DATA STRUCTURES MEET
CIRCUITS AND CRYPTOGRAPHY

Alexander Golovnev, Georgetown University

SACC 2021

MOTIVATING QUESTION

What resources are required to solve a given
computational problem?

MOTIVATING QUESTION

What resources are required to solve a given
computational problem?

MOTIVATING QUESTION

What resources are required to solve a given
computational problem?

MOTIVATING QUESTION

What resources are required to solve a given
computational problem?

MOTIVATING QUESTION

What resources are required to solve a given
computational problem?

MOTIVATING QUESTION

What resources are required to solve a given
computational problem?

Randomness

OUTLINE

What resources are required to solve a given
computational problem?

Space
Data Structures

Data Randomness
Learning Crypto

OUTLINE

What resources are required to solve a given
computational problem?

Space
Data Structures
Data Randomness
Learning Crypto

OUTLINE

What resources are required to solve a given
computational problem?

Data Randomness
Learning Crypto

OUTLINE

What resources are required to solve a given
computational problem?

OR

Data
Learning

0¢AdHDH

OUTLINE

What resources are required to solve a given
computational problem?

(@)
(@)
==
o
<
N
o

Data
Learning

DATA STRUCTURES

EXAMPLES

Stack, Queue, List, Heap

Search Trees

hash(unsigned x) {
A= x >> (W-m);

N ?etirﬁ (:*S‘)’ ZZ’(W-W); H aS h Ta b leS

STATIC DATA STRUCTURES. EXAMPLES

B Graph Distances: Preprocess a road network in order to
efficiently compute distances between cities
(Google Maps)

STATIC DATA STRUCTURES. EXAMPLES

B Graph Distances: Preprocess a road network in order to
efficiently compute distances between cities
(Google Maps)

B Nearest Neighbors: Preprocess a set of points in order
to efficiently find closest point to a query point
(Netflix recommendations)

STATIC DATA STRUCTURES. EXAMPLES

B Graph Distances: Preprocess a road network in order to
efficiently compute distances between cities
(Google Maps)

B Nearest Neighbors: Preprocess a set of points in order
to efficiently find closest point to a query point
(Netflix recommendations)

B Range Counting: Preprocess a set of points in order to
efficiently compute the number of points in a given
rectangle
(Amazon market size estimation)

STATIC DATA STRUCTURES

1 1 1 1 1 1

1
1 1 1 1
1 il 1 1 1 il
1
1 10T K| 1 il
1 107 1 1 T 1 1 1

1

1 1 1

1

STATIC DATA STRUCTURES

Queries

1 1 1 1 1 1

1
1 1 1 1
1 il 1 1 1 il
1
1 10T K| 1 il
1 107 1 1 T 1 1 1

1

1 1 1

1

STATIC DATA STRUCTURES

Queries

Washington — St. Petersburg

STATIC DATA STRUCTURES

Queries

Washington — St. Petersburg

STATIC DATA STRUCTURES

Queries

Washington — St. Petersburg Athens — Vilnius

STATIC DATA STRUCTURES. DEFINITION

STATIC DATA STRUCTURES. DEFINITION

STATIC DATA STRUCTURES. DEFINITION

STATIC DATA STRUCTURES. DEFINITION

Efficient DS:
s =npolylogn
t = polylogn

DS LOWER BOUNDS

m Two trivial solutions:

DS LOWER BOUNDS

m Two trivial solutions:
ES=mt=1

DS LOWER BOUNDS

m Two trivial solutions: gy S G
......... g
mSs=mt=1 =.F?J1::.:P‘n.5
ms=nt=n a0l s

DS LOWER BOUNDS

m Two trivial solutions:
ES=mt=1
ms=nt=n
m There exist problems requirings ~ m ort ~n

DS LOWER BOUNDS

m Two trivial solutions:
ES=mt=1
ms=nt=n
m There exist problems requirings ~ m ort ~n

m Best known concrete lower bound [Sie89]:

=2 gy

DS LOWER BOUNDS

m Two trivial solutions:
ES=mt=1
ms=nt=n
m There exist problems requirings ~ m ort ~n

m Best known concrete lower bound [Sie89]:

=2 gy

ms=0(n) = t>Q(logn)

DS LOWER BOUNDS

m Two trivial solutions:
ES=mt=1
ms=nt=n
m There exist problems requirings ~ m ort ~n

m Best known concrete lower bound [Sie89]:

=2 gy

ms=0(n) = t>Q(logn)

ms=n"" = t>Q()

CRYPTO WITH PREPROCESSING

CRYPTOGRAPHY WITH PREPROCESSING

eas
/% Cryptography requires hard func-

X f(x) tions.

W Secure (one-way) f: {0,1}" — {0, 1}"
ar

10

CRYPTOGRAPHY WITH PREPROCESSING

easy

Cryptography requires hard func-
tions.
Secure (one-way) f: {0,1}" — {0,1}"

Can be broken by preprocessing at-
tacks.
E.g., with space S = 2"

10

CRYPTOGRAPHY WITH PREPROCESSING

easy

Cryptography requires hard func-
tions.
Secure (one-way) f: {0,1}" — {0,1}"

Can be broken by preprocessing at-
tacks.
E.g., with space S = 2"

Can we immunize a function against
large preprocessing? Design
g:{0,1}>" — {0,1}"

which is still secure?

10

DATA STRUCTURES AND CRYPTOGRAPHY

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds (for problems with efficient query gen-
eration).

12

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds (for problems with efficient query gen-
eration).

Examples of such problems include

m 3SUM

m Nearest Neighbors

m Polygon containment
u ...

12

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds (for problems with efficient query gen-
eration).

Examples of such problems include

m 3SUM
Nearest Neighbors

Polygon containment

12

3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay

13

3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay
Foundation of computational geometry.

13

3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay

Foundation of computational geometry. Easy to solve in
time O(n?)

13

3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay
Foundation of computational geometry. Easy to solve in
time O(n?)

Strong 3SUM Conjecture
No o(n?)-algorithm for 3SUM [GO95]

13

3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay
Foundation of computational geometry. Easy to solve in
time O(n?)

Strong 3SUM Conjecture

No o(n?)-algorithm for 3SUM [GO95]

Theorem [BDP08,GP14,C18]

3SUM can be solved in time = n?/ log’ n

13

3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay

Foundation of computational geometry. Easy to solve in
time O(n?)

Strong 3SUM Conjecture
No o(n?)-algorithm for 3SUM [GO95]

Theorem [BDP08,GP14,C18]

3SUM can be solved in time = n?/ log’ n

Modern 3SUM Conjecture
No n'#?-algorithm for 3SUM [GO95] 13

3SUM. DATA STRUCTURE VERSION

3SUM-Indexing

Preprocessa,...,a, into Snumbers, s.t. given b, can check
ai+a=bintimeT

14

3SUM. DATA STRUCTURE VERSION

3SUM-Indexing

Preprocessa,...,a, into Snumbers, s.t. given b, can check
ai+a=bintimeT

Easy to solve with S = n? and T = logn

14

3SUM. DATA STRUCTURE VERSION

3SUM-Indexing

Preprocessa,...,a, into Snumbers, s.t. given b, can check
ai+a=bintimeT

Easy to solve with S = n? and T = logn
Easy to solve withS=nand T=n

14

3SUM. DATA STRUCTURE VERSION

3SUM-Indexing

Preprocessa,...,a, into Snumbers, s.t. given b, can check
ai+a=bintimeT

Easy to solve with S = n? and T = logn
Easy to solve withS=nand T=n

3SUM-Indexing Conjecture [GKLP17]

Any data structure with S = n"%° requires T > Q(n)

14

3SUM. DATA STRUCTURE VERSION

3SUM-Indexing

Preprocessa,...,a, into Snumbers, s.t. given b, can check
ai+a=bintimeT

Easy to solve with S = n? and T = logn
Easy to solve withS=nand T=n

3SUM-Indexing Conjecture [GKLP17]
Any data structure with S = n"%° requires T > Q(n)
Theorem [GGHPV20]

3SUM-Indexing can be solved with S = n™® and T = n°3

14

INVERTING A FUNCTION

B Letf: [N] — [N] be a function

15

INVERTING A FUNCTION

B Letf: [N] — [N] be a function

B Preprocess fin space S, s.t. can invert fintime T

15

INVERTING A FUNCTION

B Letf: [N] — [N] be a function
B Preprocess fin space S, s.t. can invert fintime T

B Invertf: given y find x s.t. f(x) =y

15

INVERTING A FUNCTION

B Letf: [N] — [N] be a function
B Preprocess fin space S, s.t. can invert fintime T
B Invertf: given y find x s.t. f(x) =y

W [H80, FNOO]: Invert a function with S3T = O(N°)

15

INVERTING A FUNCTION

B Letf: [N] — [N] be a function

B Preprocess fin space S, s.t. can invert fintime T
B Invertf: given y find x s.t. f(x) =y

W [H80, FNOO]: Invert a function with S3T = O(N°)

MEg S=T=N/

15

INVERTING A FUNCTION

B Letf: [N] — [N] be a function

B Preprocess fin space S, s.t. can invert fintime T
B Invertf: given y find x s.t. f(x) =y

W [H80, FNOO]: Invert a function with S3T = O(N°)
WEg, S=T=NV/

W Special case: Invert a bijection with S = T = O(v/N)

15

INVERTING A BIJECTION

B Letf: [N] — [N] be a bijection

INVERTING A BIJECTION

B Letf: [N] — [N] be a bijection

W [H80,FN00] invert it in time T = +/N and space S = v/N

INVERTING A BIJECTION

B Letf: [N] — [N] be a bijection
W [H80,FN00] invert it in time T = +/N and space S = v/N

B Let's define a directed graph on N vertices with edges
x = f(x)

INVERTING A BIJECTION

B Letf: [N] — [N] be a bijection
W [H80,FN00] invert it in time T = +/N and space S = v/N

B Let's define a directed graph on N vertices with edges
x = f(x)

B In- and out-degrees of all
vertices are 1

INVERTING A BIJECTION

B Letf: [N] — [N] be a bijection
W [H80,FN00] invert it in time T = +/N and space S = v/N

B Let's define a directed graph on N vertices with edges
x = f(x)

B In- and out-degrees of all Q
vertices are 1 Q

B Thus, this graph is a union
of cycles

INVERTING A BIJECTION

INVERTING A BIJECTION

INVERTING A BIJECTION

INVERTING A BIJECTION

INVERTING A BIJECTION

VN

INVERTING A BIJECTION

VN

Store x landmarks,

INVERTING A BIJECTION

VN

Store x landmarks,

and links) to pre- VN
vious landmarks

VN

INVERTING A BIJECTION

VN
Store x landmarks,
and links) to pre- VN
vious landmarks

space S~ VN
VN

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN

time T~ +/N:

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

INVERTING A BIJECTION

Store x landmarks,

and links) to pre-
vious landmarks

space S~ VN
time T~ V/N:

Invert y = f(x)

DS FOR 3SUM-INDEXING

B Inputay,...,a,

DS FOR 3SUM-INDEXING

B Inputay,...,a,

B Given b, check whether b = a; + a; for some i,

DS FOR 3SUM-INDEXING

B Inputay,...,a,
B Given b, check whether b = a; + a; for some i,

W Definef(i,j)=a;+a;for1<i,j<n

DS FOR 3SUM-INDEXING

B Inputay,...,a,
B Given b, check whether b = a; + a; for some i,
B Definef(i,j))=a;,+ajfor1<i,j<n

m fis easy to compute

DS FOR 3SUM-INDEXING

B Inputay,...,a,
B Given b, check whether b = a; + a; for some i,
B Definef(i,j))=a;,+ajfor1<i,j<n

m fis easy to compute
m Hashing: the domain and range of f are of size n?

DS FOR 3SUM-INDEXING

B Inputa,,...,a,
B Given b, check whether b = a; + a; for some i,
B Definef(i,j))=a;,+ajfor1<i,j<n

m fis easy to compute

m Hashing: the domain and range of f are of size n?
m Inverting f solves 3SUM-Indexing

DS FOR 3SUM-INDEXING

B Inputay,...,a,
B Given b, check whether b = a; + a; for some i,
B Definef(i,j))=a;,+ajfor1<i,j<n

m fis easy to compute

m Hashing: the domain and range of f are of size n?
m Inverting f solves 3SUM-Indexing

B [Hel80, FNOO] gives a way to invert any f which can be
computed efficiently and has small domain and range

DS FOR 3SUM-INDEXING

B Inputay,...,a,
B Given b, check whether b = a; + a; for some i,
B Definef(i,j))=a;,+ajfor1<i,j<n

m fis easy to compute

m Hashing: the domain and range of f are of size n?
m Inverting f solves 3SUM-Indexing

B [Hel80, FNOO] gives a way to invert any f which can be
computed efficiently and has small domain and range

B Can solve 3SUM-Indexing in time T and space S for any
ST=n° Eg,S=n"Yand T=n°3

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds for problems with efficient query gen-
eration.

19

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds for problems with efficient query gen-
eration.

B Secure F: {0,1}" — {0,1}"

19

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds for problems with efficient query gen-
eration.

B Secure F: {0,1}" — {0,1}"
B Define F: {0,1}"" — {0,1}*":

F'(x) = F(0,x)||F(1,x)

19

EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds for problems with efficient query gen-
eration.

B Secure F: {0,1}" — {0,1}"
B Define F: {0,1}"" — {0,1}*":

F'(x) = F(0,x)||F(1,x)

B Now G: {0,1}*"? — {0,1}°"
G(x,y) = F(x) + F(y)

19

NEw DS LOWER BOUNDS

Theorem (GGHPV20)
Any DS for 3SUM-Indexing must have S > Q(N'*1/T)

20

NEw DS LOWER BOUNDS

Theorem (GGHPV20)
Any DS for 3SUM-Indexing must have S > Q(N'*1/T)

B For provable cryptographic security, we need
stronger lower bounds

20

NEw DS LOWER BOUNDS

Theorem (GGHPV20)
Any DS for 3SUM-Indexing must have S > Q(N'*1/T)

B For provable cryptographic security, we need
stronger lower bounds

B But there is a barrier...

20

NEw DS LOWER BOUNDS

Theorem (GGHPV20)
Any DS for 3SUM-Indexing must have S > Q(N'*/T)

B For provable cryptographic security, we need
stronger lower bounds

B But there is a barrier... in circuit complexity

20

CIRCUIT COMPLEXITY

BOOLEAN CIRCUITS

f:{0,1}" — {0,1}"

g1 = X1dX
g2 = X2AX3
g3 = G1V Q2
gs = G2 V1

gs = g3=(3y

22

BOOLEAN CIRCUITS

f:{0,1}" — {0,1}"

g1 = X1dX
g = X2AX3
g3 = G1V Q2
gs = G2 V1

gs = g3 =0

22

BOOLEAN CIRCUITS

g
92
g3
‘n
gs

X1 @ Xo
Xo N\ X3
91V 92
g2 V1

g3 = ga4

f:{0,1}" — {0,1}"

Inputs:

X1y, Xn, 0,1

Gates:
binary
functions
Fan-out:
unbounded
Depth:
unbounded

22

EXPLICIT BOUNDS

Most functions have exponential
circuit complexity

2%

EXPLICIT BOUNDS

P £ NP

Most functions have exponential
circuit complexity

We want to prove super-polynomial
lower bounds

2%

EXPLICIT BOUNDS

P £ NP

Most functions have exponential
circuit complexity

We want to prove super-polynomial
lower bounds

(for a function from NP)

2%

EXPLICIT BOUNDS

P £ NP

Most functions have exponential
circuit complexity

We want to prove super-polynomial
lower bounds

(for a function from NP)

We can prove only ~3n lower
bounds

24

EXPLICIT BOUNDS

P £ NP

Most functions have exponential
circuit complexity

We want to prove super-polynomial
lower bounds

(for a function from NP)

We can prove only ~3n lower
bounds
(even for a function from ENP)

2%

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

B Two n-bit integers can be multiplied by a circuit of size
O(n logn) [SS71,FO7,HH19]

25

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

B Two n-bit integers can be multiplied by a circuit of size
O(n logn) [SS71,FO7,HH19]

B Discrete Fourier Transform of a sequence of length n
can be computed by a circuit of size O(n logn)

25

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

B Two n-bit integers can be multiplied by a circuit of size
O(n logn) [SS71,FO7,HH19]

B Discrete Fourier Transform of a sequence of length n
can be computed by a circuit of size O(n logn)

B Shifts, Permutations

25

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

B Two n-bit integers can be multiplied by a circuit of size
O(n logn) [SS71,FO7,HH19]

B Discrete Fourier Transform of a sequence of length n
can be computed by a circuit of size O(n logn)

B Shifts, Permutations

B NP-hard problems

25

SUPER-LINEAR CIRCUIT LOWER BOUNDS?

B Two n-bit integers can be multiplied by a circuit of size
O(n logn) [SS71,FO7,HH19]

B Discrete Fourier Transform of a sequence of length n
can be computed by a circuit of size O(n logn)

B Shifts, Permutations
B NP-hard problems

25

LINEAR-SIZE CIRCUITS [VAL77]

26

LINEAR-SIZE CIRCUITS [VAL77]

26

LINEAR-SIZE CIRCUITS [VAL77]

26

COMPARISON

Efficient
Data
Structures

Small Cir-
cuits

28

EQUIVALENCE

Theorem (DGW19)

Any improvement on the current lower bound for a lin-
ear data structure problem implies new lower bounds for
circuits, and vice versa.

29

EQUIVALENCE

Theorem (DGW19)

Any improvement on the current lower bound for a lin-
ear data structure problem implies new lower bounds for
circuits, and vice versa.

Linear problem is defined by a matrix M € F™*". Data
structure problem: given x € F" output Mx € F™

29

EQUIVALENCE

Theorem (DGW19)

Any improvement on the current lower bound for a lin-
ear data structure problem implies new lower bounds for
circuits, and vice versa.

Linear problem is defined by a matrix M € F™*". Data
structure problem: given x € F" output Mx € F™

Examples: Polynomial evaluation, Matrix-vector
multiplication, Range counting, Partial sums, ...

29

COMPARISON

Small circuit / Non-rigid

m X n mXxXn

M=A+B

/ ™~
t-sparse rk <en

31

COMPARISON

Small circuit / Non-rigid

mXxXn
m X n mXxXn

M=A+B

/ ™~
t-sparse rk <en

Efficient Data Structure

mXs
m X n sXn

M=A-B
/
t-sparse small

31

EQUIVALENCE

Theorem (DGW19)

Any improvement on the current lower bound for a lin-
ear data structure problem implies new lower bounds for
circuits, and vice versa.

33

Thank you for your attention!

	Data Structures
	Crypto with Preprocessing
	Circuit Complexity

