# A Few Words About the Proof Complexity



**Dmitry Sokolov** 

SACC 2021 May 27



PDMI RAS

 $L \subseteq \{0,1\}^*$ . UNSAT is a language of unsatisfiable boolean CNF formulas.

 $L \subseteq \{0,1\}^*.$  UNSAT is a language of unsatisfiable boolean CNF formulas.

#### Definition[Cook, Reckhow 79]

Proof system for  $L \Leftrightarrow \text{poly-time algorithm }\Pi\text{:}\left\{0,1\right\}^* \times \left\{0,1\right\}^* \rightarrow \left\{0,1\right\}\text{:}$ 

- (completeness)  $x \in L \Rightarrow \exists w \Pi(x, w) = 1$ ;
- (soundness)  $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$ .

Length of |w| is the complexity measure.

 $L \subseteq \{0,1\}^*$ . UNSAT is a language of unsatisfiable boolean CNF formulas.

#### Definition[Cook, Reckhow 79]

Proof system for  $L \Leftrightarrow \text{poly-time algorithm } \Pi: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ :

- (completeness)  $x \in L \Rightarrow \exists w \Pi(x, w) = 1$ ;
- (soundness)  $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$ .

Length of |w| is the complexity measure.

#### **Cook's Program**

Prove superpolynomial lower bounds for stronger and stronger proof systems until the techniques are developed to do it in a general case.

Goal: NP # coNP.

**Resolution**: proof of  $\varphi := \bigwedge_i C_i$  is a sequence of clauses  $(D_1, D_2, D_3, \dots, D_\ell)$ :

 $D_i \in \{C_i\};$ 

- ▶  $D_i \in \{C_i\};$
- $\begin{array}{c} \bullet \quad \frac{A \vee x \quad B \vee \bar{x}}{A \vee B}, \\ D_i \coloneqq A \vee B; \end{array}$

- ▶  $D_i \in \{C_i\};$
- $ightharpoonup D_{\ell} = \varnothing.$

- $D_i \in \{C_i\};$
- $\begin{array}{c} \bullet \quad \frac{A \vee x \quad B \vee \bar{x}}{A \vee B}, \\ D_i \coloneqq A \vee B; \end{array}$
- $D_\ell = \varnothing.$



**Resolution**: proof of  $\varphi := \bigwedge_i C_i$  is a sequence of clauses  $(D_1, D_2, D_3, \dots, D_\ell)$ :

- $ightharpoonup D_i \in \{C_i\};$
- $D_\ell = \varnothing.$



**Cutting Planes**: proof is a sequence of inequalities over  $\mathbb{Z}$   $(p_1 \geq 0, p_2 \geq 0, p_3 \geq 0, \dots, p_{\ell} \geq 0)$ :

- $p_i$  is an encoding of  $C \in \varphi$ ,  $x_k \ge 0$  or  $-x_k + 1 \ge 0$ ;
- $ightharpoonup rac{p_i-p_j}{p_k}$ ,  $(p_i \ge 0) \land (p_j \ge 0)$  imply  $(p_k \ge 0)$  over  $\mathbb{Z}^n$ ;
- $p_\ell = 1.$

**Resolution**: proof of  $\varphi := \bigwedge_i C_i$  is a sequence of clauses  $(D_1, D_2, D_3, \dots, D_\ell)$ :

- $D_i \in \{C_i\};$
- $ightharpoonup D_{\ell} = \varnothing.$



**Cutting Planes**: proof is a sequence of inequalities over  $\mathbb{Z}$   $(p_1 \ge 0, p_2 \ge 0, p_3 \ge 0, \dots, p_\ell \ge 0)$ :

- $p_i$  is an encoding of  $C \in \varphi$ ,  $x_k \ge 0$  or  $-x_k + 1 \ge 0$ ;
- $p_\ell = 1.$

**Nullstellensatz**: proof of a system of polynomial equalities  $f_1 = 0, f_2 = 0, \ldots$ :

$$\sum_{u=1}^{a} p_u f_u = 1.$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②











- ▶ (¬r);
- (z),(u),(w);



- ▶ (¬r);
- (z),(u),(w);
- $\qquad \qquad (\neg z \vee \neg u \vee x).$



- ▶ (¬r);
- (z),(u),(w);
- $\qquad \qquad (\neg z \vee \neg u \vee x).$



- ▶ (¬r);
- (z),(u),(w);
- $\qquad \qquad (\neg z \vee \neg u \vee x).$





$$(\neg z \lor \neg u \lor x)$$



- ▶ (¬r);
- ▶ (z),(u),(w);
- $\qquad \qquad (\neg z \vee \neg u \vee x).$





- ▶ (¬r);
- ▶ (z),(u),(w);
- $\qquad \qquad (\neg z \vee \neg u \vee x).$







- ▶ (¬r);
- ▶ (z),(u),(w);
- $\qquad \qquad (\neg z \vee \neg u \vee x).$



Proof Complexity



- ▶ (¬r);
- ▶ (z),(u),(w);
- $\qquad \qquad (\neg z \vee \neg u \vee x).$



Proof Complexity













▶ Heuristic **A** chooses a variable for splitting.



- ▶ Heuristic **A** chooses a variable for splitting.
- ▶ Heuristic **B** chooses the first value.



- ▶ Heuristic **A** chooses a variable for splitting.
- ▶ Heuristic **B** chooses the first value.
- Simplification rules: no simplifications!

#### **DPLL** and Resolution

#### Theorem

 $\operatorname{DPLL}$  algoritm makes t splitting on unsatisfiable CNF formula

$$\varphi \coloneqq \bigwedge_i C_i$$

 $\Rightarrow$  there exists a resolution proof of  $\varphi$  of size 2t.

#### **DPLL** and Resolution

#### Theorem

DPLL algoritm makes t splitting on unsatisfiable CNF formula

$$\varphi \coloneqq \bigwedge_i C_i$$

 $\Rightarrow$  there exists a resolution proof of  $\varphi$  of size 2t.



#### **DPLL** and Resolution

#### Theorem

DPLL algoritm makes t splitting on unsatisfiable CNF formula

$$\varphi \coloneqq \bigwedge_i C_i$$

 $\Rightarrow$  there exists a resolution proof of  $\varphi$  of size 2t.



- $\frac{A \lor x \quad B \lor \neg x}{A \lor B}$   $\frac{A}{A \lor c}$
- Node ⇒ disjunction of negations of queries.
- $\qquad \qquad (x \vee \neg y \vee \neg z \vee u).$





7 / 16





7 / 16





- $v: \sum_{e \in E_v^{\text{in}}} x_e \sum_{e \in E_v^{\text{out}}} x_e = c(v) (\mathbb{R});$
- $\sum_{v} c(v) = 1 (\mathbb{R});$
- ightharpoonup graph degree: d.





- $v: \sum_{e \in E_v^{\text{in}}} x_e \sum_{e \in E_v^{\text{out}}} x_e = c(v) (\mathbb{R});$
- $\blacktriangleright \sum_{v} c(v) = 1 (\mathbb{R});$
- $\,\blacktriangleright\,$  graph degree: d.

- ▶ There is an efficient Nullstellensatz proof of Flow.
- ▶ [Alekhnovich, Razborov 03] If G is an  $(n, d, \alpha)$ -expander  $\Rightarrow$  any resolution proof has size  $2^{\Omega(n)}$ .

#### Flow formulas





- $v: \sum_{e \in E_v^{\text{in}}} x_e \sum_{e \in E_v^{\text{out}}} x_e = c(v) (\mathbb{R});$
- $\blacktriangleright \sum_{v} c(v) = 1 (\mathbb{R});$
- ▶ graph degree: d.

- ► There is an efficient Nullstellensatz proof of Flow.
- [Alekhnovich, Razborov 03] If G is an  $(n, d, \alpha)$ -expander  $\Rightarrow$  any resolution proof has size  $2^{\Omega(n)}$ .

#### Corollary[Göös, Kamath, Robere, S 19]

There is a monotone function in  $NC_2$  that cannot be computed by subexponential monotone circuits.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り Q (\*)

# Formulas



#### Circuits



#### More circuits





Why do we care about lower bounds on monotone computations?

▶ We can proof something!

Proof Complexity



Why do we care about lower bounds on monotone computations?

- ▶ We can proof something!
- ▶ We can control relative error.



Why do we care about lower bounds on monotone computations?

- ▶ We can proof something!
- ▶ We can control relative error.
- ▶ Strong enough lower bounds on monotone circuits ⇒ lower bounds on general circuits.

Proof Complexity



Why do we care about lower bounds on monotone computations?

- We can proof something!
- ▶ We can control relative error.
- Strong enough lower bounds on monotone circuits ⇒ lower bounds on general circuits.
- Secret sharing/cryptography.

□ ト 4 億 ト 4 差 ト 4 差 ● 9 Q @

$$f(x,y) = ?$$

 $x \in U$ 



 $y \in V$ 











- ▶ Depth is the number of rounds (in the worst case).
- ▶  $D(f) = \min_{P \in \mathcal{P}} depth(P)$ , where  $\mathcal{P}$  is a set of protocols for f.

Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:



4 □ b 4 ⊕ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b 4 ≡ b

Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

nodes are marked by players;



◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

nodes are marked by players;



Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

nodes are marked by players;



◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

nodes are marked by players;



◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

nodes are marked by players;



◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 Q (\*)

Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

- ▶ nodes are marked by players;
- leaves by answers.



◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

- nodes are marked by players;
- leaves by answers.

Size of protocol is a size of the tree.

$$\operatorname{Size}(f) = \min_{P \in \mathcal{P}} \operatorname{Size}(P).$$



Alice gets  $u \in U$ , Bob gets  $v \in V$ . Protocol is a tree:

- nodes are marked by players;
- leaves by answers.

Size of protocol is a size of the tree.

$$\operatorname{Size}(f) = \min_{P \in \mathcal{P}} \operatorname{Size}(P).$$

#### Lemma

 $D(f) = \Omega(\log(\operatorname{Size}(f))).$ 



# KW Relation [Karchmer, Wigderson 90]

Let  $U, V \subseteq \{0, 1\}^n$  and  $U \cap V = \emptyset$ .

#### KW:

- ▶ Alice gets  $u \in U$ , Bob gets  $v \in V$ ;
- goal: find i such that  $u_i \neq v_i$ .

## KW Relation [Karchmer, Wigderson 90]

Let  $U, V \subseteq \{0, 1\}^n$  and  $U \cap V = \emptyset$ .

#### KW:

- ▶ Alice gets  $u \in U$ , Bob gets  $v \in V$ ;
- goal: find i such that  $u_i \neq v_i$ .

#### Monotone version KW<sup>m</sup>:

• goal: find i such that  $u_i = 1 \land v_i = 0$ .

### KW Relation [Karchmer, Wigderson 90]

Let  $U, V \subseteq \{0, 1\}^n$  and  $U \cap V = \emptyset$ .

#### KW:

- ▶ Alice gets  $u \in U$ , Bob gets  $v \in V$ ;
- goal: find i such that  $u_i \neq v_i$ .

#### Monotone version KW<sup>m</sup>:

• goal: find i such that  $u_i = 1 \land v_i = 0$ .

#### Theorem[Karchmer, Wigderson 90]

Monotone formula for a function f of size  $S \Leftrightarrow$  communication protocol for  $KW^m$  KW of size S, where  $U = f^{-1}(1)$ ,  $V = f^{-1}(0)$ .

◆ロト ◆園 ▶ ◆ 差 ▶ ◆ 差 → りへで

- $S \subseteq U \times V \times \mathcal{O}$ ;
- ▶ define  $F_{\mathcal{S}}$ :  $\{0,1\}^m \to \{0,1\}$  such that  $D(\mathsf{KW}^{\mathsf{m}}_{F_{\mathcal{S}}}) = D(S)$ .

Proof Complexity

- $S \subseteq U \times V \times \mathcal{O}$ ;
- define  $F_S: \{0,1\}^m \to \{0,1\}$  such that  $D(KW_{F_S}^m) = D(S)$ .



- $S \subseteq U \times V \times \mathcal{O}$ ;
- define  $F_{\mathcal{S}}: \{0,1\}^m \to \{0,1\}$  such that  $D(\mathsf{KW}^{\mathsf{m}}_{F_{\mathcal{S}}}) = D(S)$ .



$$F_{\mathcal{S}}(1,1,0,\dots) \coloneqq 1$$

- $S \subseteq U \times V \times \mathcal{O}$ ;
- define  $F_S: \{0,1\}^m \to \{0,1\}$  such that  $D(KW_{F_S}^m) = D(S)$ .



$$F_{\mathcal{S}}(1,1,0,\dots) \coloneqq 1, \quad F_{\mathcal{S}}(1,0,0,\dots) \coloneqq 0$$

- $S \subseteq U \times V \times \mathcal{O}$ ;
- define  $F_S: \{0,1\}^m \to \{0,1\}$  such that  $D(KW_{F_S}^m) = D(S)$ .



$$F_{\mathcal{S}}(1,1,0,\ldots) \coloneqq 1, \quad F_{\mathcal{S}}(1,0,0,\ldots) \coloneqq 0$$

# Lemma

 $D(KW_{F_S}^m) = D(S).$ 

- $S \subseteq U \times V \times \mathcal{O}$ ;
- define  $F_S: \{0,1\}^m \to \{0,1\}$  such that  $D(KW_{F_S}^m) = D(S)$ .





$$F_{\mathcal{S}}(1,1,0,\dots)\coloneqq 1, \quad F_{\mathcal{S}}(1,0,0,\dots)\coloneqq 0$$

#### Lemma

 $D(KW_{F_S}^m) = D(S).$ 

# $\mathsf{Search}_{\varphi} \ [\mathbf{Lov\'{a}sz}, \mathbf{Naor}, \mathbf{Newman}, \mathbf{Wigderson} \ \mathbf{et} \ \mathbf{al.} \ \mathbf{94}]$

$$\varphi(z) \coloneqq \bigwedge_{i=1}^m C_i$$
 is unsatisfiable CNF formula.

# $\mathsf{Search}_{\varphi} \ [\mathbf{Lov\acute{a}sz}, \mathbf{Naor}, \mathbf{Newman}, \mathbf{Wigderson} \ \mathbf{et} \ \mathbf{al.} \ \mathbf{94}]$

$$\varphi(z) \coloneqq \bigwedge_{i=1}^m C_i$$
 is unsatisfiable CNF formula.

 $\mathsf{Search}_{\varphi} \subseteq \{0,1\}^n \times [m]:$ 

•  $(\alpha, i) \in \mathsf{Search}_{\varphi} \Leftrightarrow C_i(\alpha) = 0.$ 

# Search $_{\varphi}$ [Lovász, Naor, Newman, Wigderson et al. 94]

$$\varphi(z)\coloneqq \bigwedge_{i=1}^m C_i$$
 is unsatisfiable CNF formula.

 $\mathsf{Search}_\varphi \subseteq \{0,1\}^n \times [m] \text{:}$ 

•  $(\alpha, i) \in \mathsf{Search}_{\varphi} \Leftrightarrow C_i(\alpha) = 0.$ 

#### Communication version:

- $\bullet \text{ "gadget" } g\text{:} X \times Y \to \{0,1\};$
- ▶ Ind:  $[k] \times \{0,1\}^k \to \{0,1\}$ , Ind $(x,y) = y_x$ .

# Search $_{\varphi}$ [Lovász, Naor, Newman, Wigderson et al. 94]

 $\varphi(z) \coloneqq \bigwedge_{i=1}^m C_i$  is unsatisfiable CNF formula.

 $\mathsf{Search}_{\varphi} \subseteq \{0,1\}^n \times [m]:$ 

•  $(\alpha, i) \in \mathsf{Search}_{\varphi} \Leftrightarrow C_i(\alpha) = 0.$ 

#### Communication version:

- "gadget"  $g: X \times Y \rightarrow \{0,1\};$
- Ind:  $[k] \times \{0,1\}^k \to \{0,1\}$ , Ind $(x,y) = y_x$ .



 $\mathsf{Search}_{\varphi} \circ g \equiv \mathsf{Search}_{\varphi \circ g}.$ 



#### Theorem[Raz, McKenzie 99; Göös, Pitassi, Watson 16]

Resolution depth of  $\varphi$  is at least  $d \Rightarrow \mathrm{D}(\mathsf{Search}_{\varphi} \circ \mathsf{Ind}_m) \geq n^{\mathcal{O}(d)}$ , where  $m \coloneqq \mathsf{poly}(n)$ .  $\mathsf{D}(\mathsf{Search}_{\varphi} \circ \mathsf{Ind}_m) \approx \mathsf{D}(\mathsf{Ind}) \cdot \mathsf{res-depth}(\varphi)$ .

Corollary: lower bound on monotone formulas  $2^{n^{\varepsilon}}$ .



#### Theorem[Raz, McKenzie 99; Göös, Pitassi, Watson 16]

Resolution depth of  $\varphi$  is at least  $d \Rightarrow \mathrm{D}(\mathsf{Search}_{\varphi} \circ \mathsf{Ind}_m) \geq n^{\mathcal{O}(d)}$ , where  $m \coloneqq \mathsf{poly}(n)$ .  $\mathrm{D}(\mathsf{Search}_{\varphi} \circ \mathsf{Ind}_m) \approx \mathrm{D}(\mathsf{Ind}) \cdot \mathsf{res-depth}(\varphi)$ .

Corollary: lower bound on monotone formulas  $2^{n^{\varepsilon}}$ .

#### Theorem[Garg, Göös, Kamath, S 18]

Resolution size  $\varphi$  at least  $S \Rightarrow$  size of dag-like protocols for Search $_{\varphi} \circ \operatorname{Ind}_m$  at least  $\Omega(S)$ , where  $m \coloneqq \operatorname{poly}(n)$ .

Corollary: lower bound on monotone circuits  $2^{n^{\varepsilon}}$ .



#### Theorem[Raz, McKenzie 99; Göös, Pitassi, Watson 16]

Resolution depth of  $\varphi$  is at least  $d \Rightarrow D(\mathsf{Search}_{\varphi} \circ \mathsf{Ind}_m) \geq n^{\mathcal{O}(d)}$ , where  $m \coloneqq \mathsf{poly}(n)$ .  $D(\mathsf{Search}_{\varphi} \circ \mathsf{Ind}_m) \approx D(\mathsf{Ind}) \cdot \mathsf{res-depth}(\varphi)$ .

Corollary: lower bound on monotone formulas  $2^{n^{\varepsilon}}$ .

#### Theorem[Garg, Göös, Kamath, S 18]

Resolution size  $\varphi$  at least  $S \Rightarrow$  size of dag-like protocols for Search $_{\varphi} \circ \operatorname{Ind}_m$  at least  $\Omega(S)$ , where  $m \coloneqq \operatorname{poly}(n)$ .

Corollary: lower bound on monotone circuits  $2^{n^{\varepsilon}}$ .

#### Theorem[Pitassi, Robere 16; Robere, Pitassi 18, informal]

Nullstellensatz  $\Leftrightarrow$  algebraic tiling for Search $_{\varphi} \circ g$ .

### **Easy Function?**

$$f{:}\{0,1\}^{2n^3} \to \{0,1\}$$

- ► Enumerate equalities  $z_i \oplus z_j \oplus z_k = c$  (at most  $2n^3$ );
- $x_i = 1 \Leftrightarrow \text{add the equality to the system}$ ;
- $f(x) = 1 \Leftrightarrow$  system is unsatisfiable.

### **Easy Function?**

$$f: \{0,1\}^{2n^3} \to \{0,1\}$$

- ► Enumerate equalities  $z_i \oplus z_j \oplus z_k = c$  (at most  $2n^3$ );
- $x_i = 1 \Leftrightarrow \text{add the equality to the system};$
- $f(x) = 1 \Leftrightarrow$  system is unsatisfiable.

#### Facts about *f*:

- $f \in \mathbf{NC}^2$ ;
- $F_{Flow}$  can be embedded into f (since there is an efficient NS proof of Flow!);
- there is no small monotone circuit for f (since there is no efficient proofs in resolution of Flow + lifting Theorem).

4□ > 4ⓓ > 4≧ > 4≧ > ½ 900















