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EXAMPLES

Stack, Queue, List, Heap

Search Trees

hash(unsigned x) {
A= x >> (W-m);

N ?etirﬁ (:*S‘)’ ZZ’(W-W); H aS h Ta b leS
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B Graph Distances: Preprocess a road network in order to
efficiently compute distances between cities
(Google Maps)

B Nearest Neighbors: Preprocess a set of points in order
to efficiently find closest point to a query point
(Netflix recommendations)

B Range Counting: Preprocess a set of points in order to
efficiently compute the number of points in a given
rectangle
(Amazon market size estimation)
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Queries

Washington — St. Petersburg Athens — Vilnius
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Efficient DS:
s =npolylogn
t = polylogn
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DS LOWER BOUNDS

m Two trivial solutions:
ES=mt=1
ms=nt=n
m There exist problems requirings ~ m ort ~n

m Best known concrete lower bound [Sie89]:

=2 gy

ms=0(n) = t>Q(logn)

ms=n"" = t>Q()
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CRYPTOGRAPHY WITH PREPROCESSING

easy

Cryptography requires hard func-
tions.
Secure (one-way) f: {0,1}" — {0,1}"

Can be broken by preprocessing at-
tacks.
E.g., with space S = 2"

Can we immunize a function against
large preprocessing? Design
g:{0,1}>" — {0,1}"

which is still secure?
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m 3SUM
Nearest Neighbors

Polygon containment

12



3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay

13



3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay
Foundation of computational geometry.

13



3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay

Foundation of computational geometry. Easy to solve in
time O(n?)

13



3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay
Foundation of computational geometry. Easy to solve in
time O(n?)

Strong 3SUM Conjecture
No o(n?)-algorithm for 3SUM [GO95]

13



3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay
Foundation of computational geometry. Easy to solve in
time O(n?)

Strong 3SUM Conjecture

No o(n?)-algorithm for 3SUM [GO95]

Theorem [BDP08,GP14,C18]

3SUM can be solved in time = n?/ log’ n

13



3SUM. ALGORITHMIC VERSION

3SUM

Given ay, ..., a,, check whether there exist a; + a; = ay

Foundation of computational geometry. Easy to solve in
time O(n?)

Strong 3SUM Conjecture
No o(n?)-algorithm for 3SUM [GO95]

Theorem [BDP08,GP14,C18]

3SUM can be solved in time = n?/ log’ n

Modern 3SUM Conjecture
No n'#?-algorithm for 3SUM [GO95] 13
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3SUM. DATA STRUCTURE VERSION

3SUM-Indexing

Preprocessa,...,a, into Snumbers, s.t. given b, can check
ai+a=bintimeT

Easy to solve with S = n? and T = logn
Easy to solve withS=nand T=n

3SUM-Indexing Conjecture [GKLP17]
Any data structure with S = n"%° requires T > Q(n)
Theorem [GGHPV20]

3SUM-Indexing can be solved with S = n™® and T = n°3
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INVERTING A FUNCTION

B Letf: [N] — [N] be a function

B Preprocess fin space S, s.t. can invert fintime T
B Invertf: given y find x s.t. f(x) =y

W [H80, FNOO]: Invert a function with S3T = O(N°)
WEg, S=T=NV/

W Special case: Invert a bijection with S = T = O(v/N)

15
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INVERTING A BIJECTION

B Letf: [N] — [N] be a bijection
W [H80,FN00] invert it in time T = +/N and space S = v/N

B Let's define a directed graph on N vertices with edges
x = f(x)

B In- and out-degrees of all Q
vertices are 1 Q

B Thus, this graph is a union
of cycles
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DS FOR 3SUM-INDEXING

B Inputay,...,a,
B Given b, check whether b = a; + a; for some i,
B Definef(i,j))=a;,+ajfor1<i,j<n

m fis easy to compute

m Hashing: the domain and range of f are of size n?
m Inverting f solves 3SUM-Indexing

B [Hel80, FNOO] gives a way to invert any f which can be
computed efficiently and has small domain and range

B Can solve 3SUM-Indexing in time T and space S for any
ST=n° Eg,S=n"Yand T=n°3
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EQUIVALENCE

Theorem (GGHPV20)

Cryptography with preprocessing is equivalent to data struc-
ture lower bounds for problems with efficient query gen-
eration.

B Secure F: {0,1}" — {0,1}"
B Define F: {0,1}"" — {0,1}*":

F'(x) = F(0,x)||F(1,x)

B Now G: {0,1}*"? — {0,1}°"
G(x,y) = F(x) + F(y)

19
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NEw DS LOWER BOUNDS

Theorem (GGHPV20)
Any DS for 3SUM-Indexing must have S > Q(N'*/T)

B For provable cryptographic security, we need
stronger lower bounds

B But there is a barrier... in circuit complexity

20
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g1 = X1dX
g = X2AX3
g3 = G1V Q2
gs = G2 V1

gs = g3 =0
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BOOLEAN CIRCUITS

g
92
g3
‘n
gs

X1 @ Xo
Xo N\ X3
91V 92
g2 V1

g3 = ga4

f:{0,1}" — {0,1}"

Inputs:

X1y, Xn, 0,1

Gates:
binary
functions
Fan-out:
unbounded
Depth:
unbounded

22
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EXPLICIT BOUNDS

P £ NP

Most functions have exponential
circuit complexity

We want to prove super-polynomial
lower bounds

(for a function from NP)

We can prove only ~3n lower
bounds
(even for a function from ENP)

2%
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COMPARISON

Efficient
Data
Structures

Small Cir-
cuits
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EQUIVALENCE

Theorem (DGW19)

Any improvement on the current lower bound for a lin-
ear data structure problem implies new lower bounds for
circuits, and vice versa.

Linear problem is defined by a matrix M € F™*". Data
structure problem: given x € F" output Mx € F™

Examples: Polynomial evaluation, Matrix-vector
multiplication, Range counting, Partial sums, ...

29
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COMPARISON

Small circuit / Non-rigid

mXxXn
m X n mXxXn

M=A+B

/ ™~
t-sparse  rk <en

Efficient Data Structure

mXs
m X n sXn

M=A-B
/
t-sparse small
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EQUIVALENCE

Theorem (DGW19)

Any improvement on the current lower bound for a lin-
ear data structure problem implies new lower bounds for
circuits, and vice versa.
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Thank you for your attention!
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