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L c {0,1}". UNSAT is a language of unsatisfiable boolean CNF formulas.
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L c {0,1}". UNSAT is a language of unsatisfiable boolean CNF formulas.

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

» (soundness) Jw II(z,w) =1 = x € L.

Length of |w| is the complexity measure.
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L c {0,1}". UNSAT is a language of unsatisfiable boolean CNF formulas.

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

» (soundness) Jw II(z,w) =1 = x € L.

Length of |w| is the complexity measure.

Cook’s Program |
J

Prove superpolynomial lower bounds for stronger and stronger proof systems
until the techniques are developed to do it in a general case.
Goal: NP # coNP.
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Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i
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Resolution: proof of ¢ = A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
1

» D;ie{Ci};
» Avxz  BvVZ

AvB >
Di =Av B;
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Resolution: proof of ¢ = A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
1

> D; e {Cz},
» Avzx BvZ
AvB >

Di =Av B;

» Dy =@.
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Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

-yVz s yvz
. Dee () =
» Avzx BvZ
D~ Av B
» Dy =@.
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Proof Systems

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

-yVz s yvz
. Dee () =
» Avzx BvZ
D~ Av B
» Dy =@.

Cutting Planes: proof is a sequence of inequalities over Z
(p120,p2>0,p3>0,...,p¢20):
> p;isanencoding of C € ¢, x, >0 0r —x; + 1> 0;
> P (pi 2 0) A (pj 2 0) imply (pr > 0) ;
> pe=1.
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Proof Systems

Resolution: proof of ¢ = A C; is a sequence of clauses (D1 ,D2,Ds,...,Dy):

1
ﬁy v z y \/ z
> D; e {Cz},
» Avzx BVZT
AvB > _‘y
Di =Av B; f
» Dy =@.

Cutting Planes: proof is a sequence of inequalities over Z
(p120,p2>0,p3>0,...,p¢20):
> p;isanencoding of C € ¢, x, >0 0r —x; + 1> 0;
> P (pi 2 0) A (pj 2 0) imply (pr > 0) ;
> pe=1.

Nullstellensatz: proof of a system of polynomial equalities f1 = 0, f2 =0

M

Pufu=1.

u=1
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Pebbing

> (=r);
> (2), (u), (w);

» (mzv-uvz).

—Z2V-uvVvaeox

Proof Complexity



Pebbing

> (=r);
> (2), (u), (w);

» (mzv-uvz).
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Pebbing

P

> (=r);
> (2), (u), (w);

» (mzv-uvz).
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Pebbing

n

> (=r);
> (2), (u), (w);

» (mzv-uvz).
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Pebbing

n

> (=r);
> (2), (u), (w);

» (mzv-uvz).
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DPLL Algorithms

Tk 2:1—02

> Heuristic A chooses a variable for splitting.
> Heuristic B chooses the first value.

» Simplification rules: no simplifications!
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DPLL and Resolution

Theorem

DPLL algoritm makes ¢ splitting on unsatisfiable CNF formula
pi= /\ C;
K

= there exists a resolution proof of ¢ of size 2¢.
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DPLL and Resolution

Theorem

DPLL algoritm makes ¢ splitting on unsatisfiable CNF formula
pi= /\ C;
K

= there exists a resolution proof of ¢ of size 2¢.

e Ave Bv-x A
AvB Avz
O @) () > Node = disjunction of

negations of queries.

O O > (xV-yVv-ozvau).
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)
9 J
»ui ¥ @e— Y ze=c(v) (R);
ecEin ecEQut
» Yc(v) =1 (R);
» graph degree: d.
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)
9 J

»ui ¥ @e— Y ze=c(v) (R);

ecEin eeEQut
> Ye(v) =1(R);
» graph degree: d.

> There is an efficient Nullstellensatz proof of Flow.

» [Alekhnovich, Razborov 03] If G is an (n, d, a)-expander = any resolution
proof has size 2(™),
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Flow formulas @
p-

)
9 J

»ui ¥ @e— Y ze=c(v) (R);

ecEin eeEQut
> Le(v) =1(R);
» graph degree: d.

> There is an efficient Nullstellensatz proof of Flow.

» [Alekhnovich, Razborov 03] If G is an (n, d, a)-expander = any resolution
proof has size 2(™),

Corollary[Go6s, Kamath, Robere, S 19] |
J

There is a monotone function in NCj that cannot be computed by subexpo-
nential monotone circuits.
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Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f}@
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Why do we care about lower bounds on monotone computations?

> We can proof something!
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Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f

Why do we care about lower bounds on monotone computations?
> We can proof something!
> We can control relative error.

» Strong enough lower bounds on monotone circuits = lower bounds on general
circuits.
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Monotone Computations

Formulas Circuits More circuits

L

SNPS @\?f

Why do we care about lower bounds on monotone computations?
> We can proof something!
> We can control relative error.

» Strong enough lower bounds on monotone circuits = lower bounds on general
circuits.

»> Secret sharing/cryptography.
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r1=a(x)
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Communication Protocols. f:U xV - T

f(xa y) =7

r1=a(x)

r2 = b(y, 1)

Yy
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Communication Protocols. f:U xV - T

f(z,y) =7
rzelU yeV
r1=a(x)
r2 = b(y7rl)

Yy

» Depth is the number of rounds (in the worst case).

» D(f) = Ilgli;?l depth(P), where P is a set of protocols for f.
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Alice gets u € U, Bob gets v € V.. Protocol is a tree:
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Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;
> leaves by answers.

Size of protocol is a size of the tree.
Size(f) = I;lig Size(P).
€
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Protocols and Trees

Alice gets u € U, Bob gets v € V.. Protocol is a tree:

> nodes are marked by players;
> leaves by answers.

Size of protocol is a size of the tree. () (@)
Size(f) = r]£1i7r)1 Size(P).

D(f) = Q(log(Size(f))).
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KW Relation [Karchmer, Wigderson 90]

Let U,V c{0,1}" and U nV =@.
KW:
> Alice getsu € U, Bob getsv e V;
» goal: find 7 such that u; # v;.
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KW Relation [Karchmer, Wigderson 90]

Let U,V c{0,1}" and U nV =@.
KW:
> Alice getsu € U, Bob getsv e V;
» goal: find 7 such that u; # v;.
Monotone version KW™:

» goal: find 7 such that u; = 1 Av; = 0.

Theorem[Karchmer, Wigderson 90] I
J

Monotone formula for a function f of size S <> communication protocol for
KW™ KW of size S, where U = f~1(1),V = f1(0).
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KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%, ) = D(S).
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KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%, ) = D(S).
|4

3: 0

U 1:0;

9.
4: 04
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KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%, ) = D(S).
|4

3: 0k

U 1:0;

Fs(1,1,0,...):=1
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KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%, ) = D(S).

14
3: 0k
U 1:0;
2:0;
Fs(1,1,0,...)=1, Fs(1,0,0,...):=0
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KW™ is a “Complete Relation”

» ScUxV x0O;
» define Fis: {0,1}™ — {0, 1} such that D(KW%, ) = D(S).
|4

3: 0k ‘
U 1: 0; %
2:0;

Fs(1,1,0,...):=1, Fs(1,0,0,...):=0

D(KWE, ) = D(S).
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Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
=1
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Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
=1
Search, € {0,1}" x [m]:
» (a,1) € Search, < C;(a) = 0.
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Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
Search;;{o, 13" x [m]:

» (a,1) € Search, < C;(a) = 0.
Communication version:

> “gadget” : X xY — {0,1};

» Ind:[k] x {0,1}F - {0,1}, Ind(z,y) = ya.
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Search,, [Lovasz, Naor, Newman, Wigderson et al. 94]

p(z) = X C; is unsatisfiable CNF formula.
Search;;{o, 13" x [m]:

» (a,1) € Search, < Ci(a) =0
Communication version:

> “gadget” : X xY — {0,1};

» Ind:[k] x {0,1}F - {0,1}, Ind(z,y) = ya.

AT

Search,, o g = Searchog.

z1 Y1 12 Y2 13 Y3 134 Ya x5 Y5
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Lifting @

Theorem[Raz, McKenzie 99; Goos, Pitassi, Watson 16] |

O(d)

Resolution depth of ¢ is at least d = D(Search,, o Ind;,) > n~ ", where

m = poly(n). D(Search,, o Ind,,) » D(Ind) - res-depth ().

Corollary: lower bound on monotone formulas 2m°,
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Lifting @

Theorem[Raz, McKenzie 99; Goos, Pitassi, Watson 16] |

O(d)

Resolution depth of ¢ is at least d = D(Search,, o Ind;,) > n~ ", where

m = poly(n). D(Search,, o Ind,,) » D(Ind) - res-depth ().

Corollary: lower bound on monotone formulas 2m°,

Theorem[Garg, Go6s, Kamath, S 18] |
J

Resolution size ¢ at least S = size of dag-like protocols for Search,, o Ind,,
at least 2(.5), where m := poly(n).

€
Corollary: lower bound on monotone circuits 2™ .
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Lifting @

Theorem[Raz, McKenzie 99; Goos, Pitassi, Watson 16] |

O(d)

Resolution depth of ¢ is at least d = D(Search,, o Ind;,) > n~ ", where

m = poly(n). D(Search,, o Ind,,) » D(Ind) - res-depth ().

Corollary: lower bound on monotone formulas 2m°,

Theorem[Garg, Go6s, Kamath, S 18] |
J

Resolution size ¢ at least S = size of dag-like protocols for Search,, o Ind,,
at least 2(.5), where m := poly(n).

€
Corollary: lower bound on monotone circuits 2™ .

Theorem |[Pitassi, Robere 16; Robere, Pitassi 18, informal] |

Nullstellensatz <> algebraic tiling for Search,, o g.
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Easy Function?

F{0, 1 > (0,1}
» Enumerate equalities z; ® z; @ 21 = ¢ (at most 2713);
» z; = 1 < add the equality to the system;

» f(z) =1 <> system is unsatisfiable.
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Easy Function?

0,17 > {0,1)
» Enumerate equalities z; ® z; @ 21 = ¢ (at most 2n3);
» z; = 1 < add the equality to the system;
» f(z) =1 <> system is unsatisfiable.
Facts about f:
> fe NC?
> FFriow can be embedded into f (since there is an efficient NS proof of Flow!);

> there is no small monotone circuit for f (since there is no efficient proofs in
resolution of Flow + lifting Theorem).
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Hierarchy

CPS “Circuits”

SOS

Mon. “Circuits”
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Hierarchy
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Mon. Interpolation

Restriction

Proof Complexity



Hierarchy

Restriction

Mon. Interpolation

Proof Complexity



Hierarchy

CPS .
Frege

ACo[p]-

SOS.1y Fes(®)
es
SOS
PCR
ACy-Frege
Restriction
NS;.13 NS

CP
Res

Mon. Interpolation

A




