
A Gersten complex on real schemes

Fangzhou Jin
joint work with H. Xie

February 5, 2021

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Table of contents

1 Duality in algebraic geometry

2 Witt groups and real schemes

3 Gersten complex and duality

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Grothendieck’s coherent Duality

All schemes are assumed noetherian of finite dimension

Coherent duality: introduced by Grothendieck (1963) as a
generalization of Serre duality

Serre duality Coherent duality

regular (Cohen-Macaulay) schemes singular schemes

sheaves complexes of sheaves
dualizing sheaf dualizing complex

Grothendieck also adapts the relative point of view:

projective varieties 7→ proper morphisms

Coherent duality is a prototype for several other duality
theories
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Other dualities

Etale duality (SGA4-5)

Verdier duality (1966), based on Borel-Moore (1960)

A1-homotopic duality (∼00’s)

Duality Spaces Category

coherent duality Schemes Db
coh(Qcoh(X ))

Etale duality Schemes Db(Xet ,Λ)

Verdier duality Topological spaces Db(X ,Z)

A1-homotopy Schemes Motivic categories

The duality theorems can be expressed in terms of the
Grothendieck six functors formalism

Major differences between Coherent duality and other duality
theories
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Similarities between dualities

Six functors: f ∗, Rf∗, Rf!, f
!, ⊗L, RHom

Similarities:

Poincaré duality: for a smooth morphism f , f ! differs from f ∗

by an “orientation sheaf”

Atiyah duality: Rf∗ for f a smooth proper morphism preserves
dualizable objects

Notion of dualizing objects and local (bi)duality

Two dualizing objects on a given space differ by a ⊗-invertible
object up to a shift

Dualizing objects are preserved by f !
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Differences between coherent and étale/motivic dualities

Base changes:

Coherent duality: very general base changes (e.g. flat base
change)
Other dualities: basically only smooth base change

Purity: compare i∗ and i ! for i a regular closed immersion
Coherent duality: Fundamental local isomorphism

i∗(−)⊗L (det(Ni ))−1 ' i !(−)

Other dualities: purity transformation (Déglise-J.-Khan)

i∗(−)⊗L Th(Ni )
−1 → i !(−)

not an isomorphism in general (see absolute purity)

In coherent duality, the functor Rf! does not exist
Projection formula: f proper,

Rf∗RHom(F , f !G) ' RHom(Rf∗F ,G)

In coherent duality, no suitable subcategory of constructible
objects preserved by 6 functors
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Dualizing complexes

A (coherent) dualizing complex over a scheme X is a complex
K ∈ Db

coh(Qcoh(X )) quasi-isomorphic to a bounded complex of
injective OX -modules, such that for any F ∈ Db

coh(Qcoh(X )),

F ' RHom(RHom(F ,K ),K )

X Gorenstein ⇔ OX is a dualizing complex
In particular if X regular ⇒ OX is a dualizing complex

f : Y → X quasi-projective, K dualizing complex over X
⇒ f !K dualizing complex over Y

If K and K ′ are two dualizing complexes over X , then
K ′ = K ⊗ L[n], where n ∈ Z, L invertible OX -module

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Dualizing complexes

A (coherent) dualizing complex over a scheme X is a complex
K ∈ Db

coh(Qcoh(X )) quasi-isomorphic to a bounded complex of
injective OX -modules, such that for any F ∈ Db

coh(Qcoh(X )),

F ' RHom(RHom(F ,K ),K )

X Gorenstein ⇔ OX is a dualizing complex

In particular if X regular ⇒ OX is a dualizing complex

f : Y → X quasi-projective, K dualizing complex over X
⇒ f !K dualizing complex over Y

If K and K ′ are two dualizing complexes over X , then
K ′ = K ⊗ L[n], where n ∈ Z, L invertible OX -module

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Dualizing complexes

A (coherent) dualizing complex over a scheme X is a complex
K ∈ Db

coh(Qcoh(X )) quasi-isomorphic to a bounded complex of
injective OX -modules, such that for any F ∈ Db

coh(Qcoh(X )),

F ' RHom(RHom(F ,K ),K )

X Gorenstein ⇔ OX is a dualizing complex
In particular if X regular ⇒ OX is a dualizing complex

f : Y → X quasi-projective, K dualizing complex over X
⇒ f !K dualizing complex over Y

If K and K ′ are two dualizing complexes over X , then
K ′ = K ⊗ L[n], where n ∈ Z, L invertible OX -module

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Dualizing complexes

A (coherent) dualizing complex over a scheme X is a complex
K ∈ Db

coh(Qcoh(X )) quasi-isomorphic to a bounded complex of
injective OX -modules, such that for any F ∈ Db

coh(Qcoh(X )),

F ' RHom(RHom(F ,K ),K )

X Gorenstein ⇔ OX is a dualizing complex
In particular if X regular ⇒ OX is a dualizing complex

f : Y → X quasi-projective, K dualizing complex over X
⇒ f !K dualizing complex over Y

If K and K ′ are two dualizing complexes over X , then
K ′ = K ⊗ L[n], where n ∈ Z, L invertible OX -module

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Dualizing complexes (II)

A dualizing complex carries local information at each point:

K dualizing complex over X , x ∈ X

Kx ∈ Db(OX ,x) stalk of K at x

πx : Spec(k(x))→ Spec(OX ,x)

π!xKx ∈ Db(k(x)) is a dualizing complex over k(x)
⇒ there exist a unique µK (x) ∈ Z and a 1-dimensional
k(x)-vector space Kk(x) such that π!xKx ' Kk(x)[−µK (x)]

The map x 7→ µK (x) defines a codimension function on X

In particular, a scheme with a dualizing complex is universally
catenary and has a codimension function
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Triangulated Witt groups

X scheme, for A = Vect(X ) or Coh(X ),

Db(A) = Kb(A)/quasi− isomorphisms

L invertible OX -module ⇒ (Db(Vect(X )),RHom(−,L)) is a
triangulated category with duality
K dualizing complex on X ⇒ same for
(Db(Coh(X )),RHom(−,K ))

T triangulated category with duality

W (T ) = (⊕{symmetric spaces})/{metabolic spaces}

W (X ,L) = W (Db(Vect(X )),RHom(−,L))
(triangulated) Witt group

W̃ (X ,K ) = W (Db(Coh(X )),RHom(−,K ))
coherent Witt group
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Fundamental ideal and Witt sheaf

W (X ) = W (X ,OX )

C (X ,Z/2) = continuous (=locally constant) functions

(reduced) rank homomorphism rk : W (X )→ C (X ,Z/2)

fundamental ideal I (X ) = ker(rk)

I j(X )
2−→ I j+1(X ) induces

W (X ) = I 0(X )
2−→ I 1(X )

2−→ I 2(X )
2−→ · · · −→ I∞(X ) = colim I j(X )

We have W [1/2] ' I [1/2] ' · · · ' I∞[1/2]

Witt sheaf: W = sheaf associated to the presheaf U 7→W (U)
Similarly we define I j , I∞

For j > dim(X ) + 1, I j ' I j+1.
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Real schemes

The real spectrum of a ring A is a topological space Sper(A)

Sper(A) = {ξ = (p,P)|p ∈ Spec(A),P ordering on k(p)}

Topology generated by opens, for a ∈ A

D(a) = {ξ ∈ Sper(A)|a(ξ) > 0}

The real scheme Xr associated to a scheme X is a topological
space obtained by gluing real spectra of rings

Xr = {(x ,P)|x ∈ X ,P ordering on k(x)}

X quasi-compact quasi-separated ⇒ Xr is a spectral space
(Hochster: S is a spectral space ⇔ S homeomorphic to a
Zariski spectrum ⇔ S is a limit of finite T0 spaces)

Xr depends functorially on X : f : X → Y⇒ fr : Xr → Yr
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Real schemes and real algebraic geometry

The real schemes are important in real algebraic geometry:

The constructible subsets of Sper(A) are boolean
combinations of the D(a)’s (finite unions, finite intersections,
complements)

The constructible subsets U ⊂ Xr are such that U ∩ Sper(A)
is constructible in Sper(A) for any affine open Sper(A) of Xr

Example: If X is separated of finite type over the real
numbers R, then the constructible subsets of Xr are precisely
the semi-algebraic subsets of X (R)
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The real étale site

The real étale site Xret is the category of étale X -schemes
endowed with the Grothendieck topology where covering
families are those which induce a surjection on real schemes

It originates from the study of relations between étale
cohomology with Z/2-coefficients and orderings of residue
fields (Colliot-Thélène-Parimala, Coste-Roy, Scheiderer,...)

The real étale topology is finer than the Nisnevich topology,
but not comparable with the étale topology

Theorem (Coste-Roy, Scheiderer)

There is a canonical equivalence of sites Xr ' Xret .

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



The real étale site

The real étale site Xret is the category of étale X -schemes
endowed with the Grothendieck topology where covering
families are those which induce a surjection on real schemes

It originates from the study of relations between étale
cohomology with Z/2-coefficients and orderings of residue
fields (Colliot-Thélène-Parimala, Coste-Roy, Scheiderer,...)

The real étale topology is finer than the Nisnevich topology,
but not comparable with the étale topology

Theorem (Coste-Roy, Scheiderer)

There is a canonical equivalence of sites Xr ' Xret .

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



The real étale site

The real étale site Xret is the category of étale X -schemes
endowed with the Grothendieck topology where covering
families are those which induce a surjection on real schemes

It originates from the study of relations between étale
cohomology with Z/2-coefficients and orderings of residue
fields (Colliot-Thélène-Parimala, Coste-Roy, Scheiderer,...)

The real étale topology is finer than the Nisnevich topology,
but not comparable with the étale topology

Theorem (Coste-Roy, Scheiderer)

There is a canonical equivalence of sites Xr ' Xret .

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



The real étale site

The real étale site Xret is the category of étale X -schemes
endowed with the Grothendieck topology where covering
families are those which induce a surjection on real schemes

It originates from the study of relations between étale
cohomology with Z/2-coefficients and orderings of residue
fields (Colliot-Thélène-Parimala, Coste-Roy, Scheiderer,...)

The real étale topology is finer than the Nisnevich topology,
but not comparable with the étale topology

Theorem (Coste-Roy, Scheiderer)

There is a canonical equivalence of sites Xr ' Xret .

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Jacobson’s theorem

Global signature map

Sign : W (X )→ C (Xr ,Z)

[φ] 7→ ((x ,P) 7→ SignP([i∗xφ]))

Theorem (Jacobson)

If 2 ∈ O(X )×, this induces an isomorphism of ret-sheaves

I∞ ' ZXr

In particular, W [1/2] ' Z[1/2]Xr

Sketch of proof: reduce to local rings, then use Hoobler’s trick
to reduce to fields, then apply the Arason-Knebusch theorem

Jacobson’s theorem can be extended to the twisted setting
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Twisting by invertible sheaves

(X ,OX ) ringed space, L invertible OX -module, F sheaf on X
with an action of O×X , define F(L) as the sheafification of

U 7→ F(U)⊗Z[O×
X (U)] Z[L(U)×]

A trivialization of L induces F(L) ' F , in particular this
always holds locally

Similarly we define ZXr (L) locally constant sheaf on Xr

Theorem (Hornbostel-Wendt-Xie-Zibrowius)

There are canonical isomorphisms

I∞(−,L) ' I∞(L) ' ZXr (L)

{twisted Witt sheaves} ↔ {twisted constant sheaves on Xr}
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Real schemes and motivic homotopy

Real schemes are closely related to motivic homotopy:

Theorem (Bachmann)

There is a canonical equivalence D(Xr ) ' DA1
(X )[ρ−1]

The A1-derived category DA1
(X ) is obtained from

PSh(Sm/X ,C (Ab)) by Nisnevich-A1 localization and
P1-stabilization
ρ : Z→ Gm is induced by −1 ∈ Gm

In particular, X 7→ D(Xr ) is a motivic category and satisfies
the six functors formalism
Constructible objects Dc(Xr ) ⊂ D(Xr ) thick subcategory
generated by Rf!f

!ZXr for f : Y → X smooth

Theorem (J.)

A ∈ Dc(Xr ) ⇔ ∃ finite stratification of Xr into constructible
subsets Xi such that A|Xi

is constant with perfect stalks
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The Gersten-Witt complex

K dualizing complex on X , the Gersten-Witt complex (Gille,
Plowman, J.-Xie)

⊕
µK (x)=m

W (k(x),Kk(x))
∂−→

⊕
µK (x)=m+1

W (k(x),Kk(x))
∂−→ · · ·

Several ways to construct boundary maps ∂:

Via the filtration by codimension of support on Db
coh(Qcoh(X ))

(Balmer-Walter)
Via the Rost-Schmid boundary (Schmid, Morel)
Theorem (Gille): if 2 ∈ O(X )×, these two coincide

Pass to I∞ and sheafify ⇒ complex C (X , I∞,K )⊕
µK (x)=m

I∞(k(x),Kk(x))
∂−→

⊕
µK (x)=m+1

I∞(k(x),Kk(x))
∂−→ · · ·
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The Gersten-Witt complex and real schemes

sheaves on X sheaves on Xr

twisted Witt sheaf twisted constant sheaves

(sheafified) Gersten-Witt complex ???

Question: Analog of Jacobson’s theorem for dualizing objects?

The real étale duality is quite similar to Verdier duality, via
the following purity results in D(Xr ):

Poincaré duality (J.-Xie): f smooth of relative dimension d ⇒

f ∗r (−)⊗ Z(det(Tf ))[d ] ' f !r (−)

Absolute purity (Scheiderer, J.-Xie): Z ,X regular, i : Z → X
closed immersion of codimension c , N normal bundle of i , F
locally constant constructible (lcc) sheaf on Xr

i !rF ' i∗r F ⊗ Z(det(N)−1)[−c]
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Coniveau spectral sequence and the Cousin complex

X regular excellent, F lcc sheaf on Xr

Coniveau spectral sequence (Grothendieck, Bloch-Ogus,
Scheiderer) degenerates at E2

Ep,q
1 =

⊕
x∈X (p)

Hp+q
xr (Xr ,F) =⇒ Hp+q(Xr ,F)

By absolute purity, the E1-page is the Cousin complex⊕
x∈X (0)

H0(xr ,F(ωx/X ))→
⊕

x∈X (1)

H0(xr ,F(ωx/X ))→ · · ·

where ωx/X = determinant of the normal bundle of
x → Spec(OX ,x)

By sheafifying we get a canonical resolution of F by acyclic
sheaves (Scheiderer, J.-Xie)⊕

x∈X (0)

(ixr )∗F(ωx/X )→
⊕

x∈X (1)

(ixr )∗F(ωx/X )→ · · ·
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Twisted Gersten complex

This suggests that a candidate for (???) should be a complex
of similar form

Twisted residue: R =DVR, F =fraction field, m =maximal
ideal, k = R/m, H = free R-module of rank 1

C (Fr ,Z(HF ))→ C (kr ,Z(Hk ⊗ (m/m2)∗))

is a twisted variant of the sign homomorphism

Twisted transfer: L/F finite field extension, H =
one-dimensional F -vector space

C (Lr ,Z(HomF (L,H)))→ C (Fr ,Z(H))

is defined using the trace form L→ HomF (L,F )
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Twisted Gersten complex (II)

For K dualizing complex on X , we obtain a complex C (Xr ,K )⊕
µK (x)=m

C (k(x)r ,Z(Kk(x)))→
⊕

µK (x)=m+1

C (k(x)r ,Z(Kk(x)))→ · · ·

We show that it is a complex, by comparing to the Witt case

Sheafifying the complex C (Xr ,K ) we obtain a complex
C (Xr ,K ) ∈ D(Xr )⊕

µK (x)=m

(ixr )∗Z(Kk(x))→
⊕

µK (x)=m+1

(ixr )∗Z(Kk(x))→ · · ·

Here ixr : xr → Xr is the canonical map, and the terms
(ixr )∗Z(Kk(x)) look like skyscraper sheaves
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Main theorem

Theorem (J.-Xie)

(A) X excellent regular, L is an invertible OX -module, then
C (Xr ,L) ' Z(L).

(B) The complex C (Xr ,K ) is preserved by f !: X , Y excellent,
f : X → Y quasi-projective

C (Xr , f
!K ) ' f !r C (Yr ,K )

(C) X excellent, the complex C (Xr ,K ) ∈ D(Xr ) is a dualizing
object, i.e. C (Xr ,K ) ∈ Dc(Xr ) is constructible, and the
endofunctor DK = RHom(−,C (Xr ,K )) of Dc(Xr ) satisfies
DK ◦ DK = id

Consequently, K 7→ C (Xr ,K ) gives rise to a map
{dualizing complexes over X} → {dualizing objects in D(Xr )}
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Sketch of the proof

For (A), compare C (Xr ,L) with the Cousin complex and use
a result of Jacobson

For (B), we may assume f is a closed immersion or smooth

f closed immersion: reduce to the Witt case, and prove a
devissage-type result
f smooth: use Poincaré duality and (A), and compare
C (Xr , f

∗K ) with the total complex of a double complex

For (C),

To show C (Xr ,K ) ∈ Dc(Xr ) is constructible, use (A), (B) and
noetherian induction
To show biduality, reduce to show that for any f : Y → X
projective with Y regular

Z ' RHom(RHom(Z, f !C (Xr ,K )), f !C (Xr ,K ))

using resolution of singularities and a lemma of
Cisinski-Déglise. Then apply (A) and (B)
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f smooth: use Poincaré duality and (A), and compare
C (Xr , f

∗K ) with the total complex of a double complex

For (C),

To show C (Xr ,K ) ∈ Dc(Xr ) is constructible, use (A), (B) and
noetherian induction
To show biduality, reduce to show that for any f : Y → X
projective with Y regular

Z ' RHom(RHom(Z, f !C (Xr ,K )), f !C (Xr ,K ))

using resolution of singularities and a lemma of
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Then apply (A) and (B)

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes



Sketch of the proof

For (A), compare C (Xr ,L) with the Cousin complex and use
a result of Jacobson

For (B), we may assume f is a closed immersion or smooth

f closed immersion: reduce to the Witt case, and prove a
devissage-type result
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Relation with topology

Hypercohomology:

H−i (C (X , I∞,K )) ' H−i (C (Xr ,K )) ' H−i (C (Xr ,K ))

The first part is a counterpart of Jacobson’s theorem for
complexes, and the second part is because C (Xr ,K ) is a
complex of acyclic sheaves

Borel-Moore homology: f : X → Spec(R) quasi-projective, L
invertible OX -module

H−i (C (Xr , f
!OSpec(R) ⊗ L)) ' HBM(X (R),L(R))

where L(R) is the associated real line bundle on X (R), and
the right-hand side is the (topological) Borel-Moore homology

If we replace R by a real closed field, we obtain Delfs’
semi-algebraic Borel-Moore homology
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Thank you!
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