A Few Words About the Proof Complexity

Dmitry Sokolov

St Petersburg

University

Proof Systems

L c {0,1}". UNSAT is a language of unsatisfiable boolean CNF formulas.

Proof Complexity

Proof Systems

L c {0,1}". UNSAT is a language of unsatisfiable boolean CNF formulas.

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

» (soundness) Jw II(z,w) =1 = x € L.

Length of |w| is the complexity measure.

Proof Complexity

Proof Systems

L c {0,1}". UNSAT is a language of unsatisfiable boolean CNF formulas.

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

» (soundness) Jw II(z,w) =1 = x € L.

Length of |w| is the complexity measure.

Cook’s Program |
J

Prove superpolynomial lower bounds for stronger and stronger proof systems
until the techniques are developed to do it in a general case.
Goal: NP # coNP.

Proof Complexity

Proof Systems

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

Proof Complexity

Proof Systems
Resolution: proof of ¢ = A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
1

> D; e {Cz},

Proof Complexity

Proof Systems
Resolution: proof of ¢ = A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
1

» D;ie{Ci};
» Avxz BvVZ

AvB >
Di =Av B;

Proof Complexity

Proof Systems
Resolution: proof of ¢ = A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
1

> D; e {Cz},
» Avzx BvZ
AvB >

Di =Av B;

» Dy =@.

Proof Complexity

Proof Systems

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

-yVz s yvz
. Dee () =
» Avzx BvZ
D~ Av B
» Dy =@.

Proof Complexity

Proof Systems

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

-yVz s yvz
. Dee () =
» Avzx BvZ
D~ Av B
» Dy =@.

Cutting Planes: proof is a sequence of inequalities over Z
(p120,p2>0,p3>0,...,p¢20):
> p;isanencoding of C € ¢, x, >0 0r —x; + 1> 0;
> P (pi 2 0) A (pj 2 0) imply (pr > 0) ;
> pe=1.

Proof Complexity

Proof Systems

Resolution: proof of ¢ = A C; is a sequence of clauses (D1 ,D2,Ds,...,Dy):

1
ﬁy v z y \/ z
> D; e {Cz},
» Avzx BVZT
AvB > _‘y
Di =Av B; f
» Dy =@.

Cutting Planes: proof is a sequence of inequalities over Z
(p120,p2>0,p3>0,...,p¢20):
> p;isanencoding of C € ¢, x, >0 0r —x; + 1> 0;
> P (pi 2 0) A (pj 2 0) imply (pr > 0) ;
> pe=1.

Nullstellensatz: proof of a system of polynomial equalities f1 = 0, f2 =0

M

Pufu=1.

u=1

Proof Complexity

Pebbing

Proof Complexity

Pebbing

> (=r);

Proof Complexity

Pebbing

> (or);
> (2): (w), (w)s

Pebbing

> (or);
> (2): (w), (w)s

> (mzv-uvz).

Pebbing

> (or);
> (2): (w), (w)s

> (mzv-uvz).

Pebbing

> (=r);
> (2), (u), (w);

» (mzv-uvz).

—Z2V-uvVvaeox

Proof Complexity

Pebbing

> (=r);
> (2), (u), (w);

» (mzv-uvz).

Proof Complexity

Pebbing

P

> (=r);
> (2), (u), (w);

» (mzv-uvz).

Proof Complexity

Pebbing

n

> (=r);
> (2), (u), (w);

» (mzv-uvz).

Proof Complexity

Pebbing

n

> (=r);
> (2), (u), (w);

» (mzv-uvz).

Proof Complexity

DPLL Algorithms

DPLL Algorithms

Proof Complexity 5/16

DPLL Algorithms

Proof Complexity 5/16

DPLL Algorithms

Proof Complexity 5/16

DPLL Algorithms

Tk 2:1—02

Proof Complexity 5/16

DPLL Algorithms

Tk 2:1—02

> Heuristic A chooses a variable for splitting.

Proof Complexity 5/16

DPLL Algorithms

Tk 2:1—02

> Heuristic A chooses a variable for splitting.

» Heuristic B chooses the first value.

Proof Complexity 5/16

DPLL Algorithms

Tk 2:1—02

> Heuristic A chooses a variable for splitting.
> Heuristic B chooses the first value.

» Simplification rules: no simplifications!

Proof Complexity 5/16

DPLL and Resolution

Theorem

DPLL algoritm makes ¢ splitting on unsatisfiable CNF formula
pi= /\ C;
K

= there exists a resolution proof of ¢ of size 2¢.

Proof Complexity

DPLL and Resolution

Theorem

DPLL algoritm makes ¢ splitting on unsatisfiable CNF formula
pi= /\ C;
K

= there exists a resolution proof of ¢ of size 2¢.

Proof Complexity

DPLL and Resolution

Theorem

DPLL algoritm makes ¢ splitting on unsatisfiable CNF formula
pi= /\ C;
K

= there exists a resolution proof of ¢ of size 2¢.

e Ave Bv-x A
AvB Avz
O @) () > Node = disjunction of

negations of queries.

O O > (xV-yVv-ozvau).

Proof Complexity

Flow formulas @
p-

Proof Complexity

Flow formulas @
p-

Proof Complexity

Flow formulas @
p-

)
9 J
»ui ¥ @e— Y ze=c(v) (R);
ecEin ecEQut
» Yc(v) =1 (R);
» graph degree: d.

Proof Complexity

Flow formulas @
p-

)
9 J

»ui ¥ @e— Y ze=c(v) (R);

ecEin eeEQut
> Ye(v) =1(R);
» graph degree: d.

> There is an efficient Nullstellensatz proof of Flow.

» [Alekhnovich, Razborov 03] If G is an (n, d, a)-expander = any resolution
proof has size 2(™),

Proof Complexity

Flow formulas @
p-

)
9 J

»ui ¥ @e— Y ze=c(v) (R);

ecEin eeEQut
> Le(v) =1(R);
» graph degree: d.

> There is an efficient Nullstellensatz proof of Flow.

» [Alekhnovich, Razborov 03] If G is an (n, d, a)-expander = any resolution
proof has size 2(™),

Corollary[Go6s, Kamath, Robere, S 19] |
J

There is a monotone function in NCj that cannot be computed by subexpo-
nential monotone circuits.

Proof Complexity

Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f}@

Proof Complexity

Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f

Why do we care about lower bounds on monotone computations?

> We can proof something!

Proof Complexity 8/16

Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f

Why do we care about lower bounds on monotone computations?
> We can proof something!

» We can control relative error.

Proof Complexity 8/16

Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f

Why do we care about lower bounds on monotone computations?
> We can proof something!
> We can control relative error.

» Strong enough lower bounds on monotone circuits = lower bounds on general
circuits.

Proof Complexity 8/16

Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f

Why do we care about lower bounds on monotone computations?
> We can proof something!
> We can control relative error.

» Strong enough lower bounds on monotone circuits = lower bounds on general
circuits.

»> Secret sharing/cryptography.

Proof Complexity 8/16

Communication Protocols. f:U xV - T

f(xa y) =7

Communication Protocols. f:U xV - T

f(xa y) =7

r1=a(x)

Proof Complexity

Communication Protocols. f:U xV - T

f(xa y) =7

r1=a(x)

T2 = b(y7 Tl)

Proof Complexity

Communication Protocols. f:U xV - T

f(xa y) =7

r1=a(x)

r2 = b(y, 1)

Yy

Proof Complexity

Communication Protocols. f:U xV - T

f(z,y) =7
rzelU yeV
r1=a(x)
r2 = b(y7rl)

Yy

» Depth is the number of rounds (in the worst case).

» D(f) = Ilgli;?l depth(P), where P is a set of protocols for f.

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;

> leaves by answers.

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;
> leaves by answers.

Size of protocol is a size of the tree.
Size(f) = I;lig Size(P).
€

Proof Complexity

Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;
> leaves by answers.

Size of protocol is a size of the tree. () (@)
Size(f) = r]£1i7r)1 Size(P).

D(f) = Q(log(Size(f))).

Proof Complexity

KW Relation [Karchmer, Wigderson 90]

Let U,V c{0,1}" and U nV =@.
KW:
> Alice getsu € U, Bob getsv e V;
» goal: find 7 such that u; # v;.

Proof Complexity

KW Relation [Karchmer, Wigderson 90]

Let U,V c{0,1}" and U nV =@.
KW:
> Alice getsu € U, Bob getsv e V;
» goal: find 7 such that u; # v;.
Monotone version KW™:

» goal: find 7 such that u; = 1 Av; = 0.

Proof Complexity

KW Relation [Karchmer, Wigderson 90]

Let U,V c{0,1}" and U nV =@.
KW:
> Alice getsu € U, Bob getsv e V;
» goal: find 7 such that u; # v;.
Monotone version KW™:

» goal: find 7 such that u; = 1 Av; = 0.

Theorem[Karchmer, Wigderson 90] I
J

Monotone formula for a function f of size S <> communication protocol for
KW™ KW of size S, where U = f~1(1),V = f1(0).

Proof Complexity

KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%,) = D(S).

Proof Complexity

KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%,) = D(S).
|4

3: 0

U 1:0;

9.
4: 04

Proof Complexity

KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%,) = D(S).
|4

3: 0k

U 1:0;

Fs(1,1,0,...):=1

Proof Complexity

KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%,) = D(S).

14
3: 0k
U 1:0;
2:0;
Fs(1,1,0,...)=1, Fs(1,0,0,...):=0

Proof Complexity 12/16

KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%,) = D(S).
|4

3: 0k

U 1: 0;

2:0;

Fs(1,1,0,...):=1, Fs(1,0,0,...):=0

D(KWE,) = D(S).

Proof Complexity

KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%,) = D(S).
|4

3: 0k ‘
U 1: 0; %
2:0;

Fs(1,1,0,...):=1, Fs(1,0,0,...):=0

D(KWE,) = D(S).

Proof Complexity

Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
=1

Proof Complexity

Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
=1
Search, € {0,1}" x [m]:
» (a,1) € Search, < C;(a) = 0.

Proof Complexity

Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
Search;;{o, 13" x [m]:

» (a,1) € Search, < C;(a) = 0.
Communication version:

> “gadget” : X xY — {0,1};

» Ind:[k] x {0,1}F - {0,1}, Ind(z,y) = ya.

Proof Complexity

Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
Search;;{o, 13" x [m]:

» (a,1) € Search, < Ci(a) =0
Communication version:

> “gadget” : X xY — {0,1};

» Ind:[k] x {0,1}F - {0,1}, Ind(z,y) = ya.

AT

Search,, o g = Searchog.

z1 Y1 12 Y2 13 Y3 134 Ya x5 Y5

Proof Complexity 13/16

Lifting @

Theorem[Raz, McKenzie 99; Goos, Pitassi, Watson 16] |

O(d)

Resolution depth of ¢ is at least d = D(Search,, o Ind;,) > n~ ", where

m = poly(n). D(Search,, o Ind,,) » D(Ind) - res-depth ().

Corollary: lower bound on monotone formulas 2m°,

Proof Complexity

Lifting @

Theorem[Raz, McKenzie 99; Goos, Pitassi, Watson 16] |

O(d)

Resolution depth of ¢ is at least d = D(Search,, o Ind;,) > n~ ", where

m = poly(n). D(Search,, o Ind,,) » D(Ind) - res-depth ().

Corollary: lower bound on monotone formulas 2m°,

Theorem[Garg, Go6s, Kamath, S 18] |
J

Resolution size ¢ at least S = size of dag-like protocols for Search,, o Ind,,
at least 2(.5), where m := poly(n).

€
Corollary: lower bound on monotone circuits 2™ .

Proof Complexity

Lifting @

Theorem[Raz, McKenzie 99; Goos, Pitassi, Watson 16] |

O(d)

Resolution depth of ¢ is at least d = D(Search,, o Ind;,) > n~ ", where

m = poly(n). D(Search,, o Ind,,) » D(Ind) - res-depth ().

Corollary: lower bound on monotone formulas 2m°,

Theorem[Garg, Go6s, Kamath, S 18] |
J

Resolution size ¢ at least S = size of dag-like protocols for Search,, o Ind,,
at least 2(.5), where m := poly(n).

€
Corollary: lower bound on monotone circuits 2™ .

Theorem |[Pitassi, Robere 16; Robere, Pitassi 18, informal] |

Nullstellensatz <> algebraic tiling for Search,, o g.

Proof Complexity

Easy Function?

F{0, 1 > (0,1}
» Enumerate equalities z; ® z; @ 21 = ¢ (at most 2713);
» z; = 1 < add the equality to the system;

» f(z) =1 <> system is unsatisfiable.

Proof Complexity 15/16

Easy Function?

0,17 > {0,1)
» Enumerate equalities z; ® z; @ 21 = ¢ (at most 2n3);
» z; = 1 < add the equality to the system;
» f(z) =1 <> system is unsatisfiable.
Facts about f:
> fe NC?
> FFriow can be embedded into f (since there is an efficient NS proof of Flow!);

> there is no small monotone circuit for f (since there is no efficient proofs in
resolution of Flow + lifting Theorem).

Proof Complexity

Hierarchy

SOS

Proof Complexity

Hierarchy

SOS

Mon. “Circuits”

Proof Complexity

Hierarchy

CPS “Circuits”

SOS

Mon. “Circuits”

Proof Complexity

Hierarchy

SOS

Restriction

Proof Complexity

Hierarchy

SOS

Restriction

Mon. Interpolation

Proof Complexity

Hierarchy

<

Mon. Interpolation

Restriction

Proof Complexity

Hierarchy

Restriction

Mon. Interpolation

Proof Complexity

Hierarchy

CPS .
Frege

ACo[p]-

SOS.1y Fes(®)
es
SOS
PCR
ACy-Frege
Restriction
NS;.13 NS

CP
Res

Mon. Interpolation

A

