A Gersten complex on real schemes

Fangzhou Jin joint work with H. Xie

February 5, 2021

Fangzhou Jin joint work with H. Xie A Gersten complex on real schemes

- Duality in algebraic geometry
- Witt groups and real schemes
- Gersten complex and duality

• All schemes are assumed noetherian of finite dimension

- All schemes are assumed noetherian of finite dimension
- Coherent duality: introduced by Grothendieck (1963) as a generalization of Serre duality

- All schemes are assumed noetherian of finite dimension
- Coherent duality: introduced by Grothendieck (1963) as a generalization of Serre duality

Serre duality	Coherent duality
regular (Cohen-Macaulay) schemes	singular schemes
sheaves	complexes of sheaves
dualizing sheaf	dualizing complex

- All schemes are assumed noetherian of finite dimension
- Coherent duality: introduced by Grothendieck (1963) as a generalization of Serre duality

Serre duality	Coherent duality
regular (Cohen-Macaulay) schemes	singular schemes
sheaves	complexes of sheaves
dualizing sheaf	dualizing complex

• Grothendieck also adapts the relative point of view:

projective varieties \mapsto proper morphisms

- All schemes are assumed noetherian of finite dimension
- Coherent duality: introduced by Grothendieck (1963) as a generalization of Serre duality

Serre duality	Coherent duality
regular (Cohen-Macaulay) schemes	singular schemes
sheaves	complexes of sheaves
dualizing sheaf	dualizing complex

• Grothendieck also adapts the relative point of view:

projective varieties \mapsto proper morphisms

• Coherent duality is a prototype for several other duality theories

• Etale duality (SGA4-5)

- Etale duality (SGA4-5)
- Verdier duality (1966), based on Borel-Moore (1960)

- Etale duality (SGA4-5)
- Verdier duality (1966), based on Borel-Moore (1960)
- \mathbb{A}^1 -homotopic duality (~00's)

- Etale duality (SGA4-5)
- Verdier duality (1966), based on Borel-Moore (1960)
- \mathbb{A}^1 -homotopic duality (~00's)

Duality	Spaces	Category
coherent duality	Schemes	$D^b_{coh}(Qcoh(X))$
Etale duality	Schemes	$D^b(X_{et}, \Lambda)$
Verdier duality	Topological spaces	$D^b(X,\mathbb{Z})$
\mathbb{A}^1 -homotopy	Schemes	Motivic categories

- Etale duality (SGA4-5)
- Verdier duality (1966), based on Borel-Moore (1960)
- \mathbb{A}^1 -homotopic duality (~00's)

Duality	Spaces	Category
coherent duality	Schemes	$D^b_{coh}(Qcoh(X))$
Etale duality	Schemes	$D^b(X_{et}, \Lambda)$
Verdier duality	Topological spaces	$D^b(X,\mathbb{Z})$
\mathbb{A}^1 -homotopy	Schemes	Motivic categories

• The duality theorems can be expressed in terms of the *Grothendieck six functors formalism*

- Etale duality (SGA4-5)
- Verdier duality (1966), based on Borel-Moore (1960)
- \mathbb{A}^1 -homotopic duality (~00's)

Duality	Spaces	Category
coherent duality	Schemes	$D^b_{coh}(Qcoh(X))$
Etale duality	Schemes	$D^b(X_{et}, \Lambda)$
Verdier duality	Topological spaces	$D^b(X,\mathbb{Z})$
\mathbb{A}^1 -homotopy	Schemes	Motivic categories

- The duality theorems can be expressed in terms of the *Grothendieck six functors formalism*
- Major differences between Coherent duality and other duality theories

Six functors: f^* , Rf_* , $Rf_!$, $f^!$, \otimes^L , $R\underline{Hom}$

Six functors: f^* , Rf_* , $Rf_!$, $f^!$, \otimes^L , $R\underline{Hom}$ Similarities: Six functors: f^* , Rf_* , $Rf_!$, $f^!$, \otimes^L , $R\underline{Hom}$ Similarities:

 Poincaré duality: for a smooth morphism f, f! differs from f* by an "orientation sheaf" Six functors: f^* , Rf_* , $Rf_!$, $f^!$, \otimes^L , R<u>Hom</u> Similarities:

- Poincaré duality: for a smooth morphism f, f! differs from f* by an "orientation sheaf"
- Atiyah duality: Rf_{*} for f a smooth proper morphism preserves dualizable objects

Six functors: f^* , Rf_* , $Rf_!$, $f^!$, \otimes^L , $R\underline{Hom}$ Similarities:

- Poincaré duality: for a smooth morphism f, f! differs from f* by an "orientation sheaf"
- Atiyah duality: Rf_{*} for f a smooth proper morphism preserves dualizable objects
- Notion of dualizing objects and local (bi)duality

Six functors: f^* , Rf_* , $Rf_!$, $f^!$, \otimes^L , R<u>Hom</u> Similarities:

- Poincaré duality: for a smooth morphism f, f! differs from f* by an "orientation sheaf"
- Atiyah duality: Rf_{*} for f a smooth proper morphism preserves dualizable objects
- Notion of *dualizing objects* and local (bi)duality
- Two dualizing objects on a given space differ by a ⊗-invertible object up to a shift

Six functors: f^* , Rf_* , $Rf_!$, $f^!$, \otimes^L , R<u>Hom</u> Similarities:

- Poincaré duality: for a smooth morphism f, f! differs from f* by an "orientation sheaf"
- Atiyah duality: Rf_{*} for f a smooth proper morphism preserves dualizable objects
- Notion of dualizing objects and local (bi)duality
- Two dualizing objects on a given space differ by a ⊗-invertible object up to a shift
- Dualizing objects are preserved by f[!]

• Base changes:

- Base changes:
 - Coherent duality: very general base changes (e.g. flat base change)

- Base changes:
 - Coherent duality: very general base changes (e.g. flat base change)
 - Other dualities: basically only smooth base change

- Base changes:
 - Coherent duality: very general base changes (e.g. flat base change)
 - Other dualities: basically only smooth base change
- Purity: compare i^* and $i^!$ for *i* a regular closed immersion

- Base changes:
 - Coherent duality: very general base changes (e.g. flat base change)
 - Other dualities: basically only smooth base change
- Purity: compare i^* and $i^!$ for *i* a regular closed immersion
 - Coherent duality: Fundamental local isomorphism

$$i^*(-)\otimes^L (\det(N_i))^{-1}\simeq i^!(-)$$

- Base changes:
 - Coherent duality: very general base changes (e.g. flat base change)
 - Other dualities: basically only smooth base change
- Purity: compare i^* and $i^!$ for *i* a regular closed immersion
 - Coherent duality: Fundamental local isomorphism

$$i^*(-)\otimes^L (\det(N_i))^{-1}\simeq i^!(-)$$

• Other dualities: purity transformation (Déglise-J.-Khan) $i^*(-) \otimes^L Th(N_i)^{-1} \rightarrow i^!(-)$

not an isomorphism in general (see absolute purity)

- Base changes:
 - Coherent duality: very general base changes (e.g. flat base change)
 - Other dualities: basically only smooth base change
- Purity: compare i^* and $i^!$ for *i* a regular closed immersion
 - Coherent duality: Fundamental local isomorphism

$$i^*(-)\otimes^L (\det(N_i))^{-1}\simeq i^!(-)$$

• Other dualities: purity transformation (Déglise-J.-Khan) $i^*(-) \otimes^L Th(N_i)^{-1} \rightarrow i^!(-)$

not an isomorphism in general (see absolute purity)

• In coherent duality, the functor Rf1 does not exist

- Base changes:
 - Coherent duality: very general base changes (e.g. flat base change)
 - Other dualities: basically only smooth base change
- Purity: compare i^* and $i^!$ for i a regular closed immersion
 - Coherent duality: Fundamental local isomorphism

$$i^*(-)\otimes^L (\det(N_i))^{-1}\simeq i^!(-)$$

• Other dualities: purity transformation (Déglise-J.-Khan) $i^*(-)\otimes^L Th(N_i)^{-1} \to i^!(-)$

not an isomorphism in general (see absolute purity)

• In coherent duality, the functor *Rf*₁ does not exist Projection formula: *f* proper,

$$Rf_*R\underline{Hom}(\mathcal{F}, f^!\mathcal{G}) \simeq R\underline{Hom}(Rf_*\mathcal{F}, \mathcal{G})$$

• In coherent duality, no suitable subcategory of *constructible objects* preserved by 6 functors

 $\mathcal{F} \simeq R\underline{Hom}(R\underline{Hom}(\mathcal{F}, K), K)$

$$\mathcal{F} \simeq R\underline{Hom}(R\underline{Hom}(\mathcal{F},K),K)$$

• X Gorenstein $\Leftrightarrow \mathcal{O}_X$ is a dualizing complex

$$\mathcal{F} \simeq R\underline{Hom}(R\underline{Hom}(\mathcal{F},K),K)$$

- X Gorenstein ⇔ O_X is a dualizing complex
 In particular if X regular ⇒ O_X is a dualizing complex
- *f* : *Y* → *X* quasi-projective, *K* dualizing complex over *X* ⇒ *f*[!]*K* dualizing complex over *Y*

$$\mathcal{F} \simeq R\underline{Hom}(R\underline{Hom}(\mathcal{F},K),K)$$

- X Gorenstein $\Leftrightarrow \mathcal{O}_X$ is a dualizing complex In particular if X regular $\Rightarrow \mathcal{O}_X$ is a dualizing complex
- *f* : *Y* → *X* quasi-projective, *K* dualizing complex over *X* ⇒ *f*[!]*K* dualizing complex over *Y*
- If K and K' are two dualizing complexes over X, then $K' = K \otimes \mathcal{L}[n]$, where $n \in \mathbb{Z}$, \mathcal{L} invertible \mathcal{O}_X -module

A dualizing complex carries local information at each point:

A dualizing complex carries local information at each point:

• *K* dualizing complex over *X*, $x \in X$

Dualizing complexes (II)

A dualizing complex carries local information at each point:

- K dualizing complex over X, $x \in X$
- $K_x \in D^b(\mathcal{O}_{X,x})$ stalk of K at x

Dualizing complexes (II)

A dualizing complex carries local information at each point:

- K dualizing complex over X, $x \in X$
- $K_x \in D^b(\mathcal{O}_{X,x})$ stalk of K at x
- $\pi_x : \operatorname{Spec}(k(x)) \to \operatorname{Spec}(\mathcal{O}_{X,x})$
- K dualizing complex over X, $x \in X$
- $K_x \in D^b(\mathcal{O}_{X,x})$ stalk of K at x
- $\pi_x : \operatorname{Spec}(k(x)) \to \operatorname{Spec}(\mathcal{O}_{X,x})$
- $\pi_x^! K_x \in D^b(k(x))$ is a dualizing complex over k(x)

- K dualizing complex over X, $x \in X$
- $K_x \in D^b(\mathcal{O}_{X,x})$ stalk of K at x
- $\pi_x : \operatorname{Spec}(k(x)) \to \operatorname{Spec}(\mathcal{O}_{X,x})$
- π[!]_xK_x ∈ D^b(k(x)) is a dualizing complex over k(x)
 ⇒ there exist a unique μ_K(x) ∈ Z and a 1-dimensional k(x)-vector space K_{k(x)} such that π[!]_xK_x ≃ K_{k(x)}[-μ_K(x)]

- K dualizing complex over X, $x \in X$
- $K_x \in D^b(\mathcal{O}_{X,x})$ stalk of K at x
- $\pi_x : \operatorname{Spec}(k(x)) \to \operatorname{Spec}(\mathcal{O}_{X,x})$
- π[!]_xK_x ∈ D^b(k(x)) is a dualizing complex over k(x)
 ⇒ there exist a unique μ_K(x) ∈ Z and a 1-dimensional k(x)-vector space K_{k(x)} such that π[!]_xK_x ≃ K_{k(x)}[−μ_K(x)]
- The map $x \mapsto \mu_K(x)$ defines a codimension function on X

- K dualizing complex over X, $x \in X$
- $K_x \in D^b(\mathcal{O}_{X,x})$ stalk of K at x
- $\pi_x : \operatorname{Spec}(k(x)) \to \operatorname{Spec}(\mathcal{O}_{X,x})$
- π[!]_xK_x ∈ D^b(k(x)) is a dualizing complex over k(x)
 ⇒ there exist a unique μ_K(x) ∈ Z and a 1-dimensional k(x)-vector space K_{k(x)} such that π[!]_xK_x ≃ K_{k(x)}[−μ_K(x)]
- The map $x \mapsto \mu_{\mathcal{K}}(x)$ defines a codimension function on X
- In particular, a scheme with a dualizing complex is universally catenary and has a codimension function

• X scheme, for
$$\mathcal{A} = Vect(X)$$
 or $Coh(X)$,

 $D^b(\mathcal{A}) = \mathcal{K}^b(\mathcal{A})/\text{quasi-isomorphisms}$

• X scheme, for
$$\mathcal{A} = Vect(X)$$
 or $Coh(X)$,

 $D^b(\mathcal{A}) = \mathcal{K}^b(\mathcal{A})/\text{quasi-isomorphisms}$

L invertible *O_X*-module ⇒ (*D^b*(*Vect*(*X*)), *R<u>Hom</u>(−, <i>L*)) is a triangulated category with duality

• X scheme, for $\mathcal{A} = Vect(X)$ or Coh(X),

 $D^{b}(\mathcal{A}) = \mathcal{K}^{b}(\mathcal{A})/\text{quasi-isomorphisms}$

L invertible *O_X*-module ⇒ (*D^b*(*Vect*(*X*)), *R<u>Hom</u>(−, <i>L*)) is a triangulated category with duality
 K dualizing complex on *X* ⇒ same for
 (*D^b*(*Coh*(*X*)), *R<u>Hom</u>(−, <i>K*))

• X scheme, for
$$\mathcal{A} = Vect(X)$$
 or $Coh(X)$,

 $D^{b}(\mathcal{A}) = \mathcal{K}^{b}(\mathcal{A})/\text{quasi-isomorphisms}$

- *L* invertible *O_X*-module ⇒ (*D^b*(*Vect*(*X*)), *R<u>Hom</u>(−, <i>L*)) is a triangulated category with duality
 K dualizing complex on *X* ⇒ same for
 (*D^b*(*Coh*(*X*)), *R<u>Hom</u>(−, <i>K*))
- $\bullet \ \mathcal{T}$ triangulated category with duality

 $W(\mathcal{T}) = (\oplus \{\text{symmetric spaces}\}) / \{\text{metabolic spaces}\}$

• X scheme, for
$$\mathcal{A} = Vect(X)$$
 or $Coh(X)$,

 $D^{b}(\mathcal{A}) = \mathcal{K}^{b}(\mathcal{A})/\text{quasi-isomorphisms}$

- *L* invertible *O_X*-module ⇒ (*D^b*(*Vect*(*X*)), *R<u>Hom</u>(−, <i>L*)) is a triangulated category with duality
 K dualizing complex on *X* ⇒ same for
 (*D^b*(*Coh*(*X*)), *R<u>Hom</u>(−, <i>K*))
- ${\mathcal T}$ triangulated category with duality

 $W(\mathcal{T}) = (\oplus \{\text{symmetric spaces}\}) / \{\text{metabolic spaces}\}$

 W(X, L) = W(D^b(Vect(X)), R<u>Hom(-, L))</u> (triangulated) Witt group

• X scheme, for
$$\mathcal{A} = Vect(X)$$
 or $Coh(X)$,

 $D^{b}(\mathcal{A}) = \mathcal{K}^{b}(\mathcal{A})/\text{quasi-isomorphisms}$

- *L* invertible *O_X*-module ⇒ (*D^b*(*Vect*(*X*)), *R<u>Hom</u>(−, <i>L*)) is a triangulated category with duality
 K dualizing complex on *X* ⇒ same for
 (*D^b*(*Coh*(*X*)), *R<u>Hom</u>(−, <i>K*))
- ${\mathcal T}$ triangulated category with duality

 $W(\mathcal{T}) = (\oplus \{\text{symmetric spaces}\}) / \{\text{metabolic spaces}\}$

• $W(X, \mathcal{L}) = W(D^{b}(Vect(X)), R\underline{Hom}(-, \mathcal{L}))$ (triangulated) Witt group $\widetilde{W}(X, K) = W(D^{b}(Coh(X)), R\underline{Hom}(-, K))$ coherent Witt group

•
$$W(X) = W(X, \mathcal{O}_X)$$

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions
- (reduced) rank homomorphism $\operatorname{rk} : W(X) \to C(X, \mathbb{Z}/2)$

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions
- (reduced) rank homomorphism $rk : W(X) \rightarrow C(X, \mathbb{Z}/2)$
- fundamental ideal I(X) = ker(rk)

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions
- (reduced) rank homomorphism $rk : W(X) \rightarrow C(X, \mathbb{Z}/2)$
- fundamental ideal I(X) = ker(rk)
- $I^{j}(X) \xrightarrow{2} I^{j+1}(X)$ induces

$$W(X) = I^0(X) \xrightarrow{2} I^1(X) \xrightarrow{2} I^2(X) \xrightarrow{2} \cdots \to I^\infty(X) = \operatorname{colim} I^j(X)$$

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions
- (reduced) rank homomorphism $rk : W(X) \rightarrow C(X, \mathbb{Z}/2)$
- fundamental ideal I(X) = ker(rk)
- $I^{j}(X) \xrightarrow{2} I^{j+1}(X)$ induces

$$W(X) = I^0(X) \xrightarrow{2} I^1(X) \xrightarrow{2} I^2(X) \xrightarrow{2} \cdots \to I^\infty(X) = \operatorname{colim} I^j(X)$$

• We have $W[1/2] \simeq I[1/2] \simeq \cdots \simeq I^\infty[1/2]$

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions
- (reduced) rank homomorphism $rk : W(X) \rightarrow C(X, \mathbb{Z}/2)$
- fundamental ideal I(X) = ker(rk)
- $I^{j}(X) \xrightarrow{2} I^{j+1}(X)$ induces

$$W(X) = I^0(X) \xrightarrow{2} I^1(X) \xrightarrow{2} I^2(X) \xrightarrow{2} \cdots \to I^\infty(X) = \operatorname{colim} I^j(X)$$

- We have $W[1/2] \simeq I[1/2] \simeq \cdots \simeq I^{\infty}[1/2]$
- Witt sheaf: \underline{W} = sheaf associated to the presheaf $U \mapsto W(U)$

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions
- (reduced) rank homomorphism $rk : W(X) \rightarrow C(X, \mathbb{Z}/2)$
- fundamental ideal I(X) = ker(rk)
- $I^{j}(X) \xrightarrow{2} I^{j+1}(X)$ induces

$$W(X) = I^0(X) \xrightarrow{2} I^1(X) \xrightarrow{2} I^2(X) \xrightarrow{2} \cdots \to I^\infty(X) = \operatorname{colim} I^j(X)$$

- We have $W[1/2] \simeq I[1/2] \simeq \cdots \simeq I^\infty[1/2]$
- Witt sheaf: $\underline{W} =$ sheaf associated to the presheaf $U \mapsto W(U)$ Similarly we define \underline{I}^{j} , \underline{I}^{∞}

- $W(X) = W(X, \mathcal{O}_X)$
- $C(X, \mathbb{Z}/2) =$ continuous (=locally constant) functions
- (reduced) rank homomorphism $\operatorname{rk} : W(X) \to C(X, \mathbb{Z}/2)$
- fundamental ideal I(X) = ker(rk)
- $I^{j}(X) \xrightarrow{2} I^{j+1}(X)$ induces

$$W(X) = I^0(X) \xrightarrow{2} I^1(X) \xrightarrow{2} I^2(X) \xrightarrow{2} \cdots \to I^\infty(X) = \operatorname{colim} I^j(X)$$

- We have $W[1/2] \simeq I[1/2] \simeq \cdots \simeq I^\infty[1/2]$
- Witt sheaf: $\underline{W} =$ sheaf associated to the presheaf $U \mapsto W(U)$ Similarly we define \underline{I}^{j} , \underline{I}^{∞}
- For $j \ge \dim(X) + 1$, $\underline{l}^{j} \simeq \underline{l}^{j+1}$.

The *real spectrum* of a ring A is a topological space Sper(A)
 Sper(A) = {ξ = (𝔅, P)|𝔅 ∈ Spec(A), P ordering on k(𝔅)}

The real spectrum of a ring A is a topological space Sper(A)
 Sper(A) = {ξ = (𝔅, P)|𝔅 ∈ Spec(A), P ordering on k(𝔅)}

Topology generated by opens, for $a \in A$ $D(a) = \{\xi \in \operatorname{Sper}(A) | a(\xi) > 0\}$

The *real spectrum* of a ring A is a topological space Sper(A)
 Sper(A) = {ξ = (𝔅, P)|𝔅 ∈ Spec(A), P ordering on k(𝔅)}

Topology generated by opens, for $a \in A$ $D(a) = \{\xi \in \operatorname{Sper}(A) | a(\xi) > 0\}$

• The *real scheme* X_r associated to a scheme X is a topological space obtained by gluing real spectra of rings

 $X_r = \{(x, P) | x \in X, P \text{ ordering on } k(x)\}$

The *real spectrum* of a ring A is a topological space Sper(A)
 Sper(A) = {ξ = (𝔅, P)|𝔅 ∈ Spec(A), P ordering on k(𝔅)}

Topology generated by opens, for $a \in A$ $D(a) = \{\xi \in \operatorname{Sper}(A) | a(\xi) > 0\}$

• The *real scheme* X_r associated to a scheme X is a topological space obtained by gluing real spectra of rings

$$X_r = \{(x, P) | x \in X, P \text{ ordering on } k(x)\}$$

• X quasi-compact quasi-separated $\Rightarrow X_r$ is a spectral space

The *real spectrum* of a ring A is a topological space Sper(A)
 Sper(A) = {ξ = (𝔅, P)|𝔅 ∈ Spec(A), P ordering on k(𝔅)}

Topology generated by opens, for $a \in A$ $D(a) = \{\xi \in \text{Sper}(A) | a(\xi) > 0\}$

• The *real scheme* X_r associated to a scheme X is a topological space obtained by gluing real spectra of rings

 $X_r = \{(x, P) | x \in X, P \text{ ordering on } k(x)\}$

• X quasi-compact quasi-separated $\Rightarrow X_r$ is a spectral space (Hochster: S is a spectral space \Leftrightarrow S homeomorphic to a Zariski spectrum \Leftrightarrow S is a limit of finite T_0 spaces)

The *real spectrum* of a ring A is a topological space Sper(A)
 Sper(A) = {ξ = (𝔅, P)|𝔅 ∈ Spec(A), P ordering on k(𝔅)}

Topology generated by opens, for $a \in A$ $D(a) = \{\xi \in \text{Sper}(A) | a(\xi) > 0\}$

• The *real scheme* X_r associated to a scheme X is a topological space obtained by gluing real spectra of rings

 $X_r = \{(x, P) | x \in X, P \text{ ordering on } k(x)\}$

- X quasi-compact quasi-separated $\Rightarrow X_r$ is a spectral space (Hochster: S is a spectral space $\Leftrightarrow S$ homeomorphic to a Zariski spectrum $\Leftrightarrow S$ is a limit of finite T_0 spaces)
- X_r depends functorially on X: $f: X \to Y \Rightarrow f_r: X_r \to Y_r$

• The *constructible subsets* of Sper(A) are boolean combinations of the D(a)'s (finite unions, finite intersections, complements)

- The *constructible subsets* of Sper(A) are boolean combinations of the D(a)'s (finite unions, finite intersections, complements)
- The constructible subsets U ⊂ X_r are such that U ∩ Sper(A) is constructible in Sper(A) for any affine open Sper(A) of X_r

- The *constructible subsets* of Sper(A) are boolean combinations of the D(a)'s (finite unions, finite intersections, complements)
- The constructible subsets U ⊂ X_r are such that U ∩ Sper(A) is constructible in Sper(A) for any affine open Sper(A) of X_r
- Example: If X is separated of finite type over the real numbers ℝ, then the constructible subsets of X_r are precisely the semi-algebraic subsets of X(ℝ)

• The *real étale site* X_{ret} is the category of étale X-schemes endowed with the Grothendieck topology where covering families are those which induce a surjection on real schemes

- The *real étale site* X_{ret} is the category of étale X-schemes endowed with the Grothendieck topology where covering families are those which induce a surjection on real schemes
- It originates from the study of relations between étale cohomology with Z/2-coefficients and orderings of residue fields (Colliot-Thélène-Parimala, Coste-Roy, Scheiderer,...)

- The *real étale site* X_{ret} is the category of étale X-schemes endowed with the Grothendieck topology where covering families are those which induce a surjection on real schemes
- It originates from the study of relations between étale cohomology with Z/2-coefficients and orderings of residue fields (Colliot-Thélène-Parimala, Coste-Roy, Scheiderer,...)
- The real étale topology is finer than the Nisnevich topology, but not comparable with the étale topology

- The *real étale site* X_{ret} is the category of étale X-schemes endowed with the Grothendieck topology where covering families are those which induce a surjection on real schemes
- It originates from the study of relations between étale cohomology with Z/2-coefficients and orderings of residue fields (Colliot-Thélène-Parimala, Coste-Roy, Scheiderer,...)
- The real étale topology is finer than the Nisnevich topology, but not comparable with the étale topology

Theorem (Coste-Roy, Scheiderer)

There is a canonical equivalence of sites $X_r \simeq X_{ret}$.

Global signature map

$$\begin{array}{l} \mathsf{Sign}: \ensuremath{\mathcal{W}}(X) \to \ensuremath{\mathcal{C}}(X_r, \mathbb{Z}) \\ \ensuremath{\left[\phi\right]} \mapsto ((x, P) \mapsto \ensuremath{\mathsf{Sign}}_P([i_x^* \phi])) \end{array}$$

Theorem (Jacobson)

If $2 \in \mathcal{O}(X)^{\times}$, this induces an isomorphism of ret-sheaves

 $\underline{I}^{\infty} \simeq \mathbb{Z}_{X_r}$

Global signature map

$$\begin{array}{l} \mathsf{Sign}: \mathcal{W}(X) \to \mathcal{C}(X_r, \mathbb{Z}) \\ [\phi] \mapsto ((x, P) \mapsto \mathsf{Sign}_P([i_x^* \phi])) \end{array}$$

Theorem (Jacobson)

If $2 \in \mathcal{O}(X)^{\times}$, this induces an isomorphism of ret-sheaves

 $\underline{I}^{\infty} \simeq \mathbb{Z}_{X_r}$

• In particular, $\underline{W}[1/2] \simeq \mathbb{Z}[1/2]_{X_r}$

Global signature map

$$\begin{array}{l} \mathsf{Sign}: \mathcal{W}(X) \to \mathcal{C}(X_r, \mathbb{Z}) \\ [\phi] \mapsto ((x, P) \mapsto \mathsf{Sign}_P([i_x^* \phi])) \end{array}$$

Theorem (Jacobson)

If $2 \in \mathcal{O}(X)^{\times}$, this induces an isomorphism of ret-sheaves

 $\underline{I}^{\infty} \simeq \mathbb{Z}_{X_r}$

- In particular, $\underline{W}[1/2] \simeq \mathbb{Z}[1/2]_{X_r}$
- Sketch of proof: reduce to local rings, then use *Hoobler's trick* to reduce to fields, then apply the Arason-Knebusch theorem
Global signature map

$$\begin{array}{l} \mathsf{Sign}: \mathcal{W}(X) \to \mathcal{C}(X_r, \mathbb{Z}) \\ [\phi] \mapsto ((x, P) \mapsto \mathsf{Sign}_P([i_x^* \phi])) \end{array}$$

Theorem (Jacobson)

If $2 \in \mathcal{O}(X)^{\times}$, this induces an isomorphism of ret-sheaves

 $\underline{I}^{\infty} \simeq \mathbb{Z}_{X_r}$

- In particular, $\underline{W}[1/2] \simeq \mathbb{Z}[1/2]_{X_r}$
- Sketch of proof: reduce to local rings, then use *Hoobler's trick* to reduce to fields, then apply the Arason-Knebusch theorem
- Jacobson's theorem can be extended to the twisted setting

(X, O_X) ringed space, L invertible O_X-module, F sheaf on X with an action of O[×]_X, define F(L) as the sheafification of

$$U \mapsto \mathcal{F}(U) \otimes_{\mathbb{Z}[\mathcal{O}_X^{\times}(U)]} \mathbb{Z}[\mathcal{L}(U)^{\times}]$$

(X, O_X) ringed space, L invertible O_X-module, F sheaf on X with an action of O[×]_X, define F(L) as the sheafification of

$$U\mapsto \mathcal{F}(U)\otimes_{\mathbb{Z}[\mathcal{O}_X^{\times}(U)]}\mathbb{Z}[\mathcal{L}(U)^{\times}]$$

• A trivialization of $\mathcal L$ induces $\mathcal F(\mathcal L)\simeq \mathcal F$, in particular this always holds locally

(X, O_X) ringed space, L invertible O_X-module, F sheaf on X with an action of O[×]_X, define F(L) as the sheafification of

$$U\mapsto \mathcal{F}(U)\otimes_{\mathbb{Z}[\mathcal{O}_X^{\times}(U)]}\mathbb{Z}[\mathcal{L}(U)^{\times}]$$

- A trivialization of $\mathcal L$ induces $\mathcal F(\mathcal L)\simeq \mathcal F$, in particular this always holds locally
- Similarly we define $\mathbb{Z}_{X_r}(\mathcal{L})$ locally constant sheaf on X_r

(X, O_X) ringed space, L invertible O_X-module, F sheaf on X with an action of O[×]_X, define F(L) as the sheafification of

$$U\mapsto \mathcal{F}(U)\otimes_{\mathbb{Z}[\mathcal{O}_X^{\times}(U)]}\mathbb{Z}[\mathcal{L}(U)^{\times}]$$

- A trivialization of $\mathcal L$ induces $\mathcal F(\mathcal L)\simeq \mathcal F$, in particular this always holds locally
- Similarly we define $\mathbb{Z}_{X_r}(\mathcal{L})$ locally constant sheaf on X_r

Theorem (Hornbostel-Wendt-Xie-Zibrowius)

There are canonical isomorphisms

$$\underline{I}^{\infty}(-,\mathcal{L})\simeq \underline{I}^{\infty}(\mathcal{L})\simeq \mathbb{Z}_{X_r}(\mathcal{L})$$

(X, O_X) ringed space, L invertible O_X-module, F sheaf on X with an action of O[×]_X, define F(L) as the sheafification of

$$U\mapsto \mathcal{F}(U)\otimes_{\mathbb{Z}[\mathcal{O}_X^{\times}(U)]}\mathbb{Z}[\mathcal{L}(U)^{\times}]$$

- A trivialization of $\mathcal L$ induces $\mathcal F(\mathcal L)\simeq \mathcal F$, in particular this always holds locally
- Similarly we define $\mathbb{Z}_{X_r}(\mathcal{L})$ locally constant sheaf on X_r

Theorem (Hornbostel-Wendt-Xie-Zibrowius)

There are canonical isomorphisms

$$\underline{l}^{\infty}(-,\mathcal{L})\simeq \underline{l}^{\infty}(\mathcal{L})\simeq \mathbb{Z}_{X_r}(\mathcal{L})$$

 $\{$ twisted Witt sheaves $\} \leftrightarrow \{$ twisted constant sheaves on $X_r\}$

Real schemes are closely related to motivic homotopy:

Theorem (Bachmann)

Real schemes are closely related to motivic homotopy:

Theorem (Bachmann)

There is a canonical equivalence $D(X_r) \simeq D^{\mathbb{A}^1}(X)[\rho^{-1}]$

• The \mathbb{A}^1 -derived category $D^{\mathbb{A}^1}(X)$ is obtained from PSh(Sm/X, C(Ab)) by Nisnevich- \mathbb{A}^1 localization and \mathbb{P}^1 -stabilization

Real schemes are closely related to motivic homotopy:

Theorem (Bachmann)

- The \mathbb{A}^1 -derived category $D^{\mathbb{A}^1}(X)$ is obtained from PSh(Sm/X, C(Ab)) by Nisnevich- \mathbb{A}^1 localization and \mathbb{P}^1 -stabilization
- $\rho:\mathbb{Z}\to\mathbb{G}_m$ is induced by $-1\in\mathbb{G}_m$

Real schemes are closely related to motivic homotopy:

Theorem (Bachmann)

- The \mathbb{A}^1 -derived category $D^{\mathbb{A}^1}(X)$ is obtained from PSh(Sm/X, C(Ab)) by Nisnevich- \mathbb{A}^1 localization and \mathbb{P}^1 -stabilization
- $\rho:\mathbb{Z}\to\mathbb{G}_m$ is induced by $-1\in\mathbb{G}_m$
- In particular, $X \mapsto D(X_r)$ is a motivic category and satisfies the six functors formalism

Real schemes are closely related to motivic homotopy:

Theorem (Bachmann)

- The \mathbb{A}^1 -derived category $D^{\mathbb{A}^1}(X)$ is obtained from PSh(Sm/X, C(Ab)) by Nisnevich- \mathbb{A}^1 localization and \mathbb{P}^1 -stabilization
- $\rho:\mathbb{Z}\to\mathbb{G}_m$ is induced by $-1\in\mathbb{G}_m$
- In particular, $X \mapsto D(X_r)$ is a motivic category and satisfies the six functors formalism
- Constructible objects $D_c(X_r) \subset D(X_r)$ thick subcategory generated by $Rf_! f^! \mathbb{Z}_{X_r}$ for $f : Y \to X$ smooth

Real schemes are closely related to motivic homotopy:

Theorem (Bachmann)

There is a canonical equivalence $D(X_r) \simeq D^{\mathbb{A}^1}(X)[\rho^{-1}]$

- The \mathbb{A}^1 -derived category $D^{\mathbb{A}^1}(X)$ is obtained from PSh(Sm/X, C(Ab)) by Nisnevich- \mathbb{A}^1 localization and \mathbb{P}^1 -stabilization
- $\rho:\mathbb{Z}\to\mathbb{G}_m$ is induced by $-1\in\mathbb{G}_m$
- In particular, $X \mapsto D(X_r)$ is a motivic category and satisfies the six functors formalism
- Constructible objects D_c(X_r) ⊂ D(X_r) thick subcategory generated by Rf₁f¹Z_{X_r} for f : Y → X smooth

Theorem (J.)

 $A \in D_c(X_r) \Leftrightarrow \exists$ finite stratification of X_r into constructible subsets X_i such that $A_{|X_i}$ is constant with perfect stalks

• *K* dualizing complex on *X*, the Gersten-Witt complex (Gille, Plowman, J.-Xie)

• *K* dualizing complex on *X*, the Gersten-Witt complex (Gille, Plowman, J.-Xie)

$$\bigoplus_{\mu_{K}(x)=m} W(k(x), K_{k(x)}) \xrightarrow{\partial} \bigoplus_{\mu_{K}(x)=m+1} W(k(x), K_{k(x)}) \xrightarrow{\partial} \cdots$$

• *K* dualizing complex on *X*, the Gersten-Witt complex (Gille, Plowman, J.-Xie)

$$\bigoplus_{\mu_{K}(x)=m} W(k(x), K_{k(x)}) \xrightarrow{\partial} \bigoplus_{\mu_{K}(x)=m+1} W(k(x), K_{k(x)}) \xrightarrow{\partial} \cdots$$

• Several ways to construct boundary maps ∂ :

• *K* dualizing complex on *X*, the Gersten-Witt complex (Gille, Plowman, J.-Xie)

$$\bigoplus_{\mu_{\mathcal{K}}(x)=m} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \bigoplus_{\mu_{\mathcal{K}}(x)=m+1} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \cdots$$

- Several ways to construct boundary maps ∂ :
 - Via the filtration by codimension of support on D^b_{coh}(Qcoh(X)) (Balmer-Walter)

• *K* dualizing complex on *X*, the Gersten-Witt complex (Gille, Plowman, J.-Xie)

$$\bigoplus_{\mu_{\mathcal{K}}(x)=m} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \bigoplus_{\mu_{\mathcal{K}}(x)=m+1} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \cdots$$

- Several ways to construct boundary maps ∂ :
 - Via the filtration by codimension of support on D^b_{coh}(Qcoh(X)) (Balmer-Walter)
 - Via the Rost-Schmid boundary (Schmid, Morel)

• *K* dualizing complex on *X*, the Gersten-Witt complex (Gille, Plowman, J.-Xie)

$$\bigoplus_{\mu_{\mathcal{K}}(x)=m} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \bigoplus_{\mu_{\mathcal{K}}(x)=m+1} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \cdots$$

• Several ways to construct boundary maps ∂ :

- Via the filtration by codimension of support on D^b_{coh}(Qcoh(X)) (Balmer-Walter)
- Via the Rost-Schmid boundary (Schmid, Morel)
- Theorem (Gille): if $2 \in \mathcal{O}(X)^{\times}$, these two coincide

• *K* dualizing complex on *X*, the Gersten-Witt complex (Gille, Plowman, J.-Xie)

$$\bigoplus_{\mu_{\mathcal{K}}(x)=m} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \bigoplus_{\mu_{\mathcal{K}}(x)=m+1} W(k(x), \mathcal{K}_{k(x)}) \xrightarrow{\partial} \cdots$$

• Several ways to construct boundary maps ∂ :

- Via the filtration by codimension of support on D^b_{coh}(Qcoh(X)) (Balmer-Walter)
- Via the Rost-Schmid boundary (Schmid, Morel)
- Theorem (Gille): if $2 \in \mathcal{O}(X)^{\times}$, these two coincide
- Pass to I^{∞} and sheafify \Rightarrow complex $\underline{C}(X, \underline{I}^{\infty}, K)$

$$\bigoplus_{\mu_{K}(x)=m} \underline{I}^{\infty}(k(x), K_{k(x)}) \xrightarrow{\partial} \bigoplus_{\mu_{K}(x)=m+1} \underline{I}^{\infty}(k(x), K_{k(x)}) \xrightarrow{\partial} \cdots$$

sheaves on X	sheaves on X_r
twisted Witt sheaf	twisted constant sheaves
(sheafified) Gersten-Witt complex	???

sheaves on X	sheaves on X_r
twisted Witt sheaf	twisted constant sheaves
(sheafified) Gersten-Witt complex	???

• Question: Analog of Jacobson's theorem for dualizing objects?

sheaves on X	sheaves on X_r
twisted Witt sheaf	twisted constant sheaves
(sheafified) Gersten-Witt complex	???

- Question: Analog of Jacobson's theorem for dualizing objects?
- The real étale duality is quite similar to Verdier duality, via the following purity results in $D(X_r)$:

sheaves on X	sheaves on X_r
twisted Witt sheaf	twisted constant sheaves
(sheafified) Gersten-Witt complex	???

- Question: Analog of Jacobson's theorem for dualizing objects?
- The real étale duality is quite similar to Verdier duality, via the following purity results in $D(X_r)$:
 - Poincaré duality (J.-Xie): f smooth of relative dimension $d \Rightarrow$

 $f_r^*(-)\otimes \mathbb{Z}(\det(T_f))[d]\simeq f_r^!(-)$

sheaves on X	sheaves on X_r
twisted Witt sheaf	twisted constant sheaves
(sheafified) Gersten-Witt complex	???

- Question: Analog of Jacobson's theorem for dualizing objects?
- The real étale duality is quite similar to Verdier duality, via the following purity results in $D(X_r)$:
 - Poincaré duality (J.-Xie): f smooth of relative dimension $d \Rightarrow$

$$f_r^*(-)\otimes \mathbb{Z}(\det(T_f))[d]\simeq f_r^!(-)$$

• Absolute purity (Scheiderer, J.-Xie): Z, X regular, $i : Z \to X$ closed immersion of codimension c, N normal bundle of i, \mathcal{F} locally constant constructible (lcc) sheaf on X_r

$$i_r^! \mathcal{F} \simeq i_r^* \mathcal{F} \otimes \mathbb{Z}(\det(N)^{-1})[-c]$$

• X regular excellent, \mathcal{F} lcc sheaf on X_r

- X regular excellent, \mathcal{F} lcc sheaf on X_r
- Coniveau spectral sequence (Grothendieck, Bloch-Ogus, Scheiderer) degenerates at E₂

$$E_1^{p,q} = \bigoplus_{x \in X^{(p)}} H^{p+q}_{x_r}(X_r, \mathcal{F}) \Longrightarrow H^{p+q}(X_r, \mathcal{F})$$

- X regular excellent, \mathcal{F} lcc sheaf on X_r
- Coniveau spectral sequence (Grothendieck, Bloch-Ogus, Scheiderer) degenerates at E₂

$$E_1^{p,q} = \bigoplus_{x \in X^{(p)}} H^{p+q}_{x_r}(X_r, \mathcal{F}) \Longrightarrow H^{p+q}(X_r, \mathcal{F})$$

• By absolute purity, the E₁-page is the Cousin complex

$$\bigoplus_{x\in X^{(0)}} H^0(x_r, \mathcal{F}(\omega_{x/X})) \to \bigoplus_{x\in X^{(1)}} H^0(x_r, \mathcal{F}(\omega_{x/X})) \to \cdots$$

where $\omega_{x/X}$ = determinant of the normal bundle of $x \to \operatorname{Spec}(\mathcal{O}_{X,x})$

- X regular excellent, \mathcal{F} lcc sheaf on X_r
- Coniveau spectral sequence (Grothendieck, Bloch-Ogus, Scheiderer) degenerates at E₂

$$E_1^{p,q} = \bigoplus_{x \in X^{(p)}} H^{p+q}_{x_r}(X_r, \mathcal{F}) \Longrightarrow H^{p+q}(X_r, \mathcal{F})$$

• By absolute purity, the *E*₁-page is the *Cousin complex*

$$\bigoplus_{x\in X^{(0)}} H^0(x_r, \mathcal{F}(\omega_{x/X})) \to \bigoplus_{x\in X^{(1)}} H^0(x_r, \mathcal{F}(\omega_{x/X})) \to \cdots$$

where $\omega_{x/X}$ = determinant of the normal bundle of $x \rightarrow \operatorname{Spec}(\mathcal{O}_{X,x})$

• By sheafifying we get a canonical resolution of ${\cal F}$ by acyclic sheaves (Scheiderer, J.-Xie)

$$\bigoplus_{x\in X^{(0)}} (i_{x_r})_*\mathcal{F}(\omega_{x/X}) \to \bigoplus_{x\in X^{(1)}} (i_{x_r})_*\mathcal{F}(\omega_{x/X}) \to \cdots$$

Twisted Gersten complex

• This suggests that a candidate for (???) should be a complex of similar form

Twisted Gersten complex

- This suggests that a candidate for (???) should be a complex of similar form
- Twisted residue: R = DVR, F = fraction field, m = maximal ideal, k = R/m, H = free R-module of rank 1

$$C(F_r,\mathbb{Z}(H_F)) \to C(k_r,\mathbb{Z}(H_k\otimes (\mathfrak{m}/\mathfrak{m}^2)^*))$$

is a twisted variant of the sign homomorphism

- This suggests that a candidate for (???) should be a complex of similar form
- Twisted residue: R =DVR, F =fraction field, m =maximal ideal, k = R/m, H = free R-module of rank 1

$$C(F_r,\mathbb{Z}(H_F)) \to C(k_r,\mathbb{Z}(H_k\otimes (\mathfrak{m}/\mathfrak{m}^2)^*))$$

is a twisted variant of the sign homomorphism

• *Twisted transfer*: *L*/*F* finite field extension, *H* = one-dimensional *F*-vector space

$$C(L_r, \mathbb{Z}(\operatorname{Hom}_F(L, H))) \to C(F_r, \mathbb{Z}(H))$$

is defined using the trace form $L \rightarrow \operatorname{Hom}_{F}(L, F)$

$$\bigoplus_{\mu_{K}(x)=m} C(k(x)_{r}, \mathbb{Z}(K_{k(x)})) \to \bigoplus_{\mu_{K}(x)=m+1} C(k(x)_{r}, \mathbb{Z}(K_{k(x)})) \to \cdots$$

$$\bigoplus_{\mu_{K}(x)=m} C(k(x)_{r}, \mathbb{Z}(K_{k(x)})) \to \bigoplus_{\mu_{K}(x)=m+1} C(k(x)_{r}, \mathbb{Z}(K_{k(x)})) \to \cdots$$

We show that it is a complex, by comparing to the Witt case

$$\bigoplus_{\mu_{\mathcal{K}}(x)=m} C(k(x)_r, \mathbb{Z}(\mathcal{K}_{k(x)})) \to \bigoplus_{\mu_{\mathcal{K}}(x)=m+1} C(k(x)_r, \mathbb{Z}(\mathcal{K}_{k(x)})) \to \cdots$$

We show that it is a complex, by comparing to the Witt case

• Sheafifying the complex $C(X_r, K)$ we obtain a complex $\underline{C}(X_r, K) \in D(X_r)$

$$\bigoplus_{\mu_{K}(x)=m} (i_{x_{r}})_{*}\mathbb{Z}(K_{k(x)}) \to \bigoplus_{\mu_{K}(x)=m+1} (i_{x_{r}})_{*}\mathbb{Z}(K_{k(x)}) \to \cdots$$

$$\bigoplus_{\mu_{\mathcal{K}}(x)=m} C(k(x)_r, \mathbb{Z}(\mathcal{K}_{k(x)})) \to \bigoplus_{\mu_{\mathcal{K}}(x)=m+1} C(k(x)_r, \mathbb{Z}(\mathcal{K}_{k(x)})) \to \cdots$$

We show that it is a complex, by comparing to the Witt case

• Sheafifying the complex $C(X_r, K)$ we obtain a complex $\underline{C}(X_r, K) \in D(X_r)$

$$\bigoplus_{\mu_{\mathcal{K}}(x)=m} (i_{x_r})_* \mathbb{Z}(\mathcal{K}_{k(x)}) \to \bigoplus_{\mu_{\mathcal{K}}(x)=m+1} (i_{x_r})_* \mathbb{Z}(\mathcal{K}_{k(x)}) \to \cdots$$

Here $i_{x_r} : x_r \to X_r$ is the canonical map, and the terms $(i_{x_r})_*\mathbb{Z}(K_{k(x)})$ look like skyscraper sheaves

Theorem (J.-Xie)

(A) X excellent regular, \mathcal{L} is an invertible \mathcal{O}_X -module, then $\underline{C}(X_r, \mathcal{L}) \simeq \mathbb{Z}(\mathcal{L})$.
Theorem (J.-Xie)

(A) X excellent regular, \mathcal{L} is an invertible \mathcal{O}_X -module, then $\underline{C}(X_r, \mathcal{L}) \simeq \mathbb{Z}(\mathcal{L})$. (B) The complex $\underline{C}(X_r, K)$ is preserved by $f^!$: X, Y excellent, $f: X \to Y$ quasi-projective

 $\underline{C}(X_r, f^!K) \simeq f_r^!\underline{C}(Y_r, K)$

Theorem (J.-Xie)

(A) X excellent regular, \mathcal{L} is an invertible \mathcal{O}_X -module, then $\underline{C}(X_r, \mathcal{L}) \simeq \mathbb{Z}(\mathcal{L})$. (B) The complex $\underline{C}(X_r, K)$ is preserved by $f^!$: X, Y excellent, $f : X \to Y$ quasi-projective

 $\underline{C}(X_r, f^!K) \simeq f_r^!\underline{C}(Y_r, K)$

(C) X excellent, the complex $\underline{C}(X_r, K) \in D(X_r)$ is a dualizing object, i.e. $\underline{C}(X_r, K) \in D_c(X_r)$ is constructible, and the endofunctor $D_K = R\underline{Hom}(-, \underline{C}(X_r, K))$ of $D_c(X_r)$ satisfies $D_K \circ D_K = id$

Theorem (J.-Xie)

(A) X excellent regular, \mathcal{L} is an invertible \mathcal{O}_X -module, then $\underline{C}(X_r, \mathcal{L}) \simeq \mathbb{Z}(\mathcal{L})$. (B) The complex $\underline{C}(X_r, K)$ is preserved by $f^!$: X, Y excellent, $f : X \to Y$ quasi-projective

 $\underline{C}(X_r, f^!K) \simeq f_r^! \underline{C}(Y_r, K)$

(C) X excellent, the complex $\underline{C}(X_r, K) \in D(X_r)$ is a dualizing object, i.e. $\underline{C}(X_r, K) \in D_c(X_r)$ is constructible, and the endofunctor $D_K = R\underline{Hom}(-, \underline{C}(X_r, K))$ of $D_c(X_r)$ satisfies $D_K \circ D_K = id$

Consequently, $K \mapsto \underline{C}(X_r, K)$ gives rise to a map {dualizing complexes over X} \rightarrow {dualizing objects in $D(X_r)$ }

• For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth
 - *f* closed immersion: reduce to the Witt case, and prove a devissage-type result

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth
 - *f* closed immersion: reduce to the Witt case, and prove a devissage-type result
 - f smooth: use Poincaré duality and (A), and compare $\underline{C}(X_r, f^*K)$ with the total complex of a double complex

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth
 - *f* closed immersion: reduce to the Witt case, and prove a devissage-type result
 - f smooth: use Poincaré duality and (A), and compare
 <u>C</u>(X_r, f^{*}K) with the total complex of a double complex

• For (C),

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth
 - *f* closed immersion: reduce to the Witt case, and prove a devissage-type result
 - f smooth: use Poincaré duality and (A), and compare
 <u>C</u>(X_r, f^{*}K) with the total complex of a double complex
- For (C),
 - To show <u>C</u>(X_r, K) ∈ D_c(X_r) is constructible, use (A), (B) and noetherian induction

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth
 - *f* closed immersion: reduce to the Witt case, and prove a devissage-type result
 - f smooth: use Poincaré duality and (A), and compare $\underline{C}(X_r, f^*K)$ with the total complex of a double complex
- For (C),
 - To show <u>C</u>(X_r, K) ∈ D_c(X_r) is constructible, use (A), (B) and noetherian induction
 - To show biduality, reduce to show that for any $f: Y \to X$ projective with Y regular

 $\mathbb{Z} \simeq R\underline{Hom}(R\underline{Hom}(\mathbb{Z}, f^{!}\underline{C}(X_{r}, K)), f^{!}\underline{C}(X_{r}, K))$

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth
 - *f* closed immersion: reduce to the Witt case, and prove a devissage-type result
 - f smooth: use Poincaré duality and (A), and compare $\underline{C}(X_r, f^*K)$ with the total complex of a double complex
- For (C),
 - To show <u>C</u>(X_r, K) ∈ D_c(X_r) is constructible, use (A), (B) and noetherian induction
 - To show biduality, reduce to show that for any $f: Y \to X$ projective with Y regular

$$\mathbb{Z} \simeq R\underline{Hom}(R\underline{Hom}(\mathbb{Z}, f^{!}\underline{C}(X_{r}, K)), f^{!}\underline{C}(X_{r}, K))$$

using resolution of singularities and a lemma of Cisinski-Déglise.

- For (A), compare <u>C</u>(X_r, L) with the Cousin complex and use a result of Jacobson
- For (B), we may assume f is a closed immersion or smooth
 - *f* closed immersion: reduce to the Witt case, and prove a devissage-type result
 - f smooth: use Poincaré duality and (A), and compare $\underline{C}(X_r, f^*K)$ with the total complex of a double complex
- For (C),
 - To show <u>C</u>(X_r, K) ∈ D_c(X_r) is constructible, use (A), (B) and noetherian induction
 - To show biduality, reduce to show that for any $f: Y \to X$ projective with Y regular

$$\mathbb{Z} \simeq R\underline{Hom}(R\underline{Hom}(\mathbb{Z}, f^{!}\underline{C}(X_{r}, K)), f^{!}\underline{C}(X_{r}, K))$$

using resolution of singularities and a lemma of Cisinski-Déglise. Then apply (A) and (B)

• Hypercohomology:

 $\mathbb{H}^{-i}(\underline{C}(X,\underline{I}^{\infty},K)) \simeq \mathbb{H}^{-i}(\underline{C}(X_r,K)) \simeq H^{-i}(C(X_r,K))$

The first part is a counterpart of Jacobson's theorem for complexes, and the second part is because $\underline{C}(X_r, K)$ is a complex of acyclic sheaves

• Hypercohomology:

 $\mathbb{H}^{-i}(\underline{C}(X,\underline{I}^{\infty},K)) \simeq \mathbb{H}^{-i}(\underline{C}(X_r,K)) \simeq H^{-i}(C(X_r,K))$

The first part is a counterpart of Jacobson's theorem for complexes, and the second part is because $\underline{C}(X_r, K)$ is a complex of acyclic sheaves

• Borel-Moore homology: $f : X \to \operatorname{Spec}(\mathbb{R})$ quasi-projective, \mathcal{L} invertible \mathcal{O}_X -module

$$\mathbb{H}^{-i}(\underline{C}(X_r, f^!\mathcal{O}_{\mathsf{Spec}(\mathbb{R})}\otimes \mathcal{L})) \simeq H^{BM}(X(\mathbb{R}), \mathcal{L}(\mathbb{R}))$$

where $\mathcal{L}(\mathbb{R})$ is the associated real line bundle on $X(\mathbb{R})$, and the right-hand side is the (topological) Borel-Moore homology

• Hypercohomology:

 $\mathbb{H}^{-i}(\underline{C}(X,\underline{I}^{\infty},K)) \simeq \mathbb{H}^{-i}(\underline{C}(X_r,K)) \simeq H^{-i}(C(X_r,K))$

The first part is a counterpart of Jacobson's theorem for complexes, and the second part is because $\underline{C}(X_r, K)$ is a complex of acyclic sheaves

• Borel-Moore homology: $f : X \to \operatorname{Spec}(\mathbb{R})$ quasi-projective, \mathcal{L} invertible \mathcal{O}_X -module

$$\mathbb{H}^{-i}(\underline{C}(X_r, f^!\mathcal{O}_{\mathsf{Spec}(\mathbb{R})}\otimes \mathcal{L}))\simeq H^{BM}(X(\mathbb{R}), \mathcal{L}(\mathbb{R}))$$

where $\mathcal{L}(\mathbb{R})$ is the associated real line bundle on $X(\mathbb{R})$, and the right-hand side is the (topological) Borel-Moore homology

 If we replace ℝ by a real closed field, we obtain Delfs' semi-algebraic Borel-Moore homology Thank you!