DATA STRUCTURES MEET CIRCUITS AND CRYPTOGRAPHY

Alexander Golovnev, Georgetown University

SACC 2021

DATA STRUCTURES

EXAMPLES

Stack, Queue, List, Heap

Search Trees

Hash Tables

STATIC DATA STRUCTURES. EXAMPLES

■ Graph Distances: Preprocess a road network in order to efficiently compute distances between cities (Google Maps)

STATIC DATA STRUCTURES. EXAMPLES

- Graph Distances: Preprocess a road network in order to efficiently compute distances between cities (Google Maps)
- Nearest Neighbors: Preprocess a set of points in order to efficiently find closest point to a query point (Netflix recommendations)

STATIC DATA STRUCTURES. EXAMPLES

- Graph Distances: Preprocess a road network in order to efficiently compute distances between cities (Google Maps)
- Nearest Neighbors: Preprocess a set of points in order to efficiently find closest point to a query point (Netflix recommendations)
- Range Counting: Preprocess a set of points in order to efficiently compute the number of points in a given rectangle (Amazon market size estimation)

Queries

Queries

Washington — St. Petersburg

Queries

Queries

$$X_1$$
 X_2 \dots X_{n-1} X_n

■ Two trivial solutions:

- Two trivial solutions:
 - s = m, t = 1

- Two trivial solutions:
 - s = m, t = 1
 - s = n, t = n

- Two trivial solutions:
 - \blacksquare s = m, t = 1
 - s = n, t = n
- There exist problems requiring $s \approx m$ or $t \approx n$

- Two trivial solutions:
 - s = m, t = 1
 - \blacksquare s = n, t = n
- There exist problems requiring $s \approx m$ or $t \approx n$
- Best known concrete lower bound [Sie89]:

$$t \ge \Omega\left(\frac{\log m}{\log(s/n)}\right)$$

- Two trivial solutions:
 - s = m, t = 1
 - \blacksquare s = n, t = n
- There exist problems requiring $s \approx m$ or $t \approx n$
- Best known concrete lower bound [Sie89]:

$$t \ge \Omega\left(\frac{\log m}{\log(s/n)}\right)$$

 \blacksquare $s = O(n) \implies t \ge \Omega(\log n)$

- Two trivial solutions:
 - s = m, t = 1
 - \blacksquare s = n, t = n
- There exist problems requiring $s \approx m$ or $t \approx n$
- Best known concrete lower bound [Sie89]:

$$t \ge \Omega\left(\frac{\log m}{\log(s/n)}\right)$$

- \blacksquare $s = O(n) \implies t \ge \Omega(\log n)$
- \blacksquare $s = n^{1+\varepsilon} \implies t \ge \Omega(1)$

CRYPTO WITH PREPROCESSING

CRYPTOGRAPHY WITH PREPROCESSING

CRYPTOGRAPHY WITH PREPROCESSING

Cryptography requires hard functions.

Secure (one-way) $f: \{0,1\}^n \to \{0,1\}^n$

Can be broken by preprocessing attacks.

E.g., with space $S = 2^n$

CRYPTOGRAPHY WITH PREPROCESSING

Cryptography requires hard functions.

Secure (one-way) $f: \{0,1\}^n \to \{0,1\}^n$

Can be broken by preprocessing attacks.

E.g., with space $S = 2^n$

Can we immunize a function against large preprocessing? Design $g: \{0,1\}^{5n} \rightarrow \{0,1\}^{5n}$ which is still secure?

DATA STRUCTURES AND CRYPTOGRAPHY

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data structure lower bounds (for problems with efficient query generation).

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data structure lower bounds (for problems with efficient query generation).

Examples of such problems include

- 3SUM
- Nearest Neighbors
- Polygon containment
- **.**.

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data structure lower bounds (for problems with efficient query generation).

Examples of such problems include

- 3SUM
- Nearest Neighbors
- Polygon containment
- **.**.

3SUM

Given a_1, \ldots, a_n , check whether there exist $a_i + a_j = a_k$

3SUM

Given a_1, \ldots, a_n , check whether there exist $a_i + a_j = a_k$ Foundation of computational geometry.

3SUM

Given a_1, \ldots, a_n , check whether there exist $a_i + a_j = a_k$ Foundation of computational geometry. Easy to solve in time $O(n^2)$

3SUM

Given a_1, \ldots, a_n , check whether there exist $a_i + a_j = a_k$ Foundation of computational geometry. Easy to solve in time $O(n^2)$

Strong 3SUM Conjecture

No $o(n^2)$ -algorithm for 3SUM [GO95]

3SUM

Given a_1, \ldots, a_n , check whether there exist $a_i + a_j = a_k$ Foundation of computational geometry. Easy to solve in time $O(n^2)$

Strong 3SUM Conjecture

No $o(n^2)$ -algorithm for 3SUM [GO95]

Theorem [BDP08,GP14,C18]

3SUM can be solved in time $\approx n^2/\log^2 n$

3SUM

Given a_1, \ldots, a_n , check whether there exist $a_i + a_j = a_k$ Foundation of computational geometry. Easy to solve in time $O(n^2)$

Strong 3SUM Conjecture

No $o(n^2)$ -algorithm for 3SUM [GO95]

Theorem [BDP08,GP14,C18]

3SUM can be solved in time $\approx n^2/\log^2 n$

Modern 3SUM Conjecture

No $n^{1.99}$ -algorithm for 3SUM [GO95]

3SUM-Indexing

Preprocess a_1, \ldots, a_n into S numbers, s.t. given b, can check $a_i + a_j = b$ in time T

3SUM-Indexing

Preprocess a_1, \ldots, a_n into S numbers, s.t. given b, can check $a_i + a_j = b$ in time T

Easy to solve with $S = n^2$ and $T = \log n$

3SUM-Indexing

Preprocess a_1, \ldots, a_n into S numbers, s.t. given b, can check $a_i + a_i = b$ in time T

Easy to solve with $S = n^2$ and $T = \log n$ Easy to solve with S = n and T = n

3SUM-Indexing

Preprocess a_1, \ldots, a_n into S numbers, s.t. given b, can check $a_i + a_j = b$ in time T

Easy to solve with $S = n^2$ and $T = \log n$ Easy to solve with S = n and T = n

3SUM-Indexing Conjecture [GKLP17]

Any data structure with $S = n^{1.99}$ requires $T \ge \Omega(n)$

3SUM-Indexing

Preprocess a_1, \ldots, a_n into S numbers, s.t. given b, can check $a_i + a_j = b$ in time T

Easy to solve with $S = n^2$ and $T = \log n$ Easy to solve with S = n and T = n

3SUM-Indexing Conjecture [GKLP17]

Any data structure with $S = n^{1.99}$ requires $T \ge \Omega(n)$

Theorem [GGHPV20]

3SUM-Indexing can be solved with $S = n^{1.9}$ and $T = n^{0.3}$

■ Let $f: [N] \rightarrow [N]$ be a function

- Let $f: [N] \rightarrow [N]$ be a function
- Preprocess f in space S, s.t. can invert f in time T

- Let $f: [N] \rightarrow [N]$ be a function
- Preprocess f in space S, s.t. can invert f in time T
- Invert f: given y find x s.t. f(x) = y

- Let $f: [N] \rightarrow [N]$ be a function
- Preprocess f in space S, s.t. can invert f in time T
- Invert f: given y find x s.t. f(x) = y
- [H80, FN00]: Invert a function with $S^3T = \widetilde{O}(N^3)$

- Let $f: [N] \rightarrow [N]$ be a function
- Preprocess f in space S, s.t. can invert f in time T
- Invert f: given y find x s.t. f(x) = y
- [H80, FN00]: Invert a function with $S^3T = \widetilde{O}(N^3)$
- E.g., $S = T = N^{3/4}$

- Let $f: [N] \rightarrow [N]$ be a function
- Preprocess f in space S, s.t. can invert f in time T
- Invert f: given y find x s.t. f(x) = y
- [H80, FN00]: Invert a function with $S^3T = \widetilde{O}(N^3)$
- E.g., $S = T = N^{3/4}$
- Special case: Invert a bijection with $S = T = \widetilde{O}(\sqrt{N})$

■ Let $f: [N] \rightarrow [N]$ be a bijection

- Let $f: [N] \rightarrow [N]$ be a bijection
- [H80,FN00] invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$

- Let $f: [N] \rightarrow [N]$ be a bijection
- [H80,FN00] invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
- Let's define a directed graph on *N* vertices with edges $x \rightarrow f(x)$

- Let $f: [N] \rightarrow [N]$ be a bijection
- [H80,FN00] invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
- Let's define a directed graph on *N* vertices with edges $x \rightarrow f(x)$
- In- and out-degrees of all vertices are 1

- Let $f: [N] \rightarrow [N]$ be a bijection
- [H80,FN00] invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
- Let's define a directed graph on *N* vertices with edges $x \rightarrow f(x)$
- In- and out-degrees of all vertices are 1
- Thus, this graph is a union of cycles

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time $T \approx \sqrt{N}$:

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time $T \approx \sqrt{N}$:

Invert y = f(x)

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time
$$T \approx \sqrt{N}$$
:

Invert
$$y = f(x)$$

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time
$$T \approx \sqrt{N}$$
:

Invert
$$y = f(x)$$

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time
$$T \approx \sqrt{N}$$
:

Invert
$$y = f(x)$$

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time
$$T \approx \sqrt{N}$$
:

Invert
$$y = f(x)$$

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time
$$T \approx \sqrt{N}$$
:

Invert
$$y = f(x)$$

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time $T \approx \sqrt{N}$:

Invert y = f(x)

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

time
$$T \approx \sqrt{N}$$
:

Invert
$$y = f(x)$$

■ Input a_1, \ldots, a_n

- Input a_1, \ldots, a_n
- Given *b*, check whether $b = a_i + a_j$ for some *i*, *j*

- Input a_1, \ldots, a_n
- Given *b*, check whether $b = a_i + a_j$ for some i, j
- Define $f(i,j) = a_i + a_j$ for $1 \le i,j \le n$

- Input a_1, \ldots, a_n
- Given b, check whether $b = a_i + a_j$ for some i, j
- Define $f(i,j) = a_i + a_j$ for $1 \le i, j \le n$
 - f is easy to compute

- Input a_1, \ldots, a_n
- Given *b*, check whether $b = a_i + a_j$ for some *i*, *j*
- Define $f(i,j) = a_i + a_j$ for $1 \le i, j \le n$
 - f is easy to compute
 - Hashing: the domain and range of f are of size n^2

- Input a_1, \ldots, a_n
- Given *b*, check whether $b = a_i + a_j$ for some *i*, *j*
- Define $f(i,j) = a_i + a_j$ for $1 \le i, j \le n$
 - \blacksquare *f* is easy to compute
 - Hashing: the domain and range of f are of size n^2
 - Inverting f solves 3SUM-Indexing

- Input a_1, \ldots, a_n
- Given *b*, check whether $b = a_i + a_j$ for some *i*, *j*
- Define $f(i,j) = a_i + a_j$ for $1 \le i, j \le n$
 - \blacksquare *f* is easy to compute
 - Hashing: the domain and range of f are of size n^2
 - Inverting f solves 3SUM-Indexing
- [Hel80, FN00] gives a way to invert any f which can be computed efficiently and has small domain and range

- Input a_1, \ldots, a_n
- Given *b*, check whether $b = a_i + a_j$ for some *i*, *j*
- Define $f(i,j) = a_i + a_j$ for $1 \le i, j \le n$
 - \blacksquare *f* is easy to compute
 - Hashing: the domain and range of f are of size n^2
 - Inverting f solves 3SUM-Indexing
- [Hel80, FN00] gives a way to invert any f which can be computed efficiently and has small domain and range
- Can solve 3SUM-Indexing in time T and space S for any $S^3T = n^6$. E.g., $S = n^{1.9}$ and $T = n^{0.3}$

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data structure lower bounds for problems with efficient query generation.

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data structure lower bounds for problems with efficient query generation.

■ Secure $F: \{0,1\}^n \to \{0,1\}^n$

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data structure lower bounds for problems with efficient query generation.

- Secure $F: \{0,1\}^n \to \{0,1\}^n$
- Define $F': \{0,1\}^{n-1} \to \{0,1\}^{2n}$:

$$F'(x) = F(0,x)||F(1,x)|$$

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data structure lower bounds for problems with efficient query generation.

- Secure $F: \{0,1\}^n \to \{0,1\}^n$
- Define $F': \{0,1\}^{n-1} \to \{0,1\}^{2n}$:

$$F'(x) = F(0,x)||F(1,x)|$$

■ Now $G: \{0,1\}^{2n-2} \to \{0,1\}^{2n}$:

$$G(x,y) = F'(x) + F'(y)$$

Theorem (GGHPV20)

Any DS for 3SUM-Indexing must have $S \ge \Omega(N^{1+1/T})$

Theorem (GGHPV20)

Any DS for 3SUM-Indexing must have $S \ge \Omega(N^{1+1/T})$

■ For provable cryptographic security, we need stronger lower bounds

Theorem (GGHPV20)

Any DS for 3SUM-Indexing must have $S \ge \Omega(N^{1+1/T})$

- For provable cryptographic security, we need stronger lower bounds
- But there is a barrier...

Theorem (GGHPV20)

Any DS for 3SUM-Indexing must have $S \ge \Omega(N^{1+1/T})$

- For provable cryptographic security, we need stronger lower bounds
- But there is a barrier... in circuit complexity

CIRCUIT COMPLEXITY

BOOLEAN CIRCUITS

$$f: \{0,1\}^n \to \{0,1\}^n$$

$$g_1 = X_1 \oplus X_2$$

$$g_2 = X_2 \wedge X_3$$

$$g_3 = g_1 \vee g_2$$

$$g_4 = g_2 \vee 1$$

$$g_5 = g_3 \equiv g_4$$

BOOLEAN CIRCUITS

$$f: \{0,1\}^n \to \{0,1\}^n$$

$$g_1 = x_1 \oplus x_2$$

$$g_2 = x_2 \wedge x_3$$

$$g_3 = g_1 \vee g_2$$

$$g_4 = g_2 \vee 1$$

$$g_5 = g_3 \equiv g_4$$

BOOLEAN CIRCUITS

$$f: \{0,1\}^n \to \{0,1\}^n$$

Inputs:

x₁,...,x_n,0,1
Gates:
binary
functions
Fan-out:
unbounded
Depth:
unbounded

Most functions have exponential circuit complexity

Most functions have exponential circuit complexity

We want to prove super-polynomial lower bounds

Most functions have exponential circuit complexity

We want to prove super-polynomial lower bounds (for a function from NP)

Most functions have exponential circuit complexity

We want to prove super-polynomial lower bounds (for a function from NP)

We can prove only $\approx 3n$ lower bounds

Most functions have exponential circuit complexity

We want to prove super-polynomial lower bounds (for a function from NP)

We can prove only $\approx 3n$ lower bounds (even for a function from E^{NP})

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

Two *n*-bit integers can be multiplied by a circuit of size $O(n \log n)$ [SS71,F07,HH19]

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

- Two *n*-bit integers can be multiplied by a circuit of size $O(n \log n)$ [SS71,F07,HH19]
- Discrete Fourier Transform of a sequence of length *n* can be computed by a circuit of size *O*(*n* log *n*)

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

- Two *n*-bit integers can be multiplied by a circuit of size $O(n \log n)$ [SS71,F07,HH19]
- Discrete Fourier Transform of a sequence of length *n* can be computed by a circuit of size *O*(*n* log *n*)
- Shifts, Permutations

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

- Two *n*-bit integers can be multiplied by a circuit of size $O(n \log n)$ [SS71,F07,HH19]
- Discrete Fourier Transform of a sequence of length *n* can be computed by a circuit of size *O*(*n* log *n*)
- Shifts, Permutations
- NP-hard problems

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

- Two *n*-bit integers can be multiplied by a circuit of size $O(n \log n)$ [SS71,F07,HH19]
- Discrete Fourier Transform of a sequence of length *n* can be computed by a circuit of size *O*(*n* log *n*)
- Shifts, Permutations
- NP-hard problems
- . . .

LINEAR-SIZE CIRCUITS [VAL77]

LINEAR-SIZE CIRCUITS [VAL77]

LINEAR-SIZE CIRCUITS [VAL77]

COMPARISON

Small Circuits

Theorem (DGW19)

Any improvement on the current lower bound for a linear data structure problem implies new lower bounds for circuits, and vice versa.

Theorem (DGW19)

Any improvement on the current lower bound for a linear data structure problem implies new lower bounds for circuits, and vice versa.

Linear problem is defined by a matrix $M \in \mathbb{F}^{m \times n}$. Data structure problem: given $x \in \mathbb{F}^n$ output $Mx \in \mathbb{F}^m$

Theorem (DGW19)

Any improvement on the current lower bound for a linear data structure problem implies new lower bounds for circuits, and vice versa.

Linear problem is defined by a matrix $M \in \mathbb{F}^{m \times n}$. Data structure problem: given $\mathbf{x} \in \mathbb{F}^n$ output $M\mathbf{x} \in \mathbb{F}^m$

Examples: Polynomial evaluation, Matrix-vector multiplication, Range counting, Partial sums, . . .

COMPARISON

Small circuit / Non-rigid

$$M = A + B$$
t-sparse $rk \le \varepsilon n$

COMPARISON

Small circuit / Non-rigid

Efficient Data Structure

$$M = A \cdot B$$
t-sparse small

Theorem (DGW19)

Any improvement on the current lower bound for a linear data structure problem implies new lower bounds for circuits, and vice versa.

Thank you for your attention!