2.73...

Theorem There is an algorithm that, given a matrix M over a field
GF(s), representing a matroid of rank k, an a-family of
independent sets in , and an integer b such that a+b=k, computes a

b-representative family of of size at most using at most

 operations in GF(s).

ℳ = (U, ℱ) 𝒜
ℳ

𝒜′ 𝒜 (a + b
a)

O(|𝒜 | ((a + b
b)bω + (a + b

b)
ω−1

))

 matrix multiplication exponent ω = 2.73...

Polynomial in |𝒜 |

Proof: Exterior (Grassmann) algebra under the carpet

Proof: Exterior (Grassmann) algebra under the carpet

Proof: Exterior (Grassmann) algebra under the carpet

Proof: Exterior (Grassmann) algebra under the carpet

Proof: Exterior (Grassmann) algebra under the carpet

Proof: Exterior (Grassmann) algebra under the carpet

Proof

Proof

Proof

Proof

Proof

Proof

Proof

Proof

Proof

Proof: Main idea

Proof: Main idea

Proof: Algorithm

a column

Proof: Algorithm

a column

Proof: Correctness

Proof: Correctness

Summarizing

The algorithm computes a b-representative family of of size at

mo s t u s i ng at mo s t

operations.

𝒜′ 𝒜

(a + b
a) O(|𝒜 | ((a + b

b)bω + (a + b
b)

ω−1

))

Application. Kernelization

Chapter 2
Kernelization

Kernelization is a systematic approach to study
polynomial-time preprocessing algorithms. It is an
important tool in the design of parameterized algo-
rithms. In this chapter we explain basic kernelization
techniques such as crown decomposition, the expan-
sion lemma, the sunflower lemma, and linear pro-
gramming. We illustrate these techniques by obtain-
ing kernels for Vertex Cover, Feedback Arc Set
in Tournaments, Edge Clique Cover, Maximum
Satisfiability, and d-Hitting Set.

Preprocessing (data reduction or kernelization) is used universally in al-
most every practical computer implementation that aims to deal with an NP-
hard problem. The goal of a preprocessing subroutine is to solve efficiently
the “easy parts” of a problem instance and reduce it (shrink it) to its com-
putationally difficult “core” structure (the problem kernel of the instance). In
other words, the idea of this method is to reduce (but not necessarily solve)
the given problem instance to an equivalent “smaller sized” instance in time
polynomial in the input size. A slower exact algorithm can then be run on
this smaller instance.

How can we measure the effectiveness of such a preprocessing subrou-
tine? Suppose we define a useful preprocessing algorithm as one that runs
in polynomial time and replaces an instance I with an equivalent instance
that is at least one bit smaller. Then the existence of such an algorithm for
an NP-hard problem would imply P= NP, making it unlikely that such an
algorithm can be found. For a long time, there was no other suggestion for
a formal definition of useful preprocessing, leaving the mathematical analy-
sis of polynomial-time preprocessing algorithms largely neglected. But in the
language of parameterized complexity, we can formulate a definition of use-
ful preprocessing by demanding that large instances with a small parameter
should be shrunk, while instances that are small compared to their parameter

17

d-Hitting Set

Input: A universe U, a family S of sets of size d over U, integer k

Question: Does there exist a subset X of U of size k that has a nonempty
intersection with every member of S?

a
b

c

e

d

g
f

h

Polynomial kernel: What we shoot for

A universe U, a family S of sets of size d over U, integer k

A polynomial time algorithm that takes as an input an instance of d-
Hitting Set

Polynomial kernel: What we shoot for

A universe U, a family S of sets of size d over U, integer k

A polynomial time algorithm that takes as an input an instance of d-
Hitting Set

Outputs an equivalent instance of d-Hitting Set

Polynomial kernel: What we shoot for

A universe U, a family S of sets of size d over U, integer k

A polynomial time algorithm that takes as an input an instance of d-
Hitting Set

A universe U’, a family S’ of sets of size d over U’, integer k’

Outputs an equivalent instance of d-Hitting Set

Polynomial kernel: What we shoot for

A universe U, a family S of sets of size d over U, integer k

A polynomial time algorithm that takes as an input an instance of d-
Hitting Set

A universe U’, a family S’ of sets of size d over U’, integer k’

Outputs an equivalent instance of d-Hitting Set

Such that the size of the new instance is bounded by a polynomial of k.

Theorem: Every edge k-critical graph has at most edges(k + 1
2)

Reminder from Lecture 1
2-Hitting Set (Vertex Cover)

``Algorithm’’: If graph is not k-critical, delete an edge

Theorem: Every edge k-critical graph has at most edges(k + 1
2)

Reminder from Lecture 1
2-Hitting Set (Vertex Cover)

A graph G is edge k-critical, if its vertex cover is k, but for every edge e, the vertex cover of
G\e is at most k-1.

``Algorithm’’: If graph is not k-critical, delete an edge

d-Hitting Set

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Hitting Set admits a kernel with at most sets and at

most elements

(k + d
d)

(k + d
d) ⋅ d

Polynomial time algorithm producing an equivalent instance

d-Hitting Set

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Hitting Set admits a kernel with at most sets and at

most elements

(k + d
d)

(k + d
d) ⋅ d

d-Hitting Set

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Hitting Set admits a kernel with at most sets and at

most elements

(k + d
d)

(k + d
d) ⋅ d

Algorithm: Compute a k-representative set S’ of S, delete all elements not
in S’.

d-Hitting Set

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Hitting Set admits a kernel with at most sets and at

most elements

(k + d
d)

(k + d
d) ⋅ d

Algorithm: Compute a k-representative set S’ of S, delete all elements not
in S’.

Compute representation matrix of uniform matroid of rank k+d

d-Hitting Set

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Hitting Set admits a kernel with at most sets and at

most elements

(k + d
d)

(k + d
d) ⋅ d

Algorithm: Compute a k-representative set S’ of S, delete all elements not
in S’.

Compute representation matrix of uniform matroid of rank k+d

 and |S′ | ≤ (k + d
d) |U′ | ≤ (k + d

d) ⋅ d

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

-> If a set B of size k hits every set in S, it also hits every set in S’.

<- If a set B of size k is not a hitting set for S, there is A in S that fits B.
Then there is A’ in S’ that also fits B. Hence B is not a hitting set for S’.

d-Set Packing

Input: A universe U, a family S of sets of size at most d over U, integer k

Question: Does there exist a subset X of S of size k such that all sets of X are
pairwise disjoint?

a
b

c

e

d

g
f

h

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing

d-Hitting Set

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing

d-Hitting Set

Delete sets, do not turn a no-instance into a
yes-instance!

Input: A universe U, a family S of sets of size d over U, integer k

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing

d-Hitting Set

Delete sets, do not turn a no-instance into a
yes-instance!

d-Set Packing

Delete sets, do not turn a yes-instance into a
no-instance!

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing: Proof

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing: Proof

Algorithm: Compute a (k-1)d—representative set S’ of S, delete all
elements not in S’.

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing: Proof

Algorithm: Compute a (k-1)d—representative set S’ of S, delete all
elements not in S’.

Compute representation matrix of uniform matroid of rank kd

Theorem: d-Set Packing admits a kernel with at most sets and at

most elements

(kd
d)

(kd
d) ⋅ d

d-Set Packing: Proof

Algorithm: Compute a (k-1)d—representative set S’ of S, delete all
elements not in S’.

Compute representation matrix of uniform matroid of rank kd

 and |S′ | ≤ (kd
d) |U′ | ≤ (kd

d) ⋅ d

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

If there is A in F that is not in S’, take B be the set of all elements from
F\A

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

If there is A in F that is not in S’, take B be the set of all elements from
F\A

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

If there is A in F that is not in S’, take B be the set of all elements from
F\A

Then |B|=(k-1)d and A fits B.

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

If there is A in F that is not in S’, take B be the set of all elements from
F\A

Then |B|=(k-1)d and A fits B.

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

If there is A in F that is not in S’, take B be the set of all elements from
F\A

Then |B|=(k-1)d and A fits B.

Then there is A’ in S’ that also fits B. But F\A+A’ are k disjoint sets
contradicting the choice of F.

Correctness

Why (U, S, k) and (U’, S’, k) are equivalent?

<- Every k disjoint sets of S’, are also disjoint in S.

-> Suppose S has k disjoint sets. Take family F with the maximum number
of sets from S’.

If there is A in F that is not in S’, take B be the set of all elements from
F\A

Then |B|=(k-1)d and A fits B.

Then there is A’ in S’ that also fits B. But F\A+A’ are k disjoint sets
contradicting the choice of F.

Further reading

Juhna
Matroids book

PA book
Kernelization (application protrusions, OCT)

add running times
Open problems

- Faster computation of representative sets for
linear matroids?

- Faster computation of representative sets for
graphic matroids?

- Compute representative sets for uniform
matroids in time linear in input + output?

- Compute representative sets for gammoids
without matroid representation?

