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Preface

Paul Erabs liked to talk about The Book, in which God maintains the perfect
proofs for mathematical theorems, following the dictum of G. H. Hardy that
there is no permanent place for ugly mathematics. Erdés also said that you
need not believe in God but, as a mathematician, you should believe in
The Book. A few years ago, we suggested to him to write up a first (and
very modest) approximation to The Book. He was enthusiastic about the
idea and, characteristically, went to work immediately, filling page after
page with his suggestions. Our book was supposed to appear in March
1998 as a present to Erdds’ 85th birthday. With Paul’'s unfortunate death
in the summer of 1997, he is not listed as a co-author. Instead this book is
dedicated to his memory. paul Erdés
We have no definition or characterization of what constitutes a proof from
The Book: all we offer here is the examples that we have selected, hop-
ing that our readers will share our enthusiasm about brilliant ideas, clever
insights and wonderful observations. We also hope that our readers will
enjoy this despite the imperfections of our exposition. The selection is to a
great extent influenced by Paul Erdds himself. A large number of the topics
were suggested by him, and many of the proofs trace directly back to him,
or were initiated by his supreme insight in asking the right question or in
making the right conjecture. So to a large extent this book reflects the views
of Paul Erdds as to what should be considered a proof from The Book. “The Book”
A limiting factor for our selection of topics was that everything in this book

is supposed to be accessible to readers whose backgrounds include only
a modest amount of technique from undergraduate mathematics. A little
linear algebra, some basic analysis and number theory, and a healthy dollop
of elementary concepts and reasonings from discrete mathematics should
be sufficient to understand and enjoy everything in this book.

We are extremely grateful to the many people who helped and supported
us with this project — among them the students of a seminar where we
discussed a preliminary version, to Benno Artmann, Stephan Brandt, Stefan
Felsner, Eli Goodman, Torsten Heldmann, and Hans Mielke. We thank
Margrit Barrett, Christian Bressler, Ewgenij Gawrilow, Elke Pose, amg J*
Rambau for their technical help in composing this book. We are in great
debt to Tom Trotter who read the manuscript from first to last page, to
Karl H. Hofmann for his wonderful drawings, and most of all to the late
great Paul Erd6s himself.

Berlin, March 1998 Martin Aigner - Gunter M. Ziegler
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Preface to the Second Edition

The first edition of this book got a wonderful reception. Moreover, we re-
ceived an unusual number of letters containing comments and corrections,
some shortcuts, as well as interesting suggestions for alternative proofs and
new topics to treat. (While we are trying to record perfect proofs, our
exposition isn’L.)

The second edition gives us the opportunity to present this new version of
our book: It contains three additional chapters, substantial revisions and
new proofs in several others, as well as minor amendments and improve-
ments, many of them based on the suggestions we received. It also misses
one of the old chapters, about the “problem of the thirteen spheres,” whose
proot turned out to need details that we couldn’t complete in a way that
would make it brief and elegant.

Thanks to all the readers who wrote and thus helped us — among them
Stephan Brandt, Chnstian Elsholtz, Jiirgen Elstrodt, Daniel Grieser, Roger
Heath-Brown, Lee L. Keener, Christian Leboeuf, Hanfried Lenz, Nicolas
Puech, John Scholes, Bernulf WeiBbach, and many others. Thanks again
for help and support to Ruth Allewelt and Karl-Friedrich Koch at Springer
Heidelberg, to Christoph Eyrich and Torsten Heldmann in Berlin, and to
Karl H. Hofmann for some superb new drawings.

Berlin, September 2000 Martin Aigner - Giinter M. Ziegler

Preface to the Third Edition

We would never have dreamt, when preparing the first edition of this book
in 1998, of the great success this project would have, with translations into
many languages, enthusiastic responses from so many readers, and so many
wonderful suggestions [or improvements, additions, and new topics — that
could keep us busy for years.

So, this third edition offers two new chapters (on Euler’s partition identities,
and on card shuffling}, three proofs of Euler’s series appear in a separate
chapter, and there is a number of other improvements, such as the Calkin-
Wilf-Newman treatment of “enumerating the rationals.” That’s it, for now!
We thank everyone who has supported this project during the last five
years, and whose input has made a difference for this new edition. This
includes David Bevan, Anders Bjorner, Dietrich Braess, John Cosgrave,
Hubert Kalf, Giinter Pickert, Alislair Sinclair, and Herb Wilf,

Berlin, July 2003 Martin Aigner - Giinter M. Ziegler
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Six proofs
of the infinity of primes

It is only natural that we start these notes with probably the oldest Bo

Chapter 1

ok

Proof, usually attributed to Euclid. It shows that the sequence of primes

does not end.

B Euclid’s Proof. For any finite set{p,... ,p,.} of primes, consider
the numbem = pyps---p. + 1. Thisn has a prime divisop. But p is
not one of thep;: otherwisep would be a divisor ofi and of the product
p1p2 -+ pr, and thus also of the differenee— p1p>...p, = 1, which
is impossible. So a finite sép, ... ,p,} cannot be the collection el
prime numbers. O

Before we continue let us fix some notatidi.= {1,2,3,...} is the set
of natural numbersZ, = {... ,-2,-1,0,1,2,...} the set of integers, and
P={2,3,5,7,...} the set of primes.

In the following, we will exhibit various other proofs (out of a much longe
list) which we hope the reader will like as much as we do. Although th
use different view-points, the following basic ideais commonto all of ther,
The natural numbers grow beyond all bounds, and every natural nur
n > 2 has a prime divisor. These two facts taken together férte be
infinite. The next three proofs are folklore, the fifth proof was proposed
Harry Rirstenberg, while the last proof is due to Pauldsd”

The second and the third proof use special well-known number sequen

B Second Proof. SupposeP is finite andp is the largest prime. We
consider the so-calleblersenne numbe2? — 1 and show that any prime
factorq of 2P — 1 is bigger tharp, which will yield the desired conclusion.
Let ¢ be a prime dividin@? — 1, so we have? = 1 (modg). Sincep is
prime, this means that the elemé&rtias ordep in the multiplicative group
Z,\{0} of the fieldZ,. This group hag — 1 elements. By Lagrange’s
theorem (see the box) we know that the order of every element divides
size of the group, that is, we hap¢q — 1, and hence < q. O

B Third Proof. Next let us look at th&ermat number#,, = 22" + 1 for

n=20,1,2,.... We will show that any two Fermat numbers are relativel
prime; hence there must be infinitely many primes. To this end, we ver
the recursion

Lagrange’s Theorem

If G is afinite (multiplicative) group
and U is a subgroup, then|U]|
divides|G]|.

tion
a~b:< ba el

It follows from the group axioms

The equivalence class containing
elementa is precisely the coset

Ua = {za:z € U}.

Since clearly|Ua| = |U|, we find
th€at G decomposes into equivalend

classes, all of sizéU|, and hence|

that|U| divides|G|. O

AL the special case whéhis a cyclic
ifyubgroup{a,oﬁ,... ,a™} we find

ger such that™ = 1, called the
order of a) divides the sizdG| of

B Proof. Consider the binary relat

that ~ is an equivalence relatior].

that m (the smallest positive intef

AN

the group.

n—1
HFk = F, -2 (n>1),
k=0




4 Six proofs of the infinity of primes

FrF = 3 from which our assertion follows immediately. Indeedyifis a divisor of,
R = 5 say, Fj, andF,, (k < n), thenm divides 2, and hence: = 1 or 2. But
F, = 17 m = 2 is impossible since all Fermat numbers are odd.
Fs o= 257 To prove the recursion we use inductionnForn = 1 we haveF, = 3
Fy = 65537 andF; — 2 = 3. With induction we now conclude
Fs = 641-6700417

. n n—1

The first few Fermat numbers H F, — ( H Fk)Fn — (F,—2)F, =
k=0 k=0

n+

=2 ¥ +1) =22""-1=F,, -2 0O

Now let us look at a proof that uses elementary calculus.

B Fourth Proof. Letw(z) := #{p < z : p € P} be the number of primes
that are less than or equal to the real numheWe number the primes

P = {p1,p2,ps,-..} in increasing order. Consider the natural logarithm
1 log =, defined agog z = ;" Ldt.

Now we compare the area below the graplf ¢f) = % with an upper step
function. (See also the appendix on page 10 for this method.) Thus fc
n <z <n+ 1we have

1 1 1 1
logr < 1+-+-+...4+4——+=
2 3 n—1 n
1 2 n
. 1 )
Steps above the functiof(t) = ; < Y =, where the sum extends overaile N which have

™ only prime divisorg < z.

Since every such can be written in ainiqueway as a product of the form
[T p*», we see that the last sum is equal to

p<z
1
I (X5)
peEP k>0
p<w

The inner sum is a geometric series with ra}i,chence

1 p 2
logxgnllz 1= ]”1.
peP pep P k=1 Pk~
p<z p<z
Now clearlyp, > k + 1, and thus
. 1 1 k+1
p—]” — ]_+ S ]__|__ — L,
pr— 1 pr— 1 k k
and therefore
()
k+1
logz < kl_[l% = 7(z) + 1.

Everybody knows thalog z is not bounded, so we conclude thdt) is
unbounded as well, and so there are infinitely many primes. O



Six proofs of the infinity of primes

B Fifth Proof. After analysis it's topology now! Consider the following
curious topology on the sét of integers. Fon,b € Z,b > 0 we set

Nop={a+nb:necZ}.

Each setV, , is a two-way infinite arithmetic progression. Now call a set

O C Z openif either O is empty, or if to everyr € O there exists some

b > 0 with N, ;, C O. Clearly, the union of open sets is open again. If
01,04 are open, and € O; N Oz with N, 3, € O and Ny, C 0o,

thena € Ny .0, € O1 N O2. So we conclude that any finite intersection

of open sets is again open. So, this family of open sets induces a bona fide
topology onZ.

Let us note two facts:
(A) Any non-empty open set is infinite.
(B) Any setN, ; is closed as well.

Indeed, the first fact follows from the definition. For the second we observe

b—1
Nop = Z\|J Nowis,

i=1

which proves thatV, ; is the complement of an open set and hence closed.

So far the primes have not yet entered the picture — but here they come.
Since any numbet # 1, —1 has a prime divisop, and hence is contained
in No_,, we conclude

Z\{1,-1} = UNOJ" “Pitching flat rocks, infinitely”
peEP

Now if " were finite, ther J ., Vo, would be a finite union of closed sets
(by (B)), and hence closed. Consequenlly,—1} would be an open set,
in violation of (A). O

B Sixth Proof. Our final proof goes a considerable step further and
demonstrates not only that there are infinitely many primes, but also that
the seriesEpE]p% diverges. The first proof of this important result was
given by Euler (and is interesting in its own right), but our proof, devised
by Erdds, is of compelling beauty.
Let py,p2,ps3,... be the sequence of primes in increasing order, and
assume thaEpEp% converges. Then there must be a natural nuniber
such thatZiZkJr1 i < % Let us callpy, ... ,p, thesmall primes, and
Prk+1,Pk+2, - - the big primes. For an arbitrary natural numbatr we
therefore find

NN 1)

ishr1 Pi 2



Six proofs of the infinity of primes

Let N, be the number of positive integets< N which are divisible by at
least one big prime, anl; the number of positive integefs < N which
have only small prime divisors. We are going to show that for a suitable

Ny + Ng; < N,

which will be our desired contradiction, since by definitivp+ Ny would
have to be equal t&/.

To estimateN, note that| & | counts the positive integers < N which
are multiples of;. Hence By (1) we obtain

N N
No< Y =] < S 2)
ishy1 P 2

Let us now look atVs. We write everyn < N which has only small prime
divisors in the forrm = a,,b?, wherea,, is the square-free part. Evey,

is thus a product odlifferentsmall primes, and we conclude that there are
precisely2” different square-free parts. Furthermorebas< \/n < /N,

we find that there are at mogfV different square parts, and so

N, < 2¢VN.
Since (2) holds foany IV, it remains to find a numbe¥ with 2¢ VN < &
or 2k+1 < /N, and for this\V = 225+2 will do. ad
References
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Bertrand’s postulate Chapter 2

We have seen that the sequernce of prime numbers 2,3. 5,7, . .. is infinite.
To see that the size of its gaps is not bounded, let N := 2.3-5....-p
denote the product of all prime numbers that are smaller than & + 2, and
note that none of the & numbers

is prime, since for 2 < ¢ < k + 1 we know that 7 has a prime factor that is
smaller than & + 2, and this factor also divides N, and hence also N + 4.
With this recipe, we find, for example, for & = 10 that none of the ten
numbers

2312,2313, 2314, ....2321

is prime.

But there are also upper bounds for the gaps in the sequence of prime num-
bers. A famous bound states that ““the gap to the next prime cannot be larger
than the number we start our search at.” This is known as Bertrand’s pos-
tulate, since it was conjectured and verified empirically for n < 3000000
by Joseph Bertrand. Tt was first proved for all n by Pafnuty Chebyshev in
1850. A much simpler proof was given by the Indian genius Ramanujan.
Our Book Proof is by Paul Erdds: it is taken from Erd&s’ first published
paper, which appeared in 1932, when Erdds was 19,

Joseph Bertrand

-

Bertrand’s postulate. Beweis gines Satzes von Tschebyschet
For every n > 1, there is some prime number p withn < p < 2n. Von P Eande in Budsresl

B Proof. We will estimate the size of the binomial coefficient (21;‘) care-

fully enough to see that if it didn’t have any prime factors in the range
n < p < 2n, then it would be “too small.” Our argument is in five steps,

(1) We first prove Bertrand’s postulate for 7 <¢ 400(). For this one does not
need to check 4000 cases: it suffices (this 1s “Landau’s trick™) to check that

is a sequence of prime numbers, where each is smaller than twice the previ-
ous one. Hence every interval {y : n < ¢ < 2n}, with n < 4000, contains
one of these 14 primes.



Bertrand’s postulate

Tt

Yoy,
it

i =i
P
) <
pif
Mmireps Omif
[ <2
pimt l ﬁslﬂif
{ ¢

Legendre’s theorem

The number n! contains the prime
factor p exactly

> 5!

times.

B Proof. Exactly L%J of the factors

of n! =1.2-3-...-n are divisible by

p, which accounts for L%J p-factors.

Next, |_5"§J of the factors of n! are

even divisible by p2, which accounts
7

for the next |_;§ J prime factors p
of n!, etc. O

(2) Next we prove that

HP < 4:r—1

pEz

for all real & > 2, (1)

where our notation — here and in the foilowing — is meanl to imply that
the product is taken over all prime numbers p < x. The proof that we
present for this fact uses induction on the number of these primes. It is
not from ErdSs’ original paper, but it is also due to Erd8s (see the margin),
and it 1s a true Book Proof, First we note that if g is the largest prime with

g < x, then

H p = H P and

piz p<yq
Thus it suffices to check (1) for the case where =z = ¢ is a prime number. For
g = 2 we get “2 < 4 so we proceed to consider odd primes ¢ = 2m + 1.
{Here we may assume, by induction, that {1} is valid for all integers x in
the set {2,3,...,2m}.) For ¢ = 2m + 1 we split the product and compute

H p = H - H P S 4 (2'ﬁl+ 1) S 477122711 — 427er

m
p=2m+1 p<m+l  mAl<p<2mrl

4q-1 < 411—1'

All the pieces of this “one-line computation” are easy to see. In fact,
H p < 4
p<m+l
holds by induction. The inequality
2m+1
<
H po= ( m )

mtl<p<2m |1

follows from the cbservation that 2”:”' 1) = % is an integer, where

the primes that we consider afl are factors of the numerator (2m + 1)1, but
not of the denominator m!(m + 1)!. Finally

<2m+ 1) < 92m
m

(2m + l) (2?71 + 1)
and
1 m+ 1

are two {(equal!) summands that appear in

2m |1
mZ (21’1? + 1) — 22711-}-1
k .

k=0

helds since

1
21:.) — (2n)! con-

7 nln!

(3) From Legendre’s thcorem (see the box) we get that (
tains the prime factor p exactly

(I RE)



Bertrand’s postulate

times. Here each summand is at most 1, since it satisfics

2 7 2n n
g e Y o= 1) =2
LD"’J L’D"‘J < W (p‘“ )

and it is an integer. Furthermore the summands vanish whenever % > 2n.
Thus (2") contains p exactly

2 (E?J -2 L%J) < max{r:p" < 2n}

k21
times. Hence the largest power of p that divides (2") is not larger than 2n.
In particular, primes p > \/2n appear at most once in (2“)
Furthermore — and this, accordmg to Erdds, is the key fact for his prool
— primes p that satisfy 2 < p < n do not divide (%'} at all! Indeed,
3p > 2n implies (for n. > 3, and hence p > 3) that p and .:‘p are the only
multiples of p that appear as factors in the numerator of £ while we get
two p-factors in the denominator,

nn"

(4) Now we are rcady to cstimate (2“) For n > 3, using an estimate from
page 12 for the lower bound, we get

4 2n
£<(”)< M - I1 2 - 11 »
p<2In ‘./E(,pg%n n<pLin

and thus, since there are not more than +/2n primes p < v2n,

et I e - JI p for nz3 @)

\/2n<pS%n n<pLin

(5} Assume now that there is ne prime p with n < p < 2n, so the second
product in (2) is 1. Substituting (1) into (2) we get

4n S (zn)1+m4§n

or
4;—'3-:1 S (2'7?.)1+m, (f;)

which is false for n large enough! In fact, using a + | < 2* (which holds
forall @ > 2, by induction) we get

on = (¥3)° < (| 2] + 1)° < 25L¥2] com¥ g
and thus forn > 50 (and hence 18 < 2+/2n) we obtain from (3) and (4}

97 < (2n) 3(14vEn) L o ¥E(18418VER) 920 9T0vER _ 20(2m)?

This implies (2n)'/* < 20, and thus n. < 4000. a

Examples sur.h as

(¥ =2*.5°.7.17-19- 23

(F) =2*-3*.5°.17-19.23

(3 =2*.3*.5.17.19.23.29
illustrate that “very small” prime factors
p < +/2r can appear as higher powers
in (**), “small” primes with v2nr <
p < %n appear at most once, while
factors in the gap with %n <p<n
don’t appear at all.
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Bertrand’s postulate

n

One can extract even more from this type of estimates: From (2} one can
derive with the same methods that

[T pz28" for n =000,

n<piin
and thus that there are at least
1 1 Ti
log,, (2%0") = — ——————
Otan ( ) 30 logyn + 1

primes in the range between 72 and 2n.
This is not that bad an estimate: the “true” number of primes in this range
is roughly 7/ log n. This follows from the “prime number theorem,” which
says that the limit
lim #{p < n:pisprime}
P X 'n/ log H

exists, and equals 1. This famous result was first proved hy Hadamard and
de la Vallée-Poussin in 1896; Selberg and Erdds found an elementary proof
{without complex analysis tools, but still long and invelved) in 1948.

On the prime numher theorem itself the final word, it seems, is still not in:
for example a proof of the Riemann hypothesis {see page 41), one of the
major unsolved open problems in mathematics, would also give a substan-
tial improvement for the estimates of the prime number theorem. But also
for Bertrand’s postulate, one could expect dramatic improvements. In fact,
the following is a famous unsolved problem:

Is there always a prime berween n? and (n +1)27

For additional information see [3, p. 19] and [4, pp. 248, 257].

Appendix: Some estimates
Estimating via integrals

There is a very simple-but-effective method of estimating sums by integrals
(as already encountered on page 4). For estimating the harmonic numbers

=1
I, = -
D5
k=1
we draw the figure in the margin and derive from it

AL |
H—1:§f< —dt = 1
" k—zk '/1t .

by comparing the area below the graph of f{t) = } (1 < t < n) with the
area of the dark shaded rectangles, and

[ "
I, ——- = - > —dt = logn
n ik 1t



Berirand's postulate 11

by comparing with the area of the large rectangles (including the lightly
shaded parts). Taken together, this yields

1
logn—#—g < H, < logn + 1.

In particular, lim H, — oo, and the order of growth of #, is given by
n—00
ﬁ = 1, But much beller estimates are known {see [2]), such as

Here O (%) denotes a function f(n)
n

1 1 1 1 1 . .
I = logn +~ + — — + FO (), such that f{n) < c— holds for some
" = T T 122 12008 (T?" ) constant c.

where v == 0.5772 is “Euler’s constant.”

Estimating factorials — Stirling’s formula

The same method applied 10
n
log{n) = log2+4+logd+... +logn = Z log k
k=2

yields
log((n — 1)) < / logtdt < log(nh,
1

where the inlegral is easily computed:

mn T
/ logtdt = {tlogift} = nlogn—n+1.
1 1
Thus we get a lower estimate on 1!

Ty
nl = enlugn7n+1 — C’(*‘)
€

and at the same time an upper estimate

| ] nlog n—n+1l nNT
Rl =nn—-1} < ne =en(—] .
e
Here a more careful analysis is needed to get the asymptotics of 7!, as given

by Srirling'sformula Here f('”) —~ g{ﬂ) means that

lim [(n) =1
Th—b g(n)

nl o~ \/27”1(9) .

£

And again there are more precise versions available, such as
nym 1 1 139 1
nl = 2 (_,) I+ — 4= 1+01=3))
" MAe ( T T i 288n?  5140n® (-n"‘))

Estimating binomial coefficients

Just from the definition of the binomial coefficients (}) as the number of

k-subsets of an n-set, we know that the sequence (7),(}),.... (7} of
binomial coefficients
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Bertrand’s postulate

1 6 4
1 5 10 10 5
1 6 1n 20 15 6
1 7 21 35 35 21

Pascal’s triangle

1
7

1

1

ki

e sumsto 3. (¥} =2

k=0
(n zk) )

From the functional equation (}) = "=F£*1(," ) one easily finds that for
every n the binomial coefficients (’;) form a sequence that is symmetric
and unimeodal: it increases towards the middle, so that the middle binomnial
coefficients are the largest ones in the sequence:

=@ <D< < Qjz) = (i) > > (2D > () = L

Here |x] resp. [&] denotes the number & rounded down resp. rounded up
to the nearest integer.

e is symmetric: (})

From the asymptotic formulas for the factorials mentioned above one can
obtain very precise estimates for the sizes of binomial coefficients. How-
ever, we will only need very weak and simple estimaltes in this book, such
as the following: (}) < 2" for all k, while for » > 2 we have

(LnT;?J) >

with equality only for n = 2. In particular, for r: > 1,

2n 4™
> —.
n 2n
This holds since (|, ", ), a middle binomial coefficient, is the largest entry
in the sequence () +{7). (7). (5),---. (,,”, ), whose sumis 2", and whose
average is thus 27—:'
On the other hand, we note the upper bound for binomial coefficients

(n) _an—De(n-k+1) _nb

k k! = k! T ok 1

which is a reasonably good estimate for the “small” binomial coefficients
at the tails of the sequence, when n is large (compared to k).
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Binomial coefficients
are (almost) never powers

There is an epilogue to Bertrand’s postulate which leads to a beautiful re-
sult on binomial coefficients. In 1892 Sylvester strengthened Bertrand’s
postulate in the following way:

Ifn > 2k, then at least one of the numbersn,n—1,...,.n—k+1
has a prime divisor p greater than k.

Note that for n = 2k we obtain precisely Bertrand’s postulate. In 1934,
Erdés gave a short and elementary Book Proof of Sylvester’s result, running
along the lines of his proof of Bertrand’s postulate. There is an equivalent
way of stating Sylvester’s theorem:

The binomial coefficient

(n) _ nn—1)---(n—k+1) (n > 2k)

k k! -
always has a prime factor p > k.

With this observation in mind, we turn to another one of Erd6s’ jewels.
When is (Z) equal to a power m*? It is easy to see that there are infinitely

many solutions for & = ¢ = 2, that is, of the equation (g‘) = m?2. Indeed,

if (%) is a square, then so is ((2”51)2). To see this, set n(n — 1) = 2m?2.
It follows that

(2n - 1)2((2n - 1)2 = 1) = (2n — 1)%4n(n — 1) = 2(2m(2n — 1))?,

((271 - 1)2> = (2m(2n — 1))

and hence

2

Beginning with (}) = 62 we thus obtain infinitely many solutions — the
next one is (*3°) = 2042. However, this does not yield all solutions. For
example, (%) = 352 starts another series, as does ('%%) = 11892 For
k = 3 it is known that (g) = m? has the unique solution n = 50, m = 140.
But now we are at the end of the line. For k¥ > 4 and any # > 2 no solutions

exist, and this is what ErdGs proved by an ingenious argument.

Theorem. The equation (}) = m* has no integer solutions with
£>2and 4<k<n-4

Chapter 3

50 2
( 3 ) =140
is the only solution for k = 3,4 =2
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s

W Proof. Note first that we may assume n > 2k because of (7) = (,,",).
Suppose the theorem is false, and that (') = m?. The proof, by contra-
diction, proceeds in the following four steps.

T

(1) By Sylvester's theorem, there is a prime factor p of (7} greater than &,
hence p’ divides n{n — 1)--- (n — k + 1). Clearly, only one of the factors
n — 1 can be a multiple of p (because of p > k), and we conclude p° |n -1,
and therefore
[ - - '

{2) Consider any factor n — j of the numerator and write it in the form
n—j= ajm_ﬁ, where a; is not divisible by any nontrivial £-th power. We
note by (1) that o; has only prime divisors less than or equal to k. We want
to show next that @, # a; fori # j. Assume to the contrary that ¢, = a;
forsome 7 < j. Then m; > ey + 1 and

k> (n—i)—-(n—j) = aj(mf - mﬁ) > ai((m; + 1)“" — mﬁ)
> ajﬁ'm,ﬁ_l > E(a.jmf-)”z > #n—k+1)1/?
1/2 1/2
> HE+1)VE » pli?
which contradicts » > &2 from above,

(3) Next we prove that the a;’s are the integers 1,2,..., % in some order.
(According o Erd&s, this is the crux of the proof.) Since we already know
that they are all distinct, it suffices to prove that

agay - - - ap—1 divides k!
Substitting n — j = a;m¢ into the equation (1) = m?, we obtain
- 9 £ o £
apdy (Lk_l(ﬂi'.gm] . "Tnkf‘[) = k.m R
Cancelling the commeon factors of 1ng - - mrp—1 and me yields
apar - ax_1ut = kvt
with ged(u,#) = 1. It remains to show that v = 1. If not, then © con-
tains a prime divisor p. Since ged{w,») = 1, p must be a prime divisor
of agaq -+ - ax_1 and hence is less than or equal 1o k. By the theorem of
Legendre (see page 8) we know that &! contains p to the power 3~ -, L%j.
We now estimale the exponentof pinn{n — 1} -{(n —k+ 1). Letibca
positive integer, and let b, << by < ... < b, be the multiples of p' among
n.,n—1,...,n—k+1 Thenb, = b + (s — 1)p’ and hence
(s—1p' = b,—b < n-(n—k+1) = k-1,

which implies

- [k;lj+1 < [ﬁJle.
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So for each 4 the numher of multiples of p* among n,...,n—k+1, and
hence among the a;'s, is bounded by L%J + 1. This implies that the expo-
nent of pin aga, - - - ag_) 15 at most

£-1

> (5] +1)

=1

with the reasoning that we used for Legendre’s theorem in Chapter 2, The
only difference is that this time the sum stops at ¢ = £ — 1, since the a;’s
contain no é-th powers.

Taking hoth counts together, we find that the exponent of p in »¢ is al most

(L?J )|k <

i
=1 21 4

£—1

£

und we have our desired contradiction, since »* is an #-th power.

This suffices already to settle the case £ = 2. Indeed, since & > 4 one of
the a;’s must be equal to 4, but the a;’s contain no squares. So let us now
assume that £ > 3,

(4)Since k > 4, we musthaveay, = 1, a;, = 2,a,, = 4forsomeiy,q,in,
that is,

) Y. . ¢ s ¢

n—i =my. n—1y =2my, n—i3=1Ims.

We claim that (n — i3)? # (n —iy)(n — i3). If not, putb = n — i, and
n-i1=b—x,n—1i3=>5b+y, wherc0 < |z|, |y| < k. Hence

BP=d-u)b+y) or (y—mx)b=uzy,
where z = y is plainly impossible. Now we have by part (1)
iyl = bly—x = b > n—k > (k—17 > |xy],

which is absurd.

So we have m% # mymg, where we assume m3 > mymg (the other case
being analogous), and proceed 1o our last chains of inequalities. We obtain

2k —n > n®f—(n—k+1)? (n—is)° = (n—i)(n —iz)

>
A[m2t - (mma)f] > A[{myms + D — (mima)f]

It

> At imi
Since £ > 3and n > k* > k3 > 6k, this yields
2k — Dnmymg > Afmimg, = fn—1i))(n —iy)

> fn—k+1)?% > 3(71-%)2 > 2n2.

We see that our analysis so far agrees

with (530) = 1407, as

50
49
48

and 5 -

=2.5"
=172
= 3.42
7.4 =140,
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Now since m; < n!/f < n'/% we finally obtain
kn*® > kmyms > (k — ymyms > n,

or k% > n. With this contradiction, the proof is complete. O
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Representing humbers Chapter 4
as sums of two squares

pE

Which numbers can be written as sums of two squares?

This question is as old as number theory, and its solution is a classic in the
field. The “hard” part of the solution is to see that every pnime number of
the form 4y 4+ 1 is a sum of two squares. G. H. Hardy writes that this
two square theorem of Fermat “is ranked, very justly, as one of the fincst in
arithmetic.” Nevertheless, one of our Book Proofs below is quite recent.

Let’s start with some “warm-ops.” First, we need to distinguish between
the prime p = 2, the primes of the form p = 4m + 1, and the primes of
the form p = 4m + 3. Every prime number belongs to exactly one of these
three classes. At this point we may note (using a method “a la Euclid”) that
there are infinitely many primes of the form 4m + 3. In fact, if there were
only finitely many, then we could take p: to be the largest prime of this
form. Setting
Ny = 22.3.5...pp — 1

{(where pn = 2, pz = 3, pa = 3, ...denotes the sequence of all primes),
we find that Ny is congruent to 3 (mod 4), so it must have a prime factor of
the form 4m -+ 3, and this prime factor is larger than p; — contradiction.
At the end of this chapter we will also derive that there are infinitely many

primes ol the other kind, p = 4m + 1. Pierre de Fermat

Our first lernma is a special case of the famous “law of reciprocity™
It characterizes the primes for which —1 is a square in the field Z,, (which
is reviewed in the box on the next page).

Lemma 1. For primes p = 4m + 1 the equation s = —1 (modp) has two
solutions s € {1,2,...,p—1}, for p = 2 there is one such solution, while
for primes of the form p = 4m + 3 there is no solution.

W Proof. For p = 2 1ake s = 1. For odd p, we construct the equivalence
relation on {1, 2, ..., p— 1} that is generated by identifying cvery element
with its additive inverse and with its multiplicative inverse in Z;. Thus the
“general” equivalence classes will contain {our elements

{z,—2,7, -7}

since such a 4-element set contains both inverses for all its elements. How-
ever, there are smaller equivalence classes if some of the four numbers are
not distinct:
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For p = 11 the partition is
{1,10},{2,9,6,5},{3.8,4, 7}
forp = 13itis
{1,12},{2,11.7.6}, {3,10,9,4},
{5, 8}: the pair {5, 8} yields the two

solutions of s* = —1 mod 13.
+]0 1 2 3 4
00 1 2 3 4
1(1 2 3 4 0
212 3 4 0 1
313 4 0 1 2
414 0 1 2 3

[0 1 2 3 4
00 0 0O 0 G
1({0 1 2 3 4
2({0 2 4 1 3
3(0 3 1 4 2
110 4 3 2 1

Addition and multiplication in Zs

e 1 = —x is impossible for odd p.

e & = Tis equivalent to 2 = 1. This has two solutions, namely z = 1
and & = p — 1. leading to the equivalence class {1,p — 1} of size 2.

e r = T isequivalent to % = —1. This equation may have no solution
or two distinct solutions zg, p — Tqo: in this case the equivalence class
is {zo.p — xo}.

The set {1,2,...,p— 1} has p— 1 elements, and we have partitioned it into

quadruples (equivalence classes of size 1), plus one or two pairs (equiva-
lence classes of size 2), For p — 1 = 4m + 2 we find that there is only the

one pair {1, p— 1}, the rest is quadruples, and thus s* = —1 (mod p) has no

solution. For p — 1 = 4m there has to be the second pair, and this contains

the two solutions of s* = —1 that we were looking for. O
Prime fields

If pis a prime, then the set Z, = {0,1,...,p — 1} with addition and
multiplication defined “modulo p” forms a finite field. We will need
the following simple properties:

e For » € Z;, z # 0, the additive inverse (for which we usually
write —x)is givenby p —x € {1,2,...,p—1}. If p > 2, thenz
and —z: are different elements of Z,,.

e Eachz € Z;\{0} has a unique multiplicative inverse T € Z,\ {0},
with 7 = 1 (mod p).
The definition of primes implies that the map Z, — Zp, 2 — 22
is injective for z # 0. Thus on the finite set Z,\{0} it must be
surjective as well, and hence for each x there is a unique T # 0
with zZ = | {mod p).

» The squares 07, 1%,22,. .., h? define different elements of Z,, for
h= 2]
This is since x? = y?, or (x + y)(z — y) = 0, impliesthat x = y
orthat z = —y. The | + |E] elements 0%, 1%, .. ., h* are called
the squares in Zy,.

At this point, let us note “on the fly” that for il primes there are solutions
for 22 + y* = —1{modp). In fact, there are [£]| + 1 distinct squares
2* in Z,, and there are | £| + 1 distinct numbers of the form —(1 + y?).
These two sets of numbers are too large to be disjoint, since Zp, has only p
elements, and thus there must exist « and y with r? = —(1 4+ %) (mod p).

Lemma 2. No number n = 4m + 3 is a sum of two squares.
B Proof. The square of any even number is (2k}? = 4k% = 0(mod4),

while squares of odd numbers yield (2k+1)% = 4(k2+k)+1 = 1 (mod 4).
Thus any sum of two squares is congruent to 0, 1 or 2 (mod 4). d
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This is enough evidence for us that the primes p = 4w + 3 are “bad.” Thus,
we proceed with “good” properties for primes of the formp = 4m + 1, On
the way to the main theorem, the following is the key step.

Proposition. Every prime of the form p = 4im + 1 is a sum of two squares,
that is, it can be written as p = z° + y* for some nutural pumbers x,y € N,

We shall present here two proofs of this result — hoth of them elegant and
surprising. The first proof features a striking application of the “pigeon-
hole principle” (which we have already used “on the fiy” before Lemma 2;
see Chapter 22 for more}, as well as a clever move to arguments “modulo p”
and back. The idea is due to the Norwegian number theorist Axel Thue.

M Proof, Consider the pairs {2, /') of integers with 0 < x', 3/ < | /p, that
is, 2, y" € {0,1....,[/p|}. There are (| ,/p| + 1)* such pairs. Using the
estimate |x] + 1 > z for z = ,/p, we see that we have more than p such
pairs of intepers. Thus for any s € Z, it is impossible that all the values
xr’ — sy’ produced by the pairs (x', ¢’} are distinct modulo p. That is, for
every s there are two distinct pairs

(2.4). (") € {0.1,....vpl}*

with
- sy' = .’,[T” — sy" (mOd p).

Now we take differences; We have 2’ — 27 = s(y" — ¢”) (mod p). Thus if
we define
T AN T

then we get
(z.y) € {0,1,...,|y/p]}* with 2= tsy(modp).

Also we know that not both 7 and y can be zero, because the pairs (2, y")
and (2", ¢'') are distinct,

Now let s be a solution of s° = -1 (mod p), which exists by Lemma 1.
Then 2? = s*y? = —y* (modp), and so we have produced

(r,) € Z? with O0<z?+y? <2 and 2°+y* =0 (modp).

But g is the only number between () and 2p that is divisible by p. Thus
x? + y? = p: done! O

Our second proof for the proposition — also clearly a Book Proof —
was discovered by Roger Heath-Brown in 1971 and appeared in 1984,
{A condensed “one-sentence version” was given by Don Zagier.) Tt is so
elementary that we don’t even need to use Lemma 1.

Heath-Brown’s argument features three linear involutions: a quite obvious
one, a hidden one, and a trivial one that gives “the final hlow.” The second,
unexpected, involution corresponds to some hidden structure on the set of
integral solutions of the equation 4zy + z? = p.

For p = 13, |/B] = 3 we consider
z’,y" € {0,1,2.3}. For s = 5, the sum
z' — sy’ (mod 13) assumes the following

values:
i
Nooo1 2
T
0to 8 3 11
1 1 9 4 12
212 10 5 0
3 3 11 6 1
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M Proof, We study the set
S = {(z,p,2)cZ day+:22=p, x>0, y>0}

This set is finite. Indeed, z > 1and y > 1 impliesy < & andx < . So
there are only finitely many possible values for = and y, and given z and y,
there are at most two values for z.

1. The first linear involution is given by
f:SHS, (.r,y,z)l—‘ (y,.’]ﬂ,*Z),

that is, “interchange z and v, and negate z.” This clearly maps S to itself,
and it is an invelution: Applied twice, it yields the identity. Also, f has
no fixed points, since z = 0 would imply p = 4zy, which is impossible.
Furthermore, f maps the solutions in

T = {(z,y,2) €8 :2>0}

to the selutions in $\ T, which satisfy z < 0. Also, f reverses the signs of
1 — y and of z, so it maps the solutions in

U= {(r,y,2)€S:{xr—y}+2>0}

to the solutions in SY\U. For this we have to see that there is no solution
with (z—y)+2z = 0, but there is none since this would give p = dry+2* =
dry + (z — ) = (r + 1)°.

What do we get from the study of [? The main observation is that since
[ maps the sets T" and U to their complements, it also interchanges the
elements in T\l with these in U/\T". That is, there is the same number of
solutions in I that are not in T as there are solutions in T that are not in U/
— so T and U have the sume cardinality.

2. The second involution that we study is an involution on the set L'
g:U—U, (2,y,2)— (z —y+ 2y 2y —2)

First we check that indeed this is a well-defined map: If (x, y, 2) € U/, then
z—y+z>0y>0andd(r-y+ 2)y+ 2y — 2)? = doy + 2%, s0
glr,y, 2y e §.By (r—y+2z)—y+ (2y — z) = « > 0 we find that indeed
glr,y,z) el

Also y is an involution: y(zr,y,z) = (zx — y + 2, v, 2y — z) is mapped by g
to((z—y+2)—y+(2y—2)y2y—(2y—2) = (z,y. 2).

And finally: g has exactly one fixed point:

(z.p.2) = 9lz,y,2) = (x~y+2u2y—2)
holds exactly if y = z: But then p = 4zy + y* = (4x + y)y. which holds
onlyfory=1=z,andx = p—4;1.

But if g is an involution on [/ that has exactly one fixed point, then the
cardinality of U is odd.
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3. The third, trivial, involution that we study is the involution on T that
interchanges x and :

h:T —T, {(x,y,2)— (y,x2)

This map is clearly well-defined, and an involution. We combine now our
knowledge derived from the other two involutions: The cardinality of 7" is
equal to the cardinality of {7, which is odd. But if 4 is an involution on
a finite set of odd cardinality, then it has a fixed point: There is a point
{z,9,2) € T with x = y, that is, a solution of

p=dr?+2% = (22) + 2% O

Note that this proof yields more — the number of representations of p in
the form p = #° + (2y)? is odd for all primes of the form p = 4m + 1. (The
representation is actually unique, see [3].} Also note that both proofs are
not effective: Try to find = and y for a ten digit prime! Efficient ways to find
such representations as sums of two squares are discussed in [1] and [7].
The following thearem completely answers the question which started this
chapter.

Theorem. A natural number n can be represented as a sum of two squares
if and only if every prime factor of the form p = 4dm + 3 appears with an
even exponent in the prime decompaosition af n.

B Proof. Call a number n representable if it is a sum of two squares, that
is, if n = x? 4+ * for some 1,y € Ny. The theorem is a consequence of
the following five facts.

(1)1 =12 4+ 0% and 2 = 1° + 12 are representable. Every prime of the
form p = 4m + 1 is representable.

(2) The product of any two representable numbers n; = z% + y? and no =
z% + y2 is representable: 71n2 = (2172 + y1y2)® + (T1y2 — T2y1)*

(3) 1f 72 is representable, n = % + 32, then also nz? is representable, by
nz? = (zz2)? + (y2)2

Faets (1), (2) and (3) together yield the “if" part of the theorem.

{4y If p = 47n + 3 is a prime that divides a representable number » =
#?2 + 3%, then p divides both  and v, and thus p? divides n. In fact, if
we had = # 0 {(modp), then we could find 7 such that T = 1 (mod p),
multiply the equation z2 + y? = 0 by T2, and thus obtain 1 + 3*7* =
1 + (Ty)? = 0(modp), which is impossible for p = 4m + 3 by
Lemma 1.

(5) If n 1s representable, and p = 4m + 3 divides n, then p2 divides n,
and n/p” is representable. This follows from (4}, and completes the
proof. 1

On a finite set of odd cardinality, every
involution has at least one fixed point.

T
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As a corollary, we obtain that there are infinitely many primes of the form
7 = 4m + 1. For this, we consider

My=1{3-5-7---p)? + 22,

a number that is congruent to 1 {mod 4). All its prime factors are larger
than p., and by fact (4) cf the previous proof, it has no prime factors of the
form 4 + 3. Thus M} has a prime factor of the form 4m + 1 that is larger
than py.

Two remarks close our discussion:

e Ifa and b are two natural numbers that are relatively prime, then there are
infinitely many primes of the form am +b& {rm € N) — this is a famous
(and difficult) theorem of Dirichlet. More precisely, one can show that
the numher of primes p < z of the form p = am + b is described very
accurately for large i by the function ﬁ Ton 3+ Where w(x) denotes the
number of b with 1 < & < a that are relatively prime to a. (This is
a substantial refinement of the prime numher theorem, which we had

discussed on page 10.)

e This means that the primes for fixed ¢ and varying b appear essentially
at the same rate. Nevertheless, for example for @ = 4 one can observe a
rather subtle, but nevertheless noticable and persistent tendency towards
“more” primes of the form 4rn + 3: If you look for a large random «, then
chances are that there are more primes p < x of the formp = 4m + 3
than of the form p = 4m + 1. This effect 1s known as “Chebyshev’s
bias™; see Riesel [4] and Rubinstein and Sarnak [5].
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Every finite division ring is a field Chapter 5

Rings are important structures in modern algebra. If a ring R has a mul-
tiplicative unit element 1 and every nonzero element has a multiplicative
inverse, then R is called a division ring. So, all that is missing in R from
being a field is the commutativity of multiplication. The best-known exam-
ple of a non-commutative division ring is the ring of quaternions discovered
by Hamilton. But, as the chapter title says, every such division ring must of
necessity be infinite. If R is finite, then the axioms force the multiplication
to be commutative.

This result which is now a classic has caught the imagination of many math-
ematicians, because, as Herstein writes: “It is so unexpectedly interrelating
two seemingly unrelated things, the number of elements in a certain alge-
braic system and the multiplication of that system.”

Theorem. Every finite division ring R is commutative.

Ernst Witt

This beautiful theorem which is usually attributed to MacLagan Wedder-
burn has been proved by many people using a variety of different ideas.
Wedderburn himself gave three proofs in 1905, and another proof was given
by Leonard E. Dickson in the same year. More proofs were later given by
Emil Artin, Hans Zassenhaus, Nicolas Bourbaki, and many others. One
proof stands out for its simplicity and elegance. It was found by Ernst Witt
in 1931 and combines two elementary ideas towards a glorious finish.

Proof. Our first ingredient comes from a blend of linear algebra and
basic group theory. For an arbitrary element s € R, let C be the set
{z € R : s = sz} of elements which commute with s; C; is called the
centralizer of s. Clearly, C; contains 0 and 1 and is a sub-division ring
of R. The center Z is the set of elements which commute with all elements
of R, thus 7 = ﬂse g Cs. In particular, all elements of Z commute, 0 and 1
are in Z, and so Z is a finite field. Let us set | Z| = gq.

We can regard R and C; as vector spaces over the field Z and deduce that
|R| = ¢", where n is the dimension of the vector space R over Z, and
similarly |Cs| = g™ for suitable integers ns > 1.

Now let us assume that R is not a field. This means that for some s € R
the centralizer C is not all of R, or, what is the same, n, < n.

On the set R* := R\{0} we consider the relation

1

~r e r =z lrz forsomezx e R*
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It is easy to check that ~ is an equivalence relation. Let
As = {a7lszix e YY)

be the equivalence class containing s. We note that |A;| = 1 precisely
when s is in the center . So by our assumption, there are classes A, with
|As| > 2. Consider now for s € R* the map f; : * — x 'sz from R*
onto 4. Forz,y € R* we find

Yoy = (ya')s=s(yz™?)

= yzlecCl = yecClu,

s =y~

for C?F := C,\{0}, where C}x = {2z : z € CI} has size |C'¥|. Hence any
element £~ 'sx is the image of precisely |CF| = ¢™ — 1 elements in R~
under the map [, and we deduce |It*| = |4,] |C7|. In particular, we note
that

R gt —1 . .

5] = 4 = |A,] is an integer for all s.

CHE A

We know that the equivalence classes partition F*. We now group the
central elements Z* together and denote by A,,..., A; the equivalence
classes containing more than one element. By our assumption we know
t > 1. Since |R*| = |Z*| + Zfa:l |Ax{, we have proved the so-called
cluss formula

t qnfl
I — i
-1 =g 1+k§71qm71, ()

where we have 1 < Eg,;;;_ll £ N forall k.

With (1) we have lelt abstract algebra and are back to the natural numbers.
Next we claim that g™+ —1 | g™ —1 implies ng | n. Indeed, write n = ang +r
with () < 7 < ny, then g™ — 1|¢g*™*¥7 — 1 implies

g 1 [(@T = 1) (g — 1) = g (g™ e - ),

and thus g™ — l|q(“‘”"’~‘+r — 1, since g™ and ¢™* — 1 are relatively
prime. Continuing in this way we find g™ — 1|¢" — 1 with 0 < r < ng,
which is only possible for » = 0, that is, 714 | n. In summary, we note

ni | forall k. (2

Now comes the second ingredient: the complex numbers C. Consider the
polynomial ™ — 1. Its roots in C are called the n-th reats of unity. Since
A™ =1, all these roots A have |A| = 1 and lie therefore on the unit circle of
the complex plane. In fact, they are precisely the numbers Ay = e* =
cos(2kn/nr) + isin(2kn/n), 0 < k < n — I (see the box on the next
page). Some of the roots A satisfy A? = 1 for d < m; for example, the
root A = —1 satisfies A> = 1. For a root A, let d be the smallest positive
exponent with A% = 1, that is, d is the order of X in the group of the roots

of unity. Then d | n, by Lagrange’s theorem (“the order of every element of
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a group divides the order of the group” — sce the box in Chapter 1). Note

that there are roots of order 2, such as A = ¢ » .

Roots of unity
Any complex number z =  + iy may be written in the “polar” form

z = re’¥ = r{cosyg +ising),

where r = |z| = y/x? + y? is the distance of z to the origin, and ¢ is
the angle measured from the positive z-axis. The n-th roots of unity
are therefore of the form

T

M = e = cos(2km/n) + i siu(2kw/n), 0<k<n—1,

since forall &
AR = &2 — cos(2km) + i sin(2km) = 1.

We obtain these roots geometrically hy inscribing a regular n-gon
into the unit circle. Note that Ay, = C* for all k, where ¢ = ¢*+". Thus
the n-th roots of unity form a cyclic group {¢,¢%, ..., ("L (" =1}
of order .

Now we group all roots of order d together and set

dqlr) = H (z— A).

A of order d

Note that the definition of ¢4(x) is independent of n. Since every root has
some order d, we conclude that

" -1 = H dualx). (3)

Here is the crucial observation: The coefficients of the polynomials ¢, ()
are integers (thatis, ¢, (r} € Z[x] for all n), where in addition the constant
coelficient is either 1 or —1.

Let us carefully verify this claim. For n = 1 we have 1 as the only root,
and s0 ¢ (x) = x - 1. Now we procecd hy induction, where we assume
@q(z) € Elz] for all d < n, and that the constant coefficient of ¢g{x) is 1
or —1. By (3),

™ — 1 = p(z) é,(x) 4)
[4 LR 4
where p(a) = 3. pz?, én(2) = 3 arzb, withpy = lorpy = —1.
=0 k=0
Since —1 = pgup, we see ag € {1.\ —1}. Suppose we already know that

Q0. @1, . .., ak—1 € Z. Computing the coefficient of * on both sides of (4)

z = ret¥

Yy = rsing

T = Teosy

Az

The roots of unity for n = &
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lg = | > |g — 1]

we find
k k
ijak—j = PiGk—; + Doy € Z.
=0 j=1
By assumption, all ag, ..., ax—y (and all p;) are in Z. Thus pyay and hence

i), must also be integers, since py is 1 or —1.
We are ready for the coup de grdce. Let ni |n be one of the numbers
appearing in (1). Then

™—-1= H da(r) = (™ — Dga{x) H dalT).
d|n dln,dinyg, d#n
We conclude that in Z we have the divisibility relations

gt -1
g — 1

Gufg) [q" =1 and  ¢a(q) | (5)

Since (5) holds for all &, we deduce from the class formula (1)

dnig) g — 1,

but this cannot be. Why? We know ¢,.(x) = [](z — A) where A runs
through all roots of 2™ — 1 of order n. Let A = a + ib be one of those roots.
By n > 1 (because of It # Z) we have A # 1, which implies that the real
part @ is smaller than 1. Now [A]2 = a? + b2 = 1, and hence

g=A? = lg—a—ib] = (g—aP+1®
= ¢ —2ag+a*+b* = " —2a5+1
> ¢ -2¢+1 (because of @ < 1)
= (¢-1)%

and so |q — F\\ > ¢ — 1 holds for all roots of order n. This implies

al@)] = [Jla— A >q—1,
A

which means that ¢,,(¢) cannot be a divisor of ¢ - 1, contradiction and end
of proof. O
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Some irrational numbers Chapter 6

“m is irrational”

This was already conjectured by Aristotle, when he claimed that diameter
and circumference of a circle are not commensurable. The first proof of
this fundamental fact was given by Johann Heinrich Lambert in 1766. Our
Book Proof is due to Ivan Niven, 1947: an extremely elegant one-page
proof that needs only elementary calculus. Its idea is powertul, and quite
a bit more can be derived from it, as was shown by Iwamoto and Koksma,
respectively:

e 72 is irrational and

e ¢’ is irrational for rational r 3 ),

Niven's method does, howaver, have its roots and predecessors: It can be

traced back to the classical paper by Charles Hermite from 1873 which Charles Hermite
first established that e is transcendental, that is, that ¢ is not a zero of a

polynomial with rational coefficients.

Before we treat 7 we will look at ¢ and its powers, and see that these are
irrational. This is much easier, and we thus also follow the historical order
in the development of the results.

To start with, it is rather easy to see (as did Fourier in 18153) that ¢ =

1 . . - - . .
Zkzo 77 18 irrational. Indeed, if we had e = % for integers @ and b > 0,
then we would get
nlbe = nla

for everv n = (. But this cannot be true, because on the right-hand side we
have an integer, while the left-hand side with

decomposes into an integral part
1 1 1
I S 2

and a second part
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Geomelric series
For the infinite geometric series
— 1,1 1
Q= taztat..
with g > 1 we clearly have

Q=1+ +am+...=1+Q
and thus
@= g—1
12 JOURMAL DE MATREMATI)UGLS

SUR LTRRATIONNALITE DU NOMDRE
e==13,918...,

Pun J. LIOUVLLLE.

On prouve dans les dlirenis que le nombre ¢, base des logarithmes
népéricns, o' pas une valo rationnells. On devrait, ce me semble,
ajouter que la méme méthade prouve aossi goe ¢ m: peut pas fre ra-
vine d'une fquation du sccond degré & coelficients rationnels, en sorte
qne V'an ne peut pas avoir as -+ ; = &, & dtant an +nbier pastifer b, -,
des entiers positifs o négatifs, En eflot, o Pan remplace dans cetre
Equation # ¢t } ou 2~ par leurs développements déduits de celui de e,

puis quion moltiphe les deux membres par 7. 2.3 . A, an tronvers

aisérnenk
s (1 +

e o)

' L
P TR Tt F=
a4 étant un éntier, On peut toujours faire £a sorte que le factear

b

+
L

sout postif; il sulfiva e supposer 7 pair si b est <0 81 4 Wmpairsi b et
>aj en prenant de plus & tréa grand, I'Mqustion que nows vcnans
d'éerire conduira dés lors & une absardizé; ear son prenser mwmbre
¢tant essenliellament positif st trés petit, serz compris entre o @l 1,
et ne pourra pas dtes £gal & un eatier w. Doue, ete.

Licuville’s paper

which is approximately %, so0 that for large n it certainly cannot be integral:
It is larger than HLH and smaller than ;‘5_}, as one can see from a comparison
with a geometric series:

1 1 1 1
< + + +
n+1 ntl (+1}nt2) (ntnit2)n+3)
1 1 l + 1
n4+1 (n+1)2 (m+13* 7 n

Now one might be led to think that this simple multiply-by—n!trick is not
even sufficient to show that ¢? is irrational. This is a stronger statement:
v/2 is an example of a number which is irrational, but whose square is not,
From John Cosgrave we have learned that with two nice ideas/observations
(let’s call them *“tricks™) one can get two steps further nevertheless: Each of
the tricks is sufficient to show that £2 is irrational, the combination of both
of them even yields the same for e, The first trick may be found in a one
page paper by I. Liouville from 1840 — and the second one in a two page
“addendum” which Liouville published on the next two journal pages.

Why is ¢ irrational? What can we derive from e? =
Liouville we should write this as

29 Accordi
=7 According to

be = ae™ !,
substitute the series
= 1+1+1+1+1—+1 +.
¢ = 1 6 120
and
RIS S N S
£ = 1727624 12077

and then multiply by n!. for a sufficiently large even n. Then we see that
n!be is nearly integral:

N@+l+1+1+ +])
T T e T T

i$ an integer, and the rest

1 1
nib((n4+ T o 2)!47...)

is approximately %: It is larger than ﬁ but smaller than %, as we have
seen above.
At the same time nlee ! is nearly integral as well: Again we get a large

integral part, and then a rest

. 1 1 1
(”)Hm4@+nfwn+w+uuaﬂ$“)
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and this is approximately {—1)"+! =. More preciscly: for even . the rest is

larger than — £, but smaller than

( 1 1 1 ) _ u (1 1) < 0
Nn n+ 12 (n+1® 7/ a4l n ’

But this cannot be true, since for large even 1 it would imply that nlae ! is
just a bit smaller than an integer, while nlbe is a bit larger than an integer,
sonlae 1 = nlbe cannot hold. ]

In order to show that €* is irrational, we now courageously assume that

et = % were rational, and write this as

We could now try to multiply this by n! for some large n, and collect the
non-intcgral summands, but this leads to nothing useful: The sum of the
remaining terms on the left-hand side will be approximately b%, o the
right side (- 1)”“(1.%?"'. and both will be very large if n gets large.

S0 one has to examine the situation a bit more carefully, and make two little
adjustinents to the strategy: First we will not take an arbitrary large n, but
a large power of two, n = 2™; and secondly we will not multiply by »!,
but by zllr Then we need a liile lemma, a special case of Legendre’s
theorem (see page 8): For any » > 1 the integer n! contains the prime
factor 2 at most n — 1 times — with equality if {and only if) n is a power
of two, 1 = 2™,

This lemma is not hard to show: L%j of the factors of n! are even, [ 2] of
them are divisible by 4, and so on. So if 2¥ is the largest power of two
which satisfies 2¥ < n, then »! contains the prime factor 2 exactly

7 n n < n n n 1 ’
{§J+MJ+...+[§J < GHgtetz = n(l——g) < n—t

times, with equality in both inequalities exactly if n = 2%

Let’s get back 1o be? = ae~2. We are looking at

n! nt
et = gy L
and substitute the series
N T
- 126 rl
and 2 4 8 ar
—2
> = 1—-—=-4+-—=4. -1)"—
e : + 5% +({-1) v +

For r < n we gel inlegral summands on both sides, namely

1oor nl o7
7! n!

—  resp. ~-1Ve——"—
an—1 rf esp. (=1 an=1 ¢’
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The estimate n! > e{Z)" yields an
explicit n that is “large enough.”

where for r > () the denominator v! contains the prime factor 2 at most
r — 1 times, while n! contains it exactly n — 1 iimes. (So for r > 0 the
summands are even.)
And since n 1s even (we assume Lhat n = 2'), the series that we get for
r>n+ 1are
2b( 24 4 + 8 + . )
n+tl (m+1)n+2) (n+1){n+2)(n+3)

resp.

2 4 3
2“(_ n+l (ntDm+2)  mtDintnts) = )

These series will for large n be roughly % resp. -—‘:1—", as one sees again by
comparison with geometric series. For large n = 2™ this means that the
left-hand side of (1) is a bit larger than an integer, while the right-hand side
is & bit smaller — contradiction! ]

So we know that e* is irrational; to show that e*, e® etc. are irrational as
well, we need heavier machinery (that is, a bit of calculus), and a new idea
— which essentially goes back to Charles Hermite, and for which the key
is hidden in the following simple lemma.

Lemma. For some fixed n > 1, let

(1l — )"
fle) = ————.
1
(1) The function f(x) is a polynomial of the form f(x) = — Z oxt
where the coefficients ¢; are integers. =n

e
n!*

(i) For0 <z < 1lwe have 0 < f{x) <

(ii1) The derivatives f'5)(0) and f*)(1) are integers for all k > 0.

M Proof. Parts (i) and (ii) are clear.
For (iii) note that by (i) the k-th derivative f %) vanishes at z = 0 unless

n < k < 2n, and in this range f9(0) = X is an integer. From f(x) =
fl—z) we get f () = (=1)% F%¥) (1 —x) for all 2, and hence f*)(1) =
(=1)* £f%1(0), which is an integer. O

Theorem L. " iy irrational for every r € Q\{0}.

B Proof. It suffices to show that e® cannot be rational for a positive integer
. A . syt N

s (if ¥ were rational, then {e%)" = °* would be rational, too). Assume

that e* = ¢ for integers a,b > 0, and let 7 be so large that n! > as**+i.

Put

Flz) = s fa) =7 f ) + 872 @) 4+ 1),

where f{x) is the function of the lemma.
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F(z) may also be written as an infinite sum
F(Sf;) - San(_,E) _ Sznilf’(l") 4 SZ?l*ZfH(I) F ...

since the higher derivatives f1%){x), for k > 2n, vanish. From this we see
that the polynomial F'(z) satisfies the identity

F'(r) = —sF(z) + s f(2).
Thus differentiation yields

% [EHJIIF(:E)] _ .‘:h'(:"‘“rF(.’E) + e.'s:r:F-'(I) — 8271—163.1!‘)((2:)

and hence
1
N = bf §PN ST flpyde = b [t‘""""F(;r)]é = al'(1) — bI{Q).
0
This is an integer, since part (iii} of the lemma implies that F'(0) and F(1)

are integers. However, part (ii) of the lemma yields estimates for the size
of N from below and from above,

1 ) . 1 (}"’.‘2u+1
0 < N=2» .'~i2n+1€"”:f{.‘lj)d.’t < byt ler — = <1
0 7! !
which shows that NV cannot be an integer: contradiction. 0
Now that this trick was so successful, we use it once more.
Theorem 2. = is irrational.
B Proof. Assume that 72 = £ for integers u, b > 0. We now use the

pelynoemial
F(.’I}) — h (WzTif(.‘I,') _ 7]_21372‘)(_-(2) (.I') + ,’T‘Zn.—df(d)(I> ... ):

which satisfies F"(r) = —72 F () + b"n? 2 f ().
From part (iii) of the lemma we get that F(0} and F(1) are integers. o is not rationai, but it does have “good

Elementary differentiation rules yield approXimations” by rationals — some
d of these were known since antiquity:
E [F(z)sinme —wF(x)cosmr] = (F"(x)+ 72 F(z)) sinmx Z = 3.112857142857...
355

=2 3.141592920353...
bttt f ) sinar 113
fiz) L4348 3141592653921...

33205

= 3.141592653589...

= wa" f(z)sinma,

and thus we obtain

1 1
—F'lpysinme — F{z) cos 7
[71- () sin wa (r)coswx .

il

1
N = ?rf a" flz)sinmrdr

0

F(0) + F(1),

which is an integer. Furthermore N is positive since it is defined as the
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integral of a function that is positive (except on the boundary). However,
if we choose n so large that Z¢~ < 1, then from part (i) of the lemma we

obtain
"

1
0 < N = n/ a*f(x)sinmedr < < 1,

0 !

a contradiction. g
Here comes our final irrationality result.

Theorem 3. For every odd integer v > 3, the number

Aln) = %arccos (\/1:?)

is irrafional.

We will need this result for Hilbert’s third problem (see Chapter 8) in the
cases 7t = Jand n = 9. Forn = 2 and n = 4 we have 4(2) = I and
A{1) = 1, so the restriction to odd inlegers is essential. These values
are easily derived by appealing o the diagram in the margin, in which the
statement 1 - Arccos (7:) is irrational” is equivalent lo saying that the
palygonal arc constructed from \}h, all of whose chords have the same
length, never closes into itself,

We leave it as an exercise for the reader to show that A(n) is rational onfy
forn € {1,2,4}. For that, distinguish the cases when »» = 27, and when
is not a power of 2.

B Proof. We use the addition theorem

cosex + cos 3 = 2cos “'é'ﬁ cos 55 £
from elementary trigonometry, which for v = (k+ 1) and 3 = (k — L)y
yvields
cos(k+ 1)y = 2cosyp cos kyp — cos(k— 1)p. (2)

For the angle ,, = arccos ( Tn ) which is defined by cosy, = ﬁ and

0 < ¢y <, this yields representations of the form

cos ki, = —,
n \/fﬁk

where Ay is an integer that is not divisible by , for all & > 0. Tn fact,

we have such a representation for & = 0,1 with 4y = A; = 1, and by

induction on & using (2) we get fork > 1

1 Ay Ap.1 N 2A5 — nAr_4
\/ﬁ \/— \/—k 1 \/Ek_H

Thus we obtain Ag,; = 24, —nAx_;. Ifn > 31is odd, and Ay is not
divisible by n, then we find that Ay, cannot be divisible by n, either.

cos(k+ 1)y, =
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Now assume that ]
Aln) — g, = -
{n) =7 7
is rational {with integers &, £ > 0). Then fyp,, = k7 yields

A

i
()

+1 — coskm =

Thus 7° = LAy is an integer, with # > 2, and hence n| ', With
\/'r_z.{ | A¢ we find that n divides Ay, a contradiction. a
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Three times 72/6 Chapter 7

We know that the infinite series ZH-_.__‘, ,]—L does not converge. Indeed, in

Chapter | we have seen that even the series Zpe[F xl diverges.

However, the sum of the reciprocals of the squares converges (although
very slowly, as we will also see), and it produces an interesting value.

2

Euler’s series. .

1
S =

n>1

This is a classical, famous and important result by Leonhard Euler from
1734, One of its key interpretations is that it yields the first non-trivial
value {(2) of Riemann’s zeta function (see the appendix on page 41). This
value is irrational, as we have seen in Chapter 6.

But not only the result has a prominent place in mathematics history, there
ure also a number of extremely elegant and clever proofs that have their
history: For some of these the joy of discovery and rediscovery has been
shared by many. In this chapter, we present three such proofs.

B Proof. The first proof appears as an exercise in William J. LeVeque’s
number theory textbook from 1956. But he says: “I haven’t the slightest
idea where that problem came from, but I'm pretty certain that it wasn’t
original with me™”

The proof consists in two different evaluations of the double integral

For the first one, we expand 1—:1;; as a geometric series, decompose the
summands as products, and integrate effortlessly:
11 1 1
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Y=

This evaluation also shows that the double integral (over a positive [unction
with a pole at # = y = 1) is finite. Nate that the computation is also easy
and straightforward if we read it backwards — thus the evaluation of {(2)
leads one to the double integral 1.
The second way Lo evaluale / comes from a change of coordinates: in the
new coordinates given by u := 1"# and v := Y5* the domain of integra-
tion is a square of side length %\/5 which we get from the old domain by
first rotating it by 43° and then shrinking it by a factor of v/2. Substitution
of w =u—wvandy =u+ vyields
1 ]

| — a2y + 0¥’
To transform the integral, we have to repiace dx dy by 2 du dv, to com-
pensate for the fact that our coordinate transformation reduces areas by a
constant factor of 2 (which is the Jacobi determinant of the translormation;
see the box on the next page). The new domain of integration, and the
function to be integrated, are symmetric with respect to the u-axis, so we
just need to compute two times (another factor of 2 arises here!) the inte-
gral over the upper half domain, which we split into two parts in the most
natural way:

1 — u?

1/2 N 1 1—u 4
du v
I = —— |du 4 —— |
1 ([ )+ 1 [ ([ =)
0 0 0

/2
di 1 :
Using /Wiﬁ == ar(:tanz +C,

this bccomes

1/2

1 U
4 ——— arctan | —— | du
)/ Vv1—u? (\/1—11,2)
¢
L

1 1-u
4 | ——=arctan | ———= | du.
12
These integrals can be simplified and finally evaluated by substituting « =
sin § resp, u = cos . But we proceed more directly, by computing that the
derivative of g{u) := arctan (ﬁ) is g'{u) = % while the deriva-
1wz 1

- 1+u)15h( )‘"“%m'-
So we may use Jab Fa) fla)de = [%f(w}zh = 1£(b)* — 1 f(a)? and gel

) = arctan (

tive of h(u) := arctan (

1/2 1
I =4 ./0 g wglu)du + 4 /1/2 —2h'{u)h(u) du
‘ 172
- z{g(u)z} - [ () }1/2
= 2g(3)* — 29(0)* — 4h{1)* + 4h(5)*
. (ﬂ)2—041+4(%) = O
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This proof extracted the value of Euler’s series from un integral via a rather
simple coordinate transformation. An ingenious prool of this type — with
an entirely non-trivial coordinage transformation — was later discovered by
Beukers, Calabi and Kolk. The point of departure for that proof is to split
the sum }_ ., - into the even terms and the odd terms. Clearly the even

=D i>1 TZI{T sum 1o 2¢(2), so the odd terms
Htm+tet... = k>0 (?_k—lﬂg make up three quarters of the total
sum ¢{2). Thus Euler’s series is equivalent o

termsz%—l-,l%-kﬁ%-k

w
2 T (2k+1)2 T8

k>0

M Proof. As above, we may express this as a double integral, namely

1
/ d! dy = E TRV
0/ E>0 (26+1)

So we have to compule this integral .J. And for this Beukers, Calabi and
Kolk proposed the new coordinates

f 1 gy

Arccosyf ————.
\/ 1 — x2q?

To compute the double integral, we may ignore the boundary of the domain,
and consider x, 7 in the range ) < x < 1 and O < y < 1. Then wu, v will lie
in the triangle = > 0, v > 0, . + v < 7/2. The coordinate translormation
can be inverted explicitly, which leads one to the substitution

U I ArCCOs

sinw sinw
r o= and Y=

cos v

COS U

It is easy o check that these formulas define a bijective cnnrdinate transfor-
mation hetween the interior of the unit square § = {{x,y) : 0 < z,y < 1}
and the interior of the triangle T = {(u,v) : w0 = (b u +u <5 /2}.
Now we have to compute the Jacobi determinant of the coordinate transfor-
mation, and magically it turns out to be

Cos w sin ysin e a2 a2 ,
det ) cos v cosd 1 P bll'l2 ’U,E!lllz'l. R .’132],[2.
Ell'lu.San COSY COS% U O 17
COS* U S e

But this means that the integral that we want to compute is transformed into

TS Dy
J = / / 1 du de,
)] 3

which is just the area (%) = ’;— of the triangle 7". O

The Substitution Formula

To compute a double integral
= ] Flr, yydz dy.
5

we may perform a substitution of
variables

z=z(wv) y=y(uw)

if the correspondence of (u,v) € T
to {z,y) € S is bijective and contin-
uously differentiable. Then ! equals

d(z y) i d,

/f(ss(u o)yl )| 5

where :}x is the Jacobi determi-

nant:
day) _ 4 & &
d{u,v) (‘fu %5{ ’
AY
1
S
. o
=
i
AY
3
T
u
:
7
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Form — 1, 2, 3 this yields
: 1

cot?

cot?

col d

T

i)
L3
]
i

-3
+ cot? 2?" =2

4 cot? 27” + cot? 3—.}3 =5

Beautiful — even more so, as the same method of proof extends to the
computation of {{2k) in terms of a 2k-dimensional integral, for all & > 1.
We refer to the original paper of Beuker, Calabi and Kolk [2], and to
Chapter 20, where we’ll achieve this on a different path, using the Herglotz
trick and Euler’s original approach.

After these two proofs via coordinate transformation we can’t resist the
lemptation o present another, entirely different and completely elementary
proof for 3 ., # = ’;—2 It appears in a sequence of exercises in the
problem book by the twin brothers Akiva and Isaak Yaglom, whose Russian
criginal edition appeared in 1954. Versions of this beautiful proof were
rediscovered and presented by F. Holme (1970), 1. Papadimitriou (1973),
and by Ransford (1982) who attributed it to John Scholes,

B Proof. The first step is to establish a remarkable relation between values
of the {squared) cotangent function. Namely, for all 7n > 1 one has

2 s 2 2n 2 T _ 2mi(Zm—1)
cot (21”—‘1) + cot (2m.+1) +...+cot (2'm+1) - [ - (])
To establish this, we start with the relation
cosnu —+ isinne = (cosxr +ising)”

and take its imaginary part, which is

. LAY _ ny n—

sinnz = (l) sinzcos™ La — (d) sin®zeos" P+ ... (2
Now we let n = 2m + 1, while for x we will consider the r: different
values ¢ = 0. forr = 1,2,...,m. For each of these values we have

rnix = v, and thus sin e = 0, while 0 < ¢ < 3’2- implies that for sinz we
get m distinct positive values.
In particular, we can divide (2) by sin™ z, which yields

0 = (T) cot™ g — (g) cot Cat .

that is,

2m 1 ] 2m+ 1 -
0 - (ml )(:Otzml'_(ﬂl:} )cotzm_zmi...

for each of the m distinct values of . Thus for the polynomial of degree

2m+1 2 +1 2m 4+ 1
B = ™ — ol ()™
p(t) ( 1 ) ( 3 ) +(=1) (Zm + 1)

we know st distinct roots

a, = cotz(z?:”ll) for r=1,2,..., .

Hence the polynomial coincides with

p(t) = (2ml- 1) (t — cot? (277f+1)) et (t ~ cot? (3:311 ))
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Comparison of the coefficients of £ ! in p(¢) now yields that the sum of
the roots is

(2m+1) ' '
o+ +a = (2n3+1) _ 2m(2én—1),
1

which proves (1).
We also need a sccond identity, of the same type,

csc? (_27':+1) +ose? (Z225) 4. +oose” (FRE) = 2m(2é”+2}, (3)

2m—+1 2m+1
for the cosecant function cscr = Sh]] —. But
9 1 cos?x 4 sin’ x y
st r = —— = — =cot" T+ 1,
sin®r s51n° T

s0 we can derive (3) from (1) by adding r: to both sides of the equation.

Now the stage is set, and everything falls into place. We use that in the
range {) < gy < 3 we have

0 < siny < y < tany,

and thus

0 < coly <

=

< CECy,
which implies
cot?y < 5 < escly

Now we take this double inequality, apply it to each of the m distinct values
of z, and add the results. Using (1) for the left-hand side, and (3) for the
right-hand side, we obtain

2m@m-1) (2m+1)2Jr (2m+1)2+___+(2m+1)2 < imlemi2)

6 ™ 2 T [3] !
that i3,
7 2m Pm—1 1 1 1 72 2 2m+2
B 2m+1 2m+1 < Tz + 37 +...+ e < B 2m+1 241
. . 2
Both the left-hand and the right-hand side converge to & for m — oo
end of proof. L]

So how fast does 3" -» converge 10 72 /6? For this we have to estimate the

diffcrence
o

2
m 1 |
P DD D2

Py | n=m+1

Comparisen of coefficients:

If p(t) =c(t —ar}- - {t —an),

then the coefficient of ¢
—clar + ...+ Qm).

O<a<b<e
implies
O<i gt

m -1

18
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This is very easy with the technique of “comparing with an integral” thai
we have reviewed already in the appendix to Chapter 2 (page 10). It yields

=L =1 > [
fit) =5 Z 1< f 1o = =
fni=rn+1 n g ¢ m

! for an upper bound and
i o0 ,
' 1 | ]

T S oz oe [ g -

‘. n=m+1 ?'l.z m+1 tz m+ ]
1 m+1

for a lower bound on the “remaining summands™ — or even

o0

1 o 1
Z - > —dt = 7
n* . te m+ 5

11
n=rm+1 m+ 2

il you are willing 1o do a slightly more carcful estimate, using that the
function f(t) = t% is convex.

This means that our series does not converge too well; if we sum the first
one thousand summands, then we expect an error in the third digit after
the decimal point, while for the sum of the first one million summands,
o — 1000000, we expect Lo gel an error in the sixth decimal digit, and
we do, However, then comes a big surprise; to an accuracy of 45 digits,

7r2/6 = 1.644934066848226436472415 1666460251892 15949901,
]Uﬁ
1
Z;]'E = 1.644933066848726436305748499979391855%885616544.

n=1

So the sixth digit after the comma is wrong {too small by 1}, but the next
six digits are right! And then one digit is wrong {too large by 5), then aguin
five are correct. This surprising discovery is quite recent, due to Roy D.
North from Colorado Springs, 1988, (In 1982, Martin R. Powell, a school
teacher from Amersham, Bucks, England, failed to notice the full effect due
to the insufficient computing power available at the time.) It is too strange
to be purely coincidental ... A look at the error term, which again to 45
digits reads

Z ni"- = 0.000000899999500000166666666666633333333333357,
n=10841

reveals that clearly there is a pattern. You might try to rewrite this last
number as

-6 lin—12 11n—18 i 30 1 42
F10°6 — 110712 4 Lo - 10 % 4 Lijo 2 4

where the coefficients (1, -3, £,0, 3,0, 35) of 10°% form the be-
ginning of the sequence of Bernoulli numbers that we’ll meel again in
Chapter 20. We refer our readers to the article by Borwein, Borwein &

Dilcher [3] for more such surprising “coincidences” — and for proofs.
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Appendix: The Riemann zeta function
The Riemann zeta function (4) is defined for real s > 1 hy

(s} = %

n>1
Our estimates for H,, {see page 10} imply that the series for {(1) diverges,
but for any rcal ¢ > 1 it does converge. The zeta function has a canonical
continuation to the entire complex plane (with one simpie pole at ¢ = 1},
which can be constructed using power series expansions. The resulting
complex function is of utmost importance for the theory of prime numbers.
Let us mention three diverse connections:

{1) The remarkable identity

OESIE _lp_.q

n

is due to Euler. Tt encodes the hasic fact that every natural number has a
unique {!) decomposition into prime factors; using this, Euler’s identity is
4 simple consequence of the geometric series expansion

1
- = 14 — 4 - + =
1 _p—.s p.ﬁ pQﬁ. pdb

+ ...

(2) The location of the complex zeros of the zeta function is the subject
of the “Riemann hypothesis’: one of the most [umous and important unre-
solved conjectures in all of mathematics. Tt claims that all the non-trivial
zeros s &  of the zeta function satisfy Rels) = % (The zeta function
vanishes at all the negative even integers, which are referred (o as the
“trivial zeros.™)

Very recently, Jeff Lagarias showed that, surprisingly, the Ricmann hypo-
thesis is equivalent to the following clementary statement: Forall > 1,

Zd < H, + (‘-XD(Hn)iOg(Hﬂ)a
d|n

with equality only for n = 1, where A, is again the n-th harmonic number.

{3} It has been known for a long time that ((s) is a rational multiple of ¢,
and hcuce irrational, if s is an even integer s > 2; see Chapter 20. Tn
contrast, the irrationality of {{3) was proved by Roger Apéry only in 1979,
Despite considerable elfort the picture is rather incomplete about ¢(«) lor
the other odd integers, s = 2£+1 > 5. Very recently, Keith Ball and Tanguy
Rivoal proved that infinitely many of the values {(2¢+4 1) are irrational. And
indeed, although it is not known for any single odd value ¢ > 3 that ¢(s)
is irrational, Wadim Zudilin has proved that at least onc of the lour values
¢(5), C(T}, ¢(9), and ((11} is irrational, We refer to the beautiful survey by
Fischler [4].
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Hilbert’s third problem: Chapter 8
decomposing polyhedra

In his legendary address to the International Congress of Mathematicians
at Paris in 1900 David Hilbert asked — as the third of his twenty-three
problems — to specify

“two tetrahedra of equal bases and equal altitudes which can in
no way be split into congruent retrahedra, and which cannot be
combined with congruent tetrahedra to form two polyhedra which
themselves could be split up into congruent tetrahedra.”

This problem can be traced back to two letters of Carl Friedrich Gauss
from 1844 (published in Gauss’ collected works in 190{)). If tetrahedra of
equal votume could be split into congruent pieces, then this would give one
an “elementary” proof of Euclid's theorem XIL5 that pyramids with the
same base and height have the same volume. It would thus provide an ele-
mentary definition of the volume for polyhedra (that would not depend on
analysis, and hence on continuity arguments). A similar statement is true 1y, 4 Hitbert
in plane geomertry: the Bolyai-Gerwien Theorem [1, Sect. 2.7] states that
planar polygons are both equidecomposable (can be dissected into congru-
ent triangles) and egquicomplementable (can be mude congruent by adding
congruent triangles} if and only if they have the same area.

The cross is equicomplementable with a
square of the same area.

In fact, they are even equidecomposable.
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Hilbert's third problem: decomposing polyhedra

Hilbert — as we cun see from his wording of the prohlem — did expect that
there is no analogous theorem in dimension 3, and he was right. In fact, the
prohlem was completely solved hy Hilbert's student Max Dehn in two pa-
pers: the first one, exhibiling non-equidecomposahle tetrahedra of equal
hase and height, appeared already in 1900, the second one, also covering
equicomplementability, appeared in 1902, However, Dehn’s papers are not
easy to understand, and it takes effort to see whether Dehn did not fall into a
suhtle trap which ensnared others: a very-elegant-but-unfortunately-wrong
proof was found by Bricard (in 1896!}, by Meschkowski (1960), and proh-
ably by others. Luckily, Dehn’s proof was reworked and redone, and after
comhined efforts of V. F. Kagan (1903/1930), Hugo Hadwiger (1949/54)
and Vladimir G. Boltianskii, we now have a Book Proof — as follows.
{The appendix to this chapter provides some basics about polyhedra.)

(1) A little linear algebra

For every finite set of real numbers Al = {m,...,my} C R, we define
V(M) as the set of all linear combinations of numbers in A with rational
coefficients, that is,

k
V(M) = {unm € @} CR
i=1

The first {trivial, but important) observation is that V' (M) is a finite dimen-
sional vector space over the field ¢ of rational numbers. In fact, V(M) is
clearly closed under taking sums and under multiplication with rationals,
and the field axioms for R make V(M) into a vector space. The dimension
of V(M) is the size of any minimal generating set. Since M generates
V{AT) by definition, we see that it contains a minimal generating set, and

hence
dimg V(M) < k = |M].

In the following, we shall need and use (@-linear functions
fVM)—-Q

which we interpret as linear maps of (3-vector spaces. The key property is
that for every rational linear dependence Zfll gim; = Q0 with g; € {, we
must have Zf_l gif(m,) = f(0) = 0. Here is the simple lemma that gets
things going.

Lemma. For any finite subsets M C M’ of R, the Q-vector space V(M)
is @ subspace of the Q-vector space V(M) Thus if f - V(M) — Qs
a (Q-linear function, then f can be extended to a (Q-linear function ' :
V(M"Y — Q sothat f'(m) = f(m) forallm e M.

H Proof. Any (J-linear function V(M) — () is determined as soon as its
values on a (@-basis of V(M) are fixed. Since every hasis of V(M) can be
extended to a basis of V' { M), the rest follows. O
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(2) Dehn invariants

For a 3-dimensional polyhedron I, let Afp denote the set of all angles
between adjacent facets (dihedral angles), together with the number 7.
Thus for a cube C' we get M¢ = {2, ’.'T}, while for an orthogonal prism ¢}
over an equilateral triangle we get Al = {% 5 7r}.

Given any finite set A{ C R that contains A/ p, and any @)-linear function

FV(M) —©

that satisfies f(r) = 0, we define the Deln invariant of P (with respect
to f)to be the real number

De(P) == Y #e)- flale)),

ecl?

where the sum extends over all edges e of the polyhedron, £(¢) denotes the
length of e, and () is the angle between the two facets that meet in e.

We will calculate various Dehn invariants later. For now just note that
f{Z) = Lf(m) = 0 must hold for any such Q-linear function f, and
thus

D) =10,

that is, the Dehn invariant of a cube is zero with respect to any f.

(3) The Dehn-Hadwiger theorem

As above we call two polyhedra F, ()} equidecomposable if they can be
decomposed into finite sets of polyhedra £, ..., P, and ¢J1,...,Q,, such
that P, and (; are congruent for ail ¢ {1 < ¢ < n). Two polyhedra are
equicomplementable if therc arc polyhedra £y, ..., P, and J1,...,Qw
so that the interiors of the I’ are disjoint from each other and from I”, and
similarly for the Q; and ¢, such that F; is congruent to Q; Tor all ¢, and such
that P:= PUPLUPU ... UPpand Q= QU@ UQaU ... U are
equidecomposable. A theorem of Gerling from | 844 implies that it does not
matter whether we admit reflections when considering congruences, or not.

Clearly equidecomposable polyhedra are equicomplementable, but the con-
verse is far from clear. The following theorem of Hadwiger (in the version
of Boltianskii) provides our tool to find — as Hilbert proposed —- tetrahedra
of equal volume that are not equicomplementable, and thus not equidecom-
posable.

Theorem. Let ¥ and €} be polyhedra with dihedral angles o, ..., oy, resp.
31,0 ... Bq at their edges, and let M be a finite set of real numbers with

{0 0. 01,00 Bgom} T M,
If f - V(M) — Q is any Q-linear function with f{w) = 0 such that
D(P) £ D(Q),

then P and () are not equicomplementable.

Me = {Z,7}
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B Proof. The argument comes in two parts.

(1) If a polyhedron P has a decompaosition into finitely many polyhedral
pieces Iy, .... P, and if all the dihedral angles of the pieces A,...,
are contained in the set A{. then for every Q-linear f : V(Af) — (. the
Dehn invariants add up:

DR = DAY+ .04+ DR

For this, we associate a mass to any part of an edge of a polyhedron: if
e’ C eis a part of an edge ¢ of P, then its mass will be

myle’) = €e") flale')),

its length times the f-value of its dihedral angle.

Now if P is decomposed into Fy,.. ., P,, consider the union of all the
edges of the pieces %, Along the edges e’ that are contained in edges of P,
we see that the dihedral angles of the pieces add up to the dihedral angle
of 7 at ¢, and hence the masses add up.

At any other edge ¢” of one of the I%’s which is contained in the interior of
a face of P or in the interior of P, the angles add up to 7 or to 2, so the
f-values of the angles in the pieces add up to f{w) = O resp. to f(2x) = (.
Thus for the sum of the masses we get the same value that we had attached
to these edges for I° in the first place, namely 0.

(2) Assuming that {? and {) are equicomplementable, we can enlarge W/ toa
superset A/’ that also includes all the dihedral angles appearing in any of the
pieces involved. M’ is finite, since we only consider finite decompositions.
Then our lemmna above allows us to extend f to /' : V(M) — @, and
hence part (1) yields an equation of the type

D)+ Dp (P A Dp(Pr) = Dp Q)+ Dy (Q1)+ ...+ D (Qrn)

where D (%) = Dy (Q;) since /; and ), are congruent. Hence we
conclude D;(P) := D;{(}), a contradiction. O

Example 1. For a regular tetrahedron 7 with edge lengths ¢, we calculate
the dihedral angle from the sketch. The midpoint M of the base triangle
divides the height AFE of the base triangle by 1:2, and since |AF| = |DE
we find cos o = §, and thus

»

0 = &I‘CCOS%.

Setting M := {a, 7} we note that the ratio
fa] 1 1
— = —arccosy
™ T *

is irrational, according to Theorem 3 of Chapter 6 (taking n = 9). Thus
the Q-vector space V(M) is 2-dimensional with basis A, and there is a
@-linear function f : V{M) — Q with

fla) =1, f{=z) :=0.
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For this / we have

Di(Ty) = 6if{a) = 6F #£ 0,
and thus a regular tetrahedron cannot be equidecomposable or equicom-
plementable with a cube, since the Dehn invariant of a cube vanishes for
any f.
Example 2. Let 7} be a tetrahedron spanned by three orthogenal edges
AB, AC, AD of length u. This tetrahedron has three dihedral angles that
are right angles, and threce more dihedral angles of equal size @, which we
calculate from the sketch as
|AE| ]5 2u 1
DEl ~ TVAVEs V3

It follows that

For M = {%. Arceos % 71'} , the Q@-vector space V(M) has dimension 2.
In fact, 7 and ¥ are linearly dependent, so V(M) = V ({ arccos ==, «}),

but there is no rational relation between arceos % and 7 — equivalently,

% arccos \% is irrational, as we proved in Chapter 6 (take n = 3 in Thm, 3).

Thus we may construct a Q-linear map f by setting
— . 1y.—
flmy:=0 and f(arccos ﬁ) =1,
from which we obtain f{Z) = {} and hence
De(h) = 3uf(%) +3(\/§-u)f(ar(:(:os %) = 3V2u £ 0.

This proves that 77 is not equidecomposable or equicomplementable with
a cube (' of the same voluine, since D¢(C) = ( holds forany f.

Example 3. Finally, let T;; be a tetrahedron with three consecutive edges
AD, BC and C'D that are mutually orthogonal (an “orthoscheme”) and of

the same length w.

We will notr calculate the angles in such a tetrahedron (they are % %
and T), but rather argue that — using the midpoints of edges and faces,
and the center — a cube of edge length » can be decomposed into 6 tetra-
hedra of this type (3 congrueni copies, and 3 mirror images).

All these congruent copies and mirror images have the same Dehn invari-

ants, and hence for every suitable functional f we will obtain
1
Dy(Ty) = gDp(C) =0

so all Dehn invarnants of such a tetrahedron vanish! This solves Hilbert's
third problem, since we have before constructed a different tetrahedron, 77,
with congruent bases and the same height, and with D¢(71} # 0. By
the Dehn-Hadwiger theorem 1) and T, are not equidecomposable, and not
even equicomplementable.

B

V2u
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Some familiar polytopes: tetrahedron,
cube and permutahedron

Appendix: Polytopes and polyhedra

A convex polytope in R¢ is the convex hull of a finite set S = {81,-.-,8n},
that is, a set of the form

P = conv(S) = {i/\isi A >0, i/\i = 1}.
i=1 i=1

Polytopes are certainly familiar objects: prime examples are given by con-
vex polygons (2-dimensional convex polytopes) and by convex polyhedra
(3-dimensional convex polytopes).

There are several types of polyhedra that generalize to higher dimensions
in a natural way. For example, if the set S is affinely independent of
cardinality d + 1, then conv(S) is a d-dimensional simplex (or d-simplex).
For d = 2 this yields a triangle, for d = 3 we obtain a tetrahedron. Simi-
larly, squares and cubes are special cases of d-cubes, such as the unit d-cube
given by Cy = [0,1]¢ C R4,

General polytopes are defined as finite unions of convex polytopes. In this
book non-convex polyhedra will appear in connection with Cauchy’s rigid-
ity theorem in Chapter 12, and non-convex polygons in connection with
Pick’s theorem in Chapter 11, and again when we discuss the art gallery
theorem in Chapter 31.

Convex polytopes can, equivalently, be defined as the bounded solution sets
of finite systems of linear inequalities. Thus every convex polytope P C R?
has a representation of the form

P = {zecR?: Az < b}

for some matrix A € R™*4 and a vector b € R™. In other words, P is
the solution set of a system of m linear inequalities al < b;, where al is
the i-th row of A. Conversely, every bounded such solution set is a convex
polytope, and can thus be represented as the convex hull of a finite set of
points.

For polygons and polyhedra, we have the familiar concepts of vertices,
edges, and 2-faces. For higher-dimensional convex polytopes, we can de-
fine their faces as follows: a face of P is a subset F' C P of the form
Pn{x € R?: a’xz = b}, where al’x < b is a linear inequality that is
valid for all points & € P.

All the faces of a polytope are themselves polytopes. The set V of vertices
(0-dimensional faces) of a convex polytope is also the inclusion-minimal set
such that conv(V) = P. Assuming that P C R? is a d-dimensional convex
polytope, the facets (the (d—1)-dimensional faces) determine a minimal set
of hyperplanes and thus of halfspaces that contain P, and whose intersec-
tion is P. In particular, this implies the following fact that we will need
later: Let F’ be a facet of P, denote by Hy the hyperplane it determines,
and by H;f and H the two closed half-spaces bounded by Hr. Then one
of these two halfspaces contains P (and the other one doesn’t).
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The graph G(P) of the convex polytope P is given by the set V of ver-
tices, and by the edge set F of 1-dimensional faces. If P has dimension 3,
then this graph is planar, and gives rise to the famous “Euler polyhedron
formula” (see Chapter 11).

Two polytopes P, P’ C R? are congruent if there is some length-preserving
affine map that takes P to P’. Such a map may reverse the orientation
of space, as does the reflection of P in a hyperplane, which takes P to
a mirror image of P. They are combinatorially equivalent if there is a
bijection from the faces of P to the faces of P’ that preserves dimension
and inclusions between the faces. This notion of combinatorial equivalence
is much weaker than congruence: for example, our figure shows a unit cube
and a “skew” cube that are combinatorially equivalent (and thus we would
call any one of them “a cube™), but they are certainly not congruent.

A polytope (or a more general subset of R?) is called centrally symmetric
if there is some point zy € R< such that

xo+x€eP <— xy—xechP.

In this situation we call xq the center of P.
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Lines in the plane Chapter 9
and decompositions of graphs

Perhaps the best-known problem on configurations of lines was raised by
Sylvester in 1893 in a column of mathematical problems.

QUESTIONS FOR SOLUTION. i

11851. (Professor SyrvesTer.)—Prove that it is not possible to
arrange any finite number of real points so that a right line through
every two of them shall pass through a third, unless they all lie in the
same right line.
Whether Sylvester himself had a proof is in doubt, but a correct proof was
given by Tibor Gallai [Griinwald] some 40 years later. Therefore the fol-
lowing theorem is commonly attributed to Sylvester and Gallai. Subsequent
to Gallai’s proof several others appeared, but the following argument due
to L. M. Kelly may be “simply the best.”

Theorem 1. In any configuration of n points in the plane, not alf on a line,
there is a line which contains exactly two of the points.

B Proof. Let P be the given set of points and consider the set £ of all lines
which pass through at least two points of . Among all pairs (P, #) with I
not on #, choose a pair Py, £y) such that 73 has the smallest distance to £q,
with €} being the point on £y closest to £}y (that is, on the line through I
vertical to £y).

Claim. This line ¢ does it!

If not, then €, contains at least three points of P, and thus two of them, say
Py and %, lie on the same side of . Let us assume that /; lies between
(2 and P, where P, possibly coincides with (). The figure on the right
shows the configuration. Tt follows that the distance of F; to the line £,
determined by F; and P is smaller than the distance of F; to £y, and this
contradicts our choice for £y and Fp. O

J. 1. Sylvester

In the proof we have used metric axioms (shortest distance} and order
axioms (/7 lies between ¢ and [%) of the real plane. Do we really need
these propertics beyond the usual incidence axioms of points and lines?
Well, some additional condition is required, as the famous Fano plane de-
picted in the margin demonstrates. Here P = {1,2. ..., 7} and £ consists
of the 7 three-point lines as indicated in the figure, including the “line™
{4,5,6}. Any two points determine a unique line, so the incidence axioms
arc satisfied, bul there is no 2-point line. The Sylvester-Gallai theoremn
therefare shows that the Fano configuration cannot be embedded into the
real plane such that the seven collinear triples lie on real lines: there must
always be a “crooked” line.
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Pn-ll

However, it was shown by Coxeter that the order axioms will suffice for
a proof of the Sylvester-Gallai theorem. Thus one can devise a proof that
does nol use any metric properties — see also the proof that we will give in
Chapter 11, using Euler’s formula,

The Sylvester-Gallai theorem directly implies another famous result on
points and lines in the plane, due to Paul Erd@s and Nicolaas G. de Bruijn.
But in this case the result holds more generally for arbitrary point-line
syslems, as was observed already by Erd@s and de Bruijn. We will discuss
the more general result in a moment.

Theorem 2. Let P be a set of n = 3 points in the plane, not all on a line.
Then the set L of lines passing through at least two poinis contains at least
n lines.

B Proof. Forn = 3thereis nothing to show. Now we proceed by induction
on n. Let [P| = n + |. By the previous theorem there exists a line 7y € £
containing exactly two points 7 and ¢} of P. Consider the set P’ = P\{Q}
and the set £’ of lines determined by P’. If the poinis of P’ do not all lie
on a single line, then by induction |£'| > n and hence [£] > 1+ 1 because
of the additional line £ in £. If, on the other hand, the points in P’ are all
on a single line, then we have the “pencil” which results in precisely n 41
lines. [

Now, as promised, here is the general result, which applies to much more
general “incidence geometries.”

Theorem 3. Let X be a set of n > 3 elements, and let Ay,..., A, be
proper subsets of X, such that every pair of elements of X is contained in
precisely one set A;. Then m > n holds.

B Proof. The following proof, variously attributed to Motzkin or Conway,
is almost one-line and truly inspired. For # € X let r; be the number of
sets A; containing z. (Note that 2 < v, < i by the assumptions.) Now if
z & A;, then r, > |A;| because the | A;| sets containing T and an element

of A; must be distinct. Suppose rn << n, then m|A4;| < nry and thus
m(n — |A;]) > n(m —rg) for z ¢ A, and we find

l:z%:z Z 'n(rnl—rr}>z z m:z#:l,

rEX zEX A;:zg A Ay TiT@ A Ay

which is absurd. a

There is another very short proof for this theorem that uses linear algebra.
Let B be the incidence matrix of (X; Ay, ..., Aw), that is, the rows in B

are indexed by the elements of X, the columns by A,,..., A, where
I il ze A
Bea i= { 0 if z¢ A

Consider the product BB, For x # 2’ we have (BB"),,. = 1, since 1
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and " are contained in precisely one set A;, hence

=1 0 ... 0 1 1 ... 1
BE" - 0 71 : L
: 0 : o
0 0 7y —1 T

where r, is defined as ahove. Since the first matrix is positive definite (it has
only positive eigenvalues) and the second matrix is positive semi-definite
(it has the eigenvalues n and (), we deduce that BBT is positive definite
and thus, in particular, invertible, implying rank(BBT} = «. It follows
that the rank of the (n x 7n)-matrix I is at least n, and we conclude that
indeed n < m, since the rank cannot exceed the number of columns.

Letus go a little beyond and tumn to graph theory. (We refer to the review of
basic graph concepts in the appendix to this chapter.) A moment’s thought
shows that the following statement is really the same as Theorem 3:

If we decompose a complete graph K, into m cligues different
Sfrom K, such that every edge is in a unigue clique, then m > n.

Indeed, let X correspond to the vertex set of K, and the sets A; lo the
vertex sets of the cliques, then the statements are identical.

Our next task is to decompose K, into complete bipartite graphs such that
again every edge is in exactly one of these graphs. There is an easy way Lo
do this. Number the vertices {1, 2, ..., n}. First take the complete bipartite
graph joining 1 to all other vertices. Thus we obtain the graph K,
which is called a srar. Next join 2 o 3, ..., n, resulting in a star K ;.
Going on like this, we decompose K, intostars Ky 1, K1 n-2...., A1.1.
This decomposition uses 11 — 1 complete bipartite graphs. Can we do betler,
that is, use fewer graphs? No, as the following result of Ron Graham and
Henry O. Pollak says:

Theorem 4. If K, is decomposed into complete bipartite subgraphs
Hy. ..., H, thenm > — 1.

The interesting thing is that. in contrast to the Erdds-de Bruijn theorem, no
comhinatorial proof for this result is known! All of them use linear algebra
in one way or another. Of the various more or less equivalent ideas let us
look at the proof due to Tverberg, which may be the most transparent.

B Proof. Let the vertex set of K, he {1,...,n}, and let L;. R; be the
defining vertex sets of the complete bipartite graph H;, j = 1,...,m.
To every verlex i we associate a vaniahle ;. Since Hq,..., H,, decom-
pose K., we find

m

Zatia'j = Z( Z Tg Z Tp ). (1

i<y k=1 acl, bE Ry,

Now suppose the theorem is false, m < n — 1. Then the system of linear

'

AR
N

»
a

A decomposition of K5 into 4 complete
bipartite subgraphs
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cquations
o+t = 0,

5 =

acly

(k=1....m)

has fewer equations than variables, hence there exists a non-trivial solution
€l.... 0. From (1) we infer

Z(,'T;rfj = (L

i<

But this implics

k! n
0= {er+...+e) = ZC.?JHZZC,:CJ' = ZC;)' > 0,
i=1 i=1

i<y

a contradiction, and the proof is complete. (I

Appendix: Basic graph concepts

Graphs arc among the most basic of all mathematical structures. Corre-
spondingly, they have many different versions, representations, and incar-
nations, Abstractly, a graph is a pair G = (V, E}, where V is the set of
vertices, I is the set of edges, and each edge € € E “connects” two ver-
tices v, w € V. We consider only finite graphs, where V and £ are finite.
Usually, we deal with simple graphs: Then we do not admit loops, 1. e.,
edges for which both ends coincide, and no multiple edges that have the
A graph (7 with 7 vertices and 11 edges.  same set of endvertices. Vertices of a graph are called adjacent or neighbors
It has onc loop, onc double edge and onc if they are the endvertices of an edge. A vertex and an edge are called
triple edge. incident if the edge has the vertex as an cndvertex.

Here is a little picture gallery of important (simple) graphs:

— o T
K K3 E E
Kia K4

K, Ka s gé
K')-,‘i .
The complete bipartite graphs Ko » Kia %

with nt + n vertices and mn cdges

The complete graphs K, on m verlices
and (%) edges
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Two graphs G = (V, E) and G’ = (V', E') are considered isomorphic if
there are bijections V' — V' and E — FE’ that preserve the incidences be-
tween edges and their endvertices. (It is a major unsolved problem whether
there is an efficient test to decide whether two given graphs are isomorphic.)
This notion of isomorphism allows us to talk about the complete graph K5
on 5 vertices, etc.

G = (V',E')is asubgraphof G = (V, E) if V' C V, E' C E, and every
edge e € E’ has the same endvertices in G’ as in G. G’ is an induced
subgraph if, additionally, al/ edges of GG that connect vertices of G’ are also
edges of G'.

Many notions about graphs are quite intuitive: for example, a graph G
is connected if every two distinct vertices are connected by a path in G,
or equivalently, if G cannot be split into two nonempty subgraphs whose
vertex sets are disjoint.

We end this survey of basic graph concepts with a few more pieces of ter-
minology: A clique in G is a complete subgraph. An independent set in G
is an induced subgraph without edges, that is, a subset of the vertex set such
that no two vertices are connected by an edge of G. A graph is a forest if it
does not contain any cycles. A tree is a connected forest. Finally, a graph
G = (V, E) is bipartite if it is isomorphic to a subgraph of a complete bi-
partite graph, that is, if its vertex set can be written as a union V' = V; U V5
of two independent sets.
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The slope problem Chapter 10

Try for yourself — before you read much further — to construct config-
urations of points in the plane that determine “relatively few” slopes. For
this we assume, of course, that the n > 3 points do not all lie on one line.
Recall from Chapter 9 on “Lines in the plane” the theorem of Erd6s and de
Bruijn: the n points will determine at least n different lines. But of course
many of these lines may be parallel, and thus determine the same slope.

n=3 n=4 n = n = n= ..
3 slopes 4 slopes 4 slopes 6 slopes 6 slopes ...
or
n=23 n =4 n=>5 n = n="7 L A little experimentation for small n will
3 slopes 4 slopes 4 slopes 6 slopes 6slopes ...  probably lead you to a sequence such as

the two depicted here.

After some attempts at finding configurations with fewer slopes you might
conjecture — as Scott did in 1970 — the following theorem.

Theorem. If n > 3 points in the plane do not lie on one single line,
then they determine at least n — 1 different slopes, where equality is
possible only if n is odd and n. > 5.

Our examples above — the drawings represent the first few configurations
in two infinite sequences of examples — show that the theorem as stated is
best possible: for any odd n > 5 there is a configuration with n points that
determines exactly n — 1 different slopes, and for any other n > 3 we have
a configuration with exactly n slopes.
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Three pretty sporadic examples from the
Jamison-Hill cataloguc

This configuration of n = 6 points
determines £ = 6 different slopes.

Here a vertical starting direction yields
7 = 123456.

However, the configurations that we have drawn above are by far not the
only ones, For example, Jamison and Hill described four infinite families
of configurations, cach of them consisting of configurations with an odd
number i of points that determine only n — 1 slopes (“slope-critical con-
figurations”). Furthermore, they listed 102 “sporadic” examples that do not
seem to fit into an infinite family, most of them found by extensive com-
puter searches.

Conventional wisdom might say that extremal problems tend to be very
difficult to solve exactly if the extreme configurations are so diverse and
irregular. Indeed, there is a lot that can be said about the structure of slope-
critical configurations (see [2]), but a classification seems completely out
of reach, However, the theorem above has a simple proofl, which has two
main ingredients: a reduction to an efficicnt combinatorial model duc to
Eli Goodman und Ricky Pollack, and a beautiful argument in this model by
which Peter Ungar completed the proof in 1982.

B Proof. (1) First we notice that il suffices to show that every “even” set
of n = 2m points in the plane (m > 2) determines at least 7 slopes. This
is so since the case n = 3 is trivial, and for any setof n = 2m + 1 > 5
points (not all oo a line) we can find a subsct of n — | = 2m points, not all
on a line, which already determines n — 1 slopes,

Thus for the following we consider a configuration of 7o = 2s7 points in the
plane that determines { > 2 different slopes.

{2) The combinatorial model is obtained by constructing a periodic se-
quence of permutations. For this we start with some direction in the plane
that is not one of the configuration’s slopes, and we number the points
l,...,n in the order in which they appear in the |-dimcnsional projection
in this direction. Thus the permutation mg = 123...n represents the order
of the points for our starting direction,

Next let the direction perform a counterclockwise motion, and watch how
the projection and its permutation change. Changes in the order of the
projected points appcar exactly when the direction passes over one of the
configuration’s slopes.

But the changes are far from random or arbitrary: By performing a 180°
rotation of the direction, we obtain a sequence of permutations

g My A2 ..., FAp—1 > Ty
which has the following special properties:

¢ The scquence starts with my = 123...n and ends with m; = n...321.

¢ The length ¢ of the scqucnce is the number of slopes of the point con-
figuration.

e In the course of the sequence, every pair ¢ < 7 is switched exactly
once. This means that on the way from mg = 123...n to m; = n...321,
only increasing substrings are reversed.
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¢ Every move consists in the reversal of one or more disjoint increasing
substrings (corresponding to the one or more lines that have the direc-
tion which we pass at this point).

s = 654321

mq = 625314

my = 266314

my = 213564

m = 213546

7o = 123456

By continuing the circular mobtion around the configuration, one can view
the sequence as a part of a two-way infinite, periodic sequence of permuta-
tions

LT T s Ty Ml e T Ty L

where m,_; is the reverse of =; for all ¢, and thus m;, 5, = m; foralli € Z.

We will show that every sequence with the above properties (and t > 2)
must have length ¢t > n.

(3) The proof’s key is to divide each permutation into a “left half” and a
“right half” of equal size m = 7, and to count the letters that cross the
imaginary barrier between the left half and the right half.

Call m; — ;1 a crossing move if one of the substrings it reverses does
involve letters from both sides of the barrier. The crossing move has order
o if it moves 2d letters across the barrier, that is, if the crossing string has
exactly d letters on one side and at least d letters on the other side. Thus in
our example

o = 213:564 — 265:314 = my
is a crossing move of order ¢ = 2 (it moves 1,3, 5,6 across the barrier,

AL

which we mark by *:™"),

652.341 — 654:321

Getting the sequence of permutations
for our small example

A crossing move
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An ordinary move

602341

213564
213546

is crossing of order d = 1, while for example
625:314 — 652:341

is not a crossing move.

In the course of the sequence mp — ™ — ... — my, each of the letters
1,2,...,n has to cross the barrier at least once. This implies that, if the
orders of the ¢ crossing moves are d;, dz, - . ., d., then we have

[
Z 2d; = #{letters that cross the barrier} > n.
=1

This also implies that we have at least two crossing moves, since a crossing
move with 2d; = n occurs only if all the points are on one line, i. e. for
t = 1. Geometrically, a crossing move corresponds to the direction of a
line of the configuration that has less than m points on each side.

{4) A touching move is a move that reverses some string that is adjacent o
the central barrier, but does not cross it, For example,

74 = 625:314 — 652:341 = =5
is a touching move. Geometrically, a touching move corresponds to the
slope of a line of the configuration that has exactly ' points on one side,
and hence at most rn. — 2 points on the other side.

Moves that are neither touching nor crossing will be called ordinary moves.
For this
m = 213:546 — 213:564 = m,

is an example. So every move is either crossing, or touching, or ordinary,
and we can use the letters T, C, € to denote the iypes of moves. C(d) will
denote a crossing move of order d. Thus for our small example we get

T o) c(2) 0 T (ol P}
Ty — Wy —— Ty — 73 — T4 — M5 — Te,

or even shorter we can record this sequence as 1" O, C(2), 0, T, C{1).

(5) To complete the proof, we need the following two facts:

Berween any rwo crossing moves, there is at least one touching
Maove.

Between any crassing move of order d and the next touching move,
there are at least d — 1 ordinary moves.

In fact, after a crossing move of order d the barrier is contained in a sym-
metric decreasing substring of length 24, with d letiers on each side of the
barrier. For the next crossing move the central barrier must be brought into
an increasing substring of length at least 2. But only touching moves affect
whether the barrier is in an increasing substring. This yields the frst fact.
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For the second fact, note that with each ordinary move (reversing some
increasing substrings) the decreasing 2d-string can get shortened by only
one letter on each side. And, as long as the decreasing string has at least 4
letters, a touching move is impossible. This yields the second fact.

If we construct the sequence of permutations starting with the same initial
projection but using a clockwise rotation, then we obtain the reversed se-
quence of permutations. Thus the sequence that we do have recorded must
also satisfy the opposite of our second fact, namely

Between a touching move and the next crossing move, of order d,
there are at least d — 1 ordinary moves.

(6) The T-O-C-pattern of the infinite sequence of permutations, as derived
in (2), is obtained by repeating over and over again the T-O-C-pattern of
length ¢ of the sequence m¢p — ... — ;. Thus with the facts of (5) we
see that in the infinite sequence of moves, each crossing move of order d is
embedded into a T-O-C-pattern of the type

7.0,0,....0,C(d).0.0,...,0, (%)

>d—1 >d—1

oflengthl +(d-1)+1+4+(d—1)=2d.

In the infinite sequence, we may consider a finite segment of length ¢ that
starts with a touching move. This segment consists of substrings of the
type (), plus possibly extra inserted 7T’s. This implies that its length ¢

satisfies .
t > 2d; > n,
i=1
which completes the proof. g
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Three applications
of Euler’s formula

A graph is planar if it can be drawn in the plane R? without crossing edges
(or, equivatently, on the 2-dimensional sphere 5%), We talk of a plane graph
if such a drawing is already given and fixed. Any such drawing decomposes
the plane or sphere into a finite number of connected regions, including
the outer (unbounded) region. which are referred to as faces. Euler’s for-
mula cxhibits a beautiful relation between the number of vertices, edges
and faces that is valid for any plane graph. Euler mentioned this result for
the first time in a letter to his friend Goldbach in 1750, but he did not have
a complete proof at the time. Among the many proofs of Euler’s formula,
we present a pretty and “self-dual” one that gets by without induction. It
can be traced back to von Staudt’s book “Geometrie der Lage” from 1847,
g2

Euler’s formula. If 7 is a connected plane graph with n vertices,

e edges and [ faces, then

n—e+f =2

B Proof. Let T C £ be the edge set of a spanning tree for G, that is, of a
minimal subgraph that connects all the vertices of (. This graph does not
contain a cycle because of the minimality assumption.

We now need the dual graph G* of G: to construct it, put a vertex into the
interior of each face of G, and connect two such vertices of G* by edges that
correspond to common boundary edges between the corresponding faces. If
there are several common boundary edges, then we draw several connecting
cdges in the dual graph. (Thus &~ may have multiple edges even if the
original graph G is simple.)

Consider the collection T* € E* of edges in the dual graph that corre-
sponds to edges in E\T. The edges in T* connect all the faces, since T
does not have a cycle; but also T does not contain a cycle, since otherwise
it would separate some vertices of (< Inside the cycle from vertices outside
{and this cannot be, since T is a spanning subgraph, and the edges of T and
of T do not intersect), Thus T is a spanning tree for G'*.

For every tree the number of vertices is one larger than the number of
edges. To see this, choose one vertex as the root, and direct all edges
“away from the root™: this yields a bijection between the non-root ver-
tices and the edges, by matching cach edge with the vertex it points at.
Applied to the tree T this yields n = e + I, while for the tree T it yields
f = er» + 1. Adding both equations we get n+f = (er+1)+(ep. +1) =
e+ 2. O

Chapter 11

Leonhard Euler

Aplanegraph G: =6, e = 10, f =6

.t
o

Dual spanning trees in G' and in G*

*
(Y
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The five platonic solids

[y}

2 2
Here the degree is written next to each
vertex. Counting the vertices of given
degree yields ne = 4,y = 0, nq = 1,
5 = 2.

(S
0=,

The number of sides is written into each
region. Counting the faces with a given
number of sides yields fi = 1, f2 = 3,
fa=1, fo = 1, and f; = O otherwise.

Euler’s formula thus produces a strong numerical conclusion from a gee-
metric-topological situation: the numbers of vertices, edges, and faces of a
finite graph G satisfy n — e + f = 2 whenever the graph is or can be drawn
in the plane or on a sphere.

Many well-known and classical consequences can be derived from Euler’s
formula. Among them are the classification of the regular convex polyhedra
(the platonic solids), the fact that K5 and K3 3 are not planar (see below).
and the five-color theorem that every planar map can be colored with at
most five colors such that no two adjacent countries have the same color.
But for this we have a much better proof, which does not even need Euler’s
formula — see Chapter 30

This chapter collects three other beautiful proofs that have Euler’s formula
at their core. The first two — a proof of the Sylvester-Gallai theorem, and
a theorem on two-colored point configurations — use Euler’s formula in
clever combination with other arithmetic relationships between basic graph
parameters. Let us first look at these parameters.

The degree of a vertex is the number of edges that end in the vertex, where
loops count double. Let 7, denote the number of vertices of degree i in G\
Counting the vertices according to their degrees, we obtain

n =ng+n +neyt+nag+... (1)

On the other hand, every edge has two ends, so it conirihutes 2 to the sum
of all degrees, and we obtain

2e = ny + 2ne + 3ns +dng + ... (2)

You may interpret this identity as counting in two ways the ends of the
edges, that is, the edge-vertex incidences. The average degree d of the
vertices is therefore

7 2e

n

Next we count the faces of a plane graph according to their number of sides:
a k-face is a face that is bounded by k edges (where an edge that on both
sides borders the same region has to be counted twice!). Let fi be the
number of k-faces. Counting all faces we find

f=h+f+fitfat... 3)
Counting the edges according to the faces of which they are sides, we get
2e = fi+2f2+3fs+4fa+. .. ()

As before, we can interpret this as double-counting of edge-face incidences.
Note that the average number of sides of faces is given by

- 2e

]
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Let us deduce from this — together with Euler’s formula — quickly that the
complete graph K5 and the complete bipanite graph K3 3 are not planar.
For a hypothetical plane drawing of K5 we caleulate n = 5. e = (3} = 10,
thus f=e+2-n="Tand f = & = 27.—0 < 3. Butif the average number
of sides is smaller than 3, then the embedding would have a face with at
most two sides, which cannot be.

Similarly for Ksswegetn =6,e =9, and f =e + 2 —n = 5, and thus
F=2 = % <2 4, which cannot be since K3 5 is simple and bipartite, so K» drawn with one crossing
all its cycles have length at least 4.

Itis no coincidence, of course, that the equations (3) and (4) for the f,’s look
so similar to the equations (1) and (2) for the n;’s. They are transformed
into each other by the dual graph construction G — G* explained above,

From the double counting identities, we get the following important “lecal”
consequences of Euler’s formula,

Proposition. Ler (G be any simple plane graph with n. > 2 vertices. Then 3.3 drawn with onc crossing
(AY (& has a vertex of degree at most 5.
(BY G has at most In - 6 edges.

(Cy If the edges of G are two-colored, then there is a vertex of G with ut
most twe color-changes in the cyelic order of the edges around the
vertex.

B Proof. For each of the three statements, we may assume that (7 is con-
nected.

(A) Every face has at least 3 sides (since (7 is simple), so (3) and (4} yield

fo= fa+ fat fst...
2e 3f3+4f1+5f5+

and thus 2¢ — 3f = Q.
Now if cach vertex has degree at least 6, then (1) and (2) imply

n - Tig + Ty + ng+ ...
2e = Gng+Tny t 8ng 1 ...

and thus 2¢ — 6n = 0,
Taking both inequalities together, we get

6le —n—f) = {2e—6n)+2(2e —~38f) 2 0

and thus ¢ > n + f, contradicting Euler’s formula.

(B) As in the first step of part (A), we obtain 2¢ — 3 f > 0, and thus
3In—6 =3e—-3f > ¢

from Euler's formula,
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Arrows point to the corners with color
changes.

{C) Let ¢ be the number of comers where color changes occur. Suppose the
statement is false, then we have ¢ > 4n corners with color changes, since
at every vertex there is an even number of changes. Now every face with
2k or 2k 4+ 1 sides has at most 2k such corners, so we conclude that

2fs+4fa+4fs+6f6+6/7+8fs+ ...
2fs +4fa+6f5+8fs +10f7 + ...
203fa +4fa+5f5 +6fe +Tfz+...)
—AMfat+ fat s+ fo+ 4.0

e - Af

in < e

A 1A

using again (3) and (4). So we have e > n + f, again contradicting Euler’s
formula. ]

1. The Sylvester-Gallai theorem, revisited

It was first noted by Norman Steenrod, it seems, that part (A) of the propo-
sition yields a strikingly simple proof of the Sylvester-Gallai theorem (see
Chapter 9).

The Sylvester-Gallai theorem. Given any set of n > 3 points in
the plane, not all on one line, there is always a line that contains
exactly two of the points.

B Proof. (Sylvester-Gallai via Euler)

If we embed the plane R? in R? near the unit sphere S? as indicated in
our figure, then every point in R? corresponds to a pair of antipodal points
on 5%, and the lines in R” correspond to great circles on 52, Thus the
Sylvester-Gallai theorem amounts to the following:

Given any setf of n = 3 pairs of antipoedal points on the sphere, not
all on one great circle, there is always a greai circle that contains
exactly two of the antipodal pairs.

Now we (ualize, replacing each pair of antipodal points by the correspond-
ing great circle on the sphere. That is, instead of points tv € 52 we
consider the orthogonal circles given by (', := {x € S* : (x,v) = 0}.
(This (7, is the equator if we consider ¥ as the north pole of the sphere.)

Then the Sylvester-Gallai problem asks us to prove:

Given any collection of n. > 3 great circles on 82, not all of them
passing through one point, there is always u point that is on exactly
two of the great circles.

But the arrangement of great circles yields a simple plane graph on 5%,
whose vertices are the intersection points of two of the great circles, which
divide the great circles into edges. All the vertex degrees are even, and they
are at least 4 — by construction. Thus part (A) of the proposition yields the
existence of a vertex of degree 4. That’s it! |
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2. Monochromatic lines

The following proof of a “colorful” relative of the Sylvester-Gallai theorem
is due to Don Chakerian.

Theorem. Given any finite configuration of “black” and “white” points
in the plune, not all on one line, there is always a “monochromatic” line:
u line that coniains at least two points of one color and none of the other.

B Proof. As for the Sylvester-Gallai problem, we transfer the problem to
the unit sphere and dualize it there. So we must prove:

Given any finite collection of “black” and “white” great circles on
the unit sphere, not all passing through one point, there is always
an intersection point that lies either only on white great circles, or
aonly on black great circles.

Now the {positive) answer is clear from part (C) of the proposition, since
in every vertex where great circles of different colors intersect, we always
have at least 4 corners with sign changes, O

3. Pick’s theorem

Pick’s theorem from 1899 is a heautiful and surprising result in itself, but
it is also a “classical” consequence of Euler’s formula, For the following,
call a convex polygon P C R? elementary if its vertices are integral (that
is, they lie in the lattice Z?), but if it does not contain any further lattice
points.

Lemma. Evervelementary triangle A = conv{p,, py,p;} € R? has area
A(A) = L.

2

B Proof. Both the parallelogram I? with corners py. p,, 02, Py + P2 — Po
and the lattice Z? are symmetric with respect to the map

oi® —— PPy,

which is the reflection with respect to the center of the segiment from p,
to p,. Thus the parallelogram P = A U a(A) is elementary as well, and
its integral translates tile the planc. Hence {p; — py, P2 — P} 1S & basis
of the lattice Z2, it has determinant +1, P is a parallelogram of area 1, and
A has area % (For an explanation of these terms see the box on the next
page.) d
Theorem. The area of any (not necessarily convex) polvgon @ C R? with

integral vertices iy given by

1
A(Q) = Hynt + Enbd -1,

where Tin: and neg are the numbers of integral points in the interior
respectively on the boundary of (.

Pt p:— Py

L] L] L] e ® ® ®
Thint = 11, Nyd = 8. s0 A=14
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Lattice bases
A basis of Z? is a pair of linearly independenti vectors e1, e such that

72 = {)\181 + Agea i AL, As € Z}'

Let ey = (§) and ez = (5), then the area of the parallelogram
spanned by e, and e is given by A(er, es) = |det(er,ez)| =
|det (§5}. Tf £, = (0) and £, = () is another basis, then
there exists an invertible Z-matrix Q with ([ ©} = (7 $)}Q. Since
Q@Q~' = (}Y), and the determinants are integers, it follows that
|det | = 1, and hence |det(f,, fo)| = | det(er, eq)]|. Therefore

all basis parallelograms have the same area 1, since A{(}), ({}) =1.

M Proof. Every such polygon can be triangulated using all the 7, lattice
points in the interior, and all the ngy lattice points on the boundary of ().
(This is not quite obvious, in particular if ¢} is not required to be convex, but
the argument given in Chapter 31 on the art gallery problem proves this.)
Now we interpret the triangulation as a plane graph, which subdivides the
plane into one unbounded face plus f - 1 triangles of area % S0

1

AQ) = H(f D).

Every triangle has three sides, where each of the ¢, interior edges bounds
two triangles, while the ey boundary edges appear in one single triangle
each. S0 3(f—1) = 2ep, +epg and thus f = 2(e— f)—epg+3. Also, there
is the same number of boundary edges and vertices, ¢z = 74a. These two
facts logether with Euler’s formula yield

fo= 2e—f)—ecoa+d
= 2n—2)—npg +3 = 2ng + g — 1,

and thus
AQ) = %(f = 1) = Ny + %“bd - L a
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Cauchy’s rigidity theorem

A famous result that depends on Euler’s formula (specifically, on part (C)
of the proposition in the previous chapter) is Cauchy’s rigidity theorem for
3-dimensional polyhedra.

For the notions of congruence and of combinatorial equivalence that are
used in the following we refer to the appendix on polytopes and polyhedra
in the chapter on Hilbert’s third problem, see page 50.

Theorem. If two 3-dimensional convex polyhedra P and P’ are
combinatorially equivalent with corresponding facets being congru-
ent, then also the angles between corresponding pairs of adjacent
facets are equal (and thus P is congruent to P').

The illustration in the margin shows two 3-dimensional polyhedra that are
combinatorially equivalent, such that the corresponding faces are congru-
ent. But they are not congruent, and only one of them is convex. Thus the
assumption of convexity is essential for Cauchy’s theorem!

M Proof. The following is essentially Cauchy’s original proof. Assume
that two convex polyhedra P and P’ with congruent faces are given. We
color the edges of P as follows: an edge is black (or “positive™) if the
corresponding interior angle between the two adjacent facets is larger in P’
than in P; it is white (or “negative”) if the corresponding angle is smaller
in P’ than in P.

The black and the white edges of P together form a 2-colored plane graph
on the surface of P, which by radial projection, assuming that the origin
is in the interior of P, we may transfer to the surface of the unit sphere.
If P and P’ have unequal corresponding facet-angles, then the graph is
nonempty. With part (C) of the proposition in the previous chapter we find
that there is a vertex p that is adjacent to at least one black or white edge,
such that there are at most two changes between black and white edges (in
cyclic order).

Now we intersect P with a small sphere S, (of radius €) centered at the
vertex p, and we intersect P’ with a sphere S” of the same radius ¢ centered
at the corresponding vertex p’. In S; and S. we find convex spherical
polygons () and @’ such that corresponding arcs have the same lengths,
because of the congruence of the facets of P and P’, and since we have
chosen the same radius €.

Chapter 12

Augustin Cauchy



72

Cauchy’s rigidity theorem

Now we mark by + the angles of ¢ for which the corresponding angle
in @ is larger, and by - the angles whase corresponding angle of Q' is
smaller. That is, when moving from ¢} to ¢} the + angles are “opened,”
the — angles are “closed,” while all side lengths and the unmarked angles
stay constant.

From our choice of p we know that some + or - sign occurs, and that in
cyclic order there are at most two +/— changes. If only one type of signs
occurs, then the lemma below directly gives a contradiction, saying that one
edge must change its length. If both types of signs occur, then (since there
are only two sign changes) there is a “separation line” that connects the
midpoints of two edges and separates all the + signs from all the — signs.
Again we get a contradiction from the lemma below, since the separation
line cannot be both longer and shorter in @ than in €. O

Cauchy’s arm lemma.
If Q and Q' are convex (planar or spherical) n-gons, labeled as in
the figure,

r
Tn—1

such that q,q,_; = qiq;,, holds for the lengths of corresponding edges for
1<i<n~—1, and o < ol holds for the sizes of corresponding angles for
2 < i< n— 1, then the “missing " edge length satisfies

N < 4190
with equaliry if and only if o = of holds for all .

It is interesting that Cauchy’s original proof of the lemma was false: a con-
tinuous motion that opens angles and keeps side-lengths fixed may destroy
convexity — see the figure! On the other hand, both the lemma and its
proof given here, from a letter by 1. J. Schoenberg to S. K. Zaremba, are
valid both for planar and for spherical polygons.

B Proof. We use induction on 7. The case n = 3 is easy: If in a triangle
we increase the angle v between two sides of fixed lengths a and 0, then the
length ¢ of the opposite side also increases. Analytically, this follows from
the cosine theorem

¢t = a®* + 0" - 2abcos~y
in the planar case, and from the analogous result

cosc¢ = cosdacosh+ sinusindcos-y

in spherical triponometry. Here the lengths a, b, ¢ are measured on the
surface of a sphere of radius 1, and thus have values in the interval [0, 7.
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Now letn > 4, If forany ¢ € {2....,n — 1} we have a; = af, then the

corresponding vertex can be cut off by introducing the diagonal from g;_;

to g, resp. from ¢/ _; to ¢{_,, withg, _;q,,, = 4i_,4¢,,,, s0 we are done
by induction. Thus we may assume o; < of for2 < ¢ < n — 1.

Now we produce a new polygon (* from ¢ by replacing a,,_ by the
largest possible angle o}, _; < af,_; that keeps ()~ convex. For this we
replace g, by g7, keeping all the other g;, edge lengths, and angles from ).
If indeed we can choose aef _; = af, | keeping Q™ convex, then we get
419, < 414} < ¢iyl,. using the case n = 3 for the first step and induction
as above for the second.

Otherwise after a nontrivial move that yields

145, > $14, ()

we “get stuck™ in a siluation where g, g, and g7, are collinear, with

Ty + 0145 = 4297, {2)

Now we compare this ¢* with ¢’ and find

Bl < 0o (3)
by induction on n (ignoring the vertex g, resp. ¢;). Thus we obtain

R ) ) (2) (1)
Q4 = 0, 9y 2 degh —§idy = gia > 1Un.

where () is just the triangle inequality, and all other rclations have already
been derived. M|

We have secn an example which shows that Cauchy’s theorem is not true
for non-convex polyhedra. The special feature of this example is, of course,
that a non-contintous “fAip" takes one polyhedron to the other, keeping the
facets congruent while the dihedral angles “jump.” One can ask for more:

Could there be, for some non-convex polyhedron, a continuous
deformation that would keep the fucets flat and congruent?

Tt was conjectured that no triangulated surface, convex or not, admits such
a motion. So, it was quite a surprise when in 1977 — mare than 160 years
after Cauchy’s work — Robert Connelly presented counterexamples: closed
trianguiated spheres embedded in RY (without self-intersections) that are
flexible, with a continuous motion that keeps all the edge lengths constant,
and thus keeps the triangular faces congruent.
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A beautiful example of a flexible sur-
face constructed by Klaus Steffen: The
dashed lines represent the non-convex
edges in this “cut-out” paper model.
Fold the normal lines as “mountains™
and the dashed lincs as “vallcys.” The
edges in the model have lengths 5, 10,
11, 12 and 17 units.

The rigidity theory of surfaces has even more surprises in store: only very
recently Connelly, Sabitov and Walz managed to prove that when any such
flexing surface moves, the volume it encloscs must be constanl. Their proof
is beautiful also in its vse of algebraic machinery (outside the scope of
this book).
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Touching simplices Chapter 13

How many d-dimensional simplices can be positioned in R® so that
they touch pairwise, that is, so that all their pairwise intersections
are (d — 1)-dimensional?

This is an old and very natural question. We shall call f{d) (he answer to
this problem, and record f(1) = 2, which is trivial. For d = 2 the configu-
ration of four triangles in the margin shows f(2) > 4. There is no similar
configuration with five triangles, because from this the dual graph construc-
tion, which for our example with four triangles yiclds a planar drawing
of K, would give a planar embedding of Ky, which is impossible (see
page 67). Thus we have

fizy=4
In three dimensions, f(3) > & is quite easy to see. For that we use the con-
figuration of eight triangles depicted on the right. The four shaded triangles
are joined to some point z below the “plane of drawing,” which yields four
tetrahcdra that touch the plane from below. Similarly, the four while trian-
gles are joined to some point y above the plane of drawing. So we obtain a
configuration of cight touching tetrahedra in B, that is, f{3) > 8.
In 1965, Baston wrote a book proving f(3) < 9, and in 1991 it took Zaks
another book o establish

f(3) = &
with f(1) = 2, f{2) = 4 and f{3) = 8, it doesn’t take much inspiration to
arrive at the following conjecture, first posed by Bagemihi in 1956.

Conjecture. The maximal number of pairwise touching d-simplices in a
configuration in B? is

fd) =22,

The lower bound, f{d) > 29, is easy to verify “if we do it right” This
amounts to a heavy use of affinc coordinate tranformations, and to an in-
duction on the dimension that establishes the following stronger result, duc
to Joseph Zaks [4].

Theorem 1. For every d > 2, there is a family of 2¢ pairwise touching } y
d-simplices in RY together with a transversal line that hits the interior of s
every single one of them. “Touching simplices”
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B Proof. For d = 2 the family of four triangles that we had considered
does have such a transversal line. Now consider any d-dimensional con-
figuration of touching simplices that has a transversal line £. Any nearby
parallel line #' is a transversal line as well. Tf we choose ¢ and { parallel
and close enough, then each of the simplices contains an orthogonal
(shortest) connecting interval between the two lines, Only a bounded part
of the lines £ and # is contained in the simplices of the configuration, and
we may add two connecting scgments outside the configuration, such that
the rectangle spannecd by the two outside connecting lines (that is, their con-
vex hull) contains all the other connecting segments. Thus, we have placed
a “ladder” such that each of the simplices of the configuration has one of
the ladder’s steps in its interior, while the four cnds of the ladder arc outside
the configuration.

Now the main step is that we perform an (affine) coordinate transformation
that maps R? to R, and takes the rectangle spanned by the ladder to the
rectangle (half-square) as shown in the figure below, given by

R' = {(z,22,0,....00T 1 w1 <y <=1 <y €1}

Thus the configuration of touching simplices X! in R* which we obtain
has the x-axis as a transversal line, and it is placed such that each of the
simpliccs contains a scgment

Sta) = {{on22,0,...,0)7 s =1 <3y < 1}

in its interior (for some «x with —1 < « < 0), while the origin 0 is outside
all simplices.

Now we produce a second copy Y2 of this configuration by reflecting the
first one in the hyperplane given by z; = 3. This second configuration
has the ro-axis as a transversal line, and each simplex contains a segment

528 = {(x1,8.0,...,07: 1< <1}

in its interior, with —1 < 3 < 0. But each segment S'(a) intersects each
segment 52(3), and thus the interior of each simplex of T! intersects each
simplex of £2 in its interior. Thus if we add a new (d + 1}-st coordinate
xI4y1.and take 22 to be

{conv( Py U {—eqp 1 }): P € B} U {conv(P; U {ega }): P € B2,

then we get a configuration of touching {d + 1)-simplices in R4+!. Fur-
thermaore, the antidiagonal

A = {{z.—-r0,.... 007 xR} C R4

intersects all segments S () and $%(3). We can “tilt” it a little, and obtain
aline

Lo = {{z.—2.0,...,00er)T ;2 € R} C R,
which for all small enough £ > 0 intersects zll the simplices of 2. This
completes our induction step. a
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In contrast to this exponential lower bound, tight upper bounds are harder
to get. A naive inductive argument (considering all the facet hyperplanes in
a touching configuration separately) yields only

) < @+

and this is quite far from the lower bound of Theorem 1. However, Micha
Perles found the following “magical” proof for a much better bound.

Theorem 2. Foralld > 1, we have f(d) < 2¢%%.

H Proof. Given a configuration of r touching d-simplices Py, P», ..., P.
in RY, first enumerate the different hyperplanes Hi, Ho, ..., H, spanned
by facets of the P;, and for each of them arbitrarily choose a positive
side H;", and call the other side H; .

For example, for the 2-dimensional configuration of = 4 triangles depicted
on the right we find s = 6 hyperplanes (which are lines for d = 2).

From these data, we construct the B-matrix, an (r X s)-matrix with entries
in {+1. —1,0}, as follows:

+1 if P; has a facet in Hj, andPigHj*,
By = —1 if P; has afacetin H;, and P, C Hj',
0 if F; does not have a facetin H;.

For example, the 2-dimensional configuration in the margin gives rise to
the matrix

1 0 1 0 1 0

-1 -1 1 0 0 0

B= -1 1 0 1 0 0
0 -1 -1 0 0 1

Three properties of the B-matrix are worth recording. First, since every
d-simplex has d + 1 facets, we find that every row of B has exactly d + 1
nonzero entries, and thus has exactly s — (d+ 1) zero entries. Secondly, we
are dealing with a configuration of pairwise touching simplices, and thus
for every pair of rows we find one column in which one row has a +1 entry,
while the entry in the other row is —1. That is, the rows are different even
if we disregard their zero entries. Thirdly, the rows of B “represent” the
simplices F;, via

= () H n () H. ()

7:Bij=1 J:Bij=—1

Now we derive from B a new matrix C, in which every row of B is replaced
by all the row vectors that one can generate from it by replacing all the zeros
by either +1 or —1. Since each row of B has s — d — 1 zeros, and B has r
rows, the matrix C has 2°~ ¢~ 1r rows.
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For our example, this matrix € is a (32 % 6)-matrix that starts

(

1

1

1 1

1 -1
1 1 1

1T —1

1 1|

1 -1

1 )

1 -1

PR Y T O S T S
—

where the first eight rows of (' are derived from the first row of I3, the
second eight rows come from the second row of B, elc.

The point now is that all the rows of C’ are different: If two rows are derived
from the same row of B3, then they are different since their zeros have been
replaced differently; if they are derived from different rows of B, then they
differ no matter how the zeros have been replaced. But the rows of C are
(£1)-vectors of length &, and there are only 2¢ different such vectors. Thus
since the rows of  are distinct, ¢ can have at mosi 2° rows, that is,

98 d-lp o 98

The first tow of the C-matrix represents  However, not all possible (£1)-vectors appear in 7, which yields a strict
the shaded triangle, while the second  jnequality 257 'r < 2° and thus r < 29%!. Tb see this, we note that
row corresponds fo an empty inersec-  aoary row of (7 represents an intersection of halfspaces — just as for the
tion of the hallspaces. The peoint x leads . .. L.
to the vector rows of B before, via the formula {*). This intersection is a subset of the
simplex £, which was given by the corresponding row of B. Let us take
(L -t 1t -1 1) a point z € R that does not lie on any of the hyperplanes H;, and not in
any of the simplices . From this = we derive a {L1)-vector that records
for each j whether = € HJr orx € [{;. This {1)-vector does not occur
in C, because its hallspacc mtcrscctmn accordmg to {*) contains x and thus
is not contained in any simplex . |

that does not appear in the (’-matrix.
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Every large point set Chapter 14
has an obtuse angle

Around 1950 Paul Erd6s conjectured that every set of more than 2¢ points
in R? determines at least one obtuse angle, that is, an angle that is strictly
greater than 5. In other words, any set of points in R¢ which only has acute
angles (including right angles) has size at most 2¢. This problem was posed
as a “prize question” by the Dutch Mathematical Society — but solutions
were received only for d = 2 and for d = 3.

For d = 2 the problem is easy: The five points may determine a convex
pentagon, which always has an obtuse angle (in fact, at least one angle of
at least 108°). Otherwise we have one point contained in the convex hull

of three others that form a triangle. But this point “sees” the three edges of
the triangle in three angles that sum to 360°, so one of the angles is at least
120°. (The second case also includes situations where we have three points °

on a line, and thus a 180° angle.)

Unrelated to this, Victor Klee asked a few years later — and Erd6s spread

the question — how large a point set in R¢ could be and still have the e
following “antipodality property”: For any two points in the set there isa  ---
strip (bounded by two parallel hyperplanes) that contains the point set, and

that has the two chosen points on different sides on the boundary. °

Then, in 1962, Ludwig Danzer and Branko Griinbaum solved both prob- -
lems in one stroke: They sandwiched both maximal sizes into a chain of B
inequalities, which starts and ends in 2¢. Thus the answer is 2¢ both for
Erd6s’ and for Klee’s problem.

In the following, we consider (finite) sets S C R< of points, their convex
hulls conv(S), and general convex polytopes Q C R?. (See the appendix
on polytopes on page 50 for the basic concepts.) We assume that these sets
have the full dimension d, that is, they are not contained in a hyperplane.
Two convex sets fouch if they have at least one boundary point in common,
while their interiors do not intersect. For any set @ C R¢ and any vector
s € R? we denote by Q + s the image of Q under the translation that moves
0 to s. Similarly, Q — s is the translate obtained by the map that moves s
to the origin.

Don’t be intimidated: This chapter is an excursion into d-dimensional
geometry, but the arguments in the following do not require any “high-
dimensional intuition,” since they all can be followed, visualized (and thus
understood) in three dimensions, or even in the plane. Hence, our figures
will illustrate the proof for d = 2 (where a “hyperplane” is just a line), and
you could create your own pictures for d = 3 (where a “hyperplane” is
a plane).
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Theorem 1. for every d, one has the following chain of inegqualities:

L.

S CRY 4 <i(8;,8;,88) < 5 forevery {s;,8;.8:} C S}

o S C R?such that for any two points {s;,8;} C §
< max § #5 | there is a strip S(4, §) that contains S, with 8; and 8,
lying in the parallel boundary hyperplanes of S(4, j)

S C RYsuch that the transiates P — 8;, 8; € S, of
the convex hull P := conv(S) intersect in a common
poim, hut they only touch

_ max

dimensional convex polytope () T R® touch pairwise

#5 | d-dimensional centrally symmetric convex polytope
Q" C R? touch pairwise

— IAaX

< HAX { 45 S C R¥such that the trunslates ) + s; of some d-}

S C RYsuch that the translates Q* + s; of same}

(6}

< 2%,
B Proof. We have six claims {equalitics and inequalities) to verify. Let’s
get going.
(1) Take S := {0, 1}% to be the veriex set of the standard unit cube in R?,
and choose 8;, 8;,8; € §. By symmeltry wec may assume that g; = 0 is
the zero vector. Hence the angle can be computed from

8, 8
cos <1(8;, 85, 9) = (si: 51)
ERIER
which is clearly nonnegative. Thus S is a set with |$; = 27 that has no

abtuse angles,

(2) If § contains no obtuse angles, then for any s;, 8; € & we may dcfine
H;; +s; and H;; +s; 1o he the parallel hyperplanes through s; resp. s; that
are orthogonal to the edge [s;, s;]. Here H,; = {x € RY : {z, 8,~3;) = 0}
is the hyperplanc through the origin that is orthogonal to the line through
s; and s;, and H;; + s; = {x +s; : £ € H,,} is the translate of H,;
that passcs through s,, etc, Hence the strip between H;; + 8; and Hij + 84
consists, besides s; and s;, exactly of all the points x € R such that the
angles <t(8;, 8;,x) and <((s;, 8;, =) are non-obtuse. Thus the strip contains
all of 5.

(3) P is contained in the halfspace of H;; 4 s; that contains g; if and only
if P — s is contained in the halfspace of H;; that contains s; — g;: A prop-
erty “an object is contained in a halfspace” is not destroyed il we translate
both the object and the halfspace by the same amount (namely hy —s;).
Similarly, P is contained in the halfspace ol If;; + s; that contains s; if
and only if P — &; is contained in the halfspace of H;; that contains g, — s;.
Putting both statements together, we find that the polytope P is contained
in the strip between 1 + 8; and H;; +s; il and only if P —s; and P — s;
lie in different hal{spaces with respect to the hyperplane H;;.
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This correspondence is illustrated by the sketch in the margin,
Furthermore, from 8; € £ = conv(,5} we get that the origin 0 is contained
in all the translates P — 38; (8; £ 5). Thus we see that the sets P — 3;
all intersect in 0, but they only touch: their interiors are pairwise disjoint,
since they lie on opposite sides of the corresponding hyperplanes H;;.

(4) This we get for free: “the translates must touch pairwise” is a weaker
condition than “they intersect in a common point, but only touch.’”
Similarly, we can relax the conditions by letting P be an arbitrary convex
d-polytope in R®. Furthermore, we may replace S by - S.

(8) Here “>>" is trivial, but that is not the interesting direction for us. We
have to start with a configuration S C R and an arbitrary d-polytope
(2 C R? such that the translates Q@ + s, (8; € S) touch pairwise. The
claim is that in this siluation we can use

Q" ::{%(ZE— :L',yEQ}

instead of . But this is not hard to see: First, Q* is d-dimensional, convex,
and centrally symmetric. One can check that (* is a polytope {its vertices
are of the form %(ql - q;), for vertices q;, g ; of @), but this is not important
for us.

Now we will show that () + 8, and J + 8; touch if and only if (" + 3; and
2* 4+ s; touch. For this we note, in the foolsteps of Minkowski, that

yeRY;

(@ +8)N(Q* +35;) #£ @
- qu‘L!anqJ @ %(q q{_)+3?:%( "’)+SJ'
= 3q,,q/. 4. 4] € Q: 3 +q))+s=3(d;+al)+s,

= dq,.q; €Q:q; + 8 =4q;+3;
= (Q+8,)N(Q+3;) # 3,

where in the third (and crucial) equivalence “<—" we use thatevery q £ €
(ian Fe wsitte{] aslq = ’;% {g+q)to git <= and that (@ is convex and thus
slgy +4Y), 54 +q) € Qrosee ™37

Thus the passage from @ to Q* (known as Minkowski symmetrization) pre-
serves the property that two translates €} + 8; and ( 4 s; intersect, That is,
we have shown that for any convex set ¢, two translates ¢ + 8; and ¢ + 8
intersect if and only if the translates Q™ + s; and J* + g; intersect.

The following characterization shows that Minkowski symmetrization also
preserves the property that two translates touch:

€+ 8; and () + 85 touch .!'fand only if they intersect, while Q4 s;
and Q + s; + £(8; — 8;) do not intersect for any € > 0.

{6} Assume that (}* 4 8; and J* + s; touch. For every intersection point

€(Q"+ )N Q" + 8;)

b

Hi;+s
Sa 1} K
- “\\‘--\
.
P //'

(] i
A / . ij T8

3
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Scaling factor . vol{P;) = £vol( P}

we have
z—8 €Q" and x—s; <",
thus, since )* is centrally symmetric,
8 —x=—(x—8;)€QqQ,

and hence, since {)* 1s convex,

s —si)=3((®—8,)+ (si —x)) € Q"
We conclude that $(s,+s,) is contained in Q* + s; for all i. Consequently,
for I := conv(5) we get

P = i(P+s;y=conv{l(si+s;): 8,5} CQ" +s,,

which implies that the sets P; = 1(P + s;) can only touch.
Finally, the sets F; are contained in P, because all the points s;, s; and

+{8; + s;) are in P, since P is convex. But the P; are just smaller, scaled,
translates of P, contained in P. The scaling factor is 5, which implies that

l
vol(P;) = Q—JVOI(P),

since we are dealing with d-dimensional sets. This means that at most 2¢
sets P; fit into P, and hence |§] < 24,
This completes our proof: the chain of incqualities is closed. L)

... but that’s not the end of the story. Danzer and Griinbaum asked the
following natural question:

What happens if one requires all angles to be acute rather than
Just non-obtuse, that is, if right angles are forbidden?

They constructed configurations of 2d — 1 points in RY with only acute
angles, conjecturing that this may be best possible. Griinbaum proved that
this is indced true for ¢ < 3. But twenty-onc vyears later, in 1983, Paul
Erd&s and Zoitan Fiiredi showed that the conjecture is false — quite dra-
matically, if the dimension is high! Their proof is a great example for the
powert of probabilistic arguments; see Chapter 35 for an introduction to the
“probabilistic methad.” Our version of the proof uscs a slight improvement
in the choice of the parameters due to our reader David Bevan.

; ; : G724
Theorem 2. For every d > 2, there is a set S C {0, | }¥ of QL%:(ﬁ) |
points in R (vertices of the unit d-cube) that determine only acute angles.
In particular, in dimension d = 34 there is a set of T2 > 2-34 — 1 poinis
with only acute angles.

W Proof. Setrn = |4 (%)dj , and pick 3m vectors

x2(1).z(2),....2(3m) e {0,114

by choosing all their coordinates independently and randomly, to be cither
{0 or 1, with probability % for each alternative. {You may toss a perfect coin
3md times for this; however, if d is large you may get bored by this soon.)
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We have seen above that all angles determined by (0/1-vectors are non-
obtuse. Three vectors @(f), z(j), (k) determine a right angle with apex
x(7) if and only if the scalar product (z(i) — £{7), (k) — ()} vanishes,
that is, if we have

z(i)e -x(f)e =0 or =z(k)e— ()¢ =0 foreach coordinate ¥,

We call (i,7.%) a bad triple if this happens. (If z{{) = =(j) or (j) =
@(k), then the angle is not defined, but also then the triple (¢, j, k) is
certainly bad.)

The probability that one specific triple is bad is exactly (%]d: Indeed, it
will be good if and only if, for one of the d coordinates 7, we get

either x(y==x(k)e =10, x(j)¢ =1,
or iy =xlk)y =1, x(jly=0.

This leaves us with six bad opiions out of eight equally likely ones, and a
triple will be bad if and only if one of the bad options (with prohability %)

happens for each of the d coordinates.
3 3'rn)

The number of triples we have to consider is 3(”}"), since there are (7]
sels of three vectors, and for each of them there are three choices for the
apex. Of course the probabilities that the various triples are bad are not
independent: but linearity of expectation {which is what you get hy averag-
ing over all possible selections; see the appendix) yields that the expected
number of bad triples is exactly 3("7") (43)# This means — and this is the
point where the probabilistic method shows its power — that there is some
choice of the 3rn vectors such that there are at most 3 (3;“) (zi)d bad triples,
where

)dg'm“

|G

qfdmy rayd (3! rand s o9 32
'3( 3 ) (5)° < 3%% (3) =m ('\/_g) (
by the choice of .
But if there are nol more than i bad triples, then we can remove m of the
3m vectors x{#) in such a way that the remaining 2m vectors don’t contain
a bad triple, that is, they determine acute angles only. ]

The “probabilistic construction” of a large set of 0/ 1-points without right
angles can be easily implemented, using a random number generator to “flip
the coin.” David Bevan has thus constructed a set of 31 points in dimension
¢ —= 15 that determines only acute angles.

Appendix: Three tools from probability

Here we gather three basic tools from discrete probability theory which
will come up several times: random variables, linearity of expectation and
Markov’s inequality.
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Let (€1, p) be a finite probability space, that is, {2 is a finite set and p = Prob
is a map from {2 into the interval [0, 1] with > ., p(w) = 1. A random
variable X on ) is a mapping X : {} — [R. We define a probability space
on the image set X (€2} by setting p(X = z) == 3"y, _, p(w). Asimple
example is an unbiased dice (all p(w) = }) with X = “the number on top

6
when the dice is thrown.”
The expectation £ X of X is the average to be expected, that is,

EX = > plw)X(w).

wed

Now suppose X and ¥ are two random variables on €, then the sum X + ¥
is again a random variable, and we obtain

BX 1Y) = > pw)(Xw)+Yw)

Y plw)X W)+ > plw)Y(w) = FX+ FY.

Clearly, this can be extended to any finite linear combination of random
variables — this is what is called the lirearity of expectation. Note that it
needs no assumption that the random variables have 0 be “independent”
in any sense!

Our third tool concerns randomn variables X which take only nonnegative
values, shortly denoted X > (). Let

Pob(X za) = 3 plw)
wX(wWlre
be the probability that X is at least as large as some a > 0. Then
EX = ) plwXw)+ Y pwXw 2 a Y plo)
wiX(w)>a w X {wi<a wiX(w)ra
and we have proved Markov's inequality

FX

Prob(X z a) < .
a
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Borsuk’s conjecture Chapter 15

Karol Borsuk’s paper “Three theorems on the n-dimensional euclidean
sphere” from 1933 is famous because it contained an important result
(conjectured by Stanistaw Ulam) that is now known as the Borsuk-Ulam
theorem:

Every continuous map f : S* — R maps two antipodal points of
the sphere S to the same point in R<,

The same paper is famous also because of a problem posed at its end, which
became known as Borsuk’s Conjecture:

"
Can every set S C R? of bounded diameter diam(S) > 0 be
partitioned into at most d + 1 sets of smaller diameter?

Karol Borsuk

The bound of d + 1 is best possible: if S is a regular d-dimensional simplex,
or just the set of its d + 1 vertices, then no part of a diameter-reducing
partition can contain more than one of the simplex vertices. If f(d) denotes
the smallest number such that every bounded set S C R? has a diameter-
reducing partition into f(d) parts, then the example of a regular simplex
establishes f(d) > d + 1.

Borsuk’s conjecture was proved for the case when S is a sphere (by Borsuk
himself), for smooth bodies S (using the Borsuk-Ulam theorem), for d <
3, ...but the general conjecture remained open. The best available upper
bound for f(d) was established by Oded Schramm, who showed that

for all large enough d. This bound looks quite weak compared with the con-

jecture “f(d) = d+ 17, but it suddenly seemed reasonable when Jeff Kahn

and Gil Kalai dramatically disproved Borsuk’s conjecture in 1993. Sixty

years after Borsuk’s paper, Kahn and Kalai proved that f(d) > (1.2)‘/3

holds for large enough d.

A Book version of the Kahn-Kalai proof was provided by A. Nilli: brief

and self-contained, it yields an explicit counterexample to Borsuk’s conjec-

ture in dimension d = 946. We present here a modification of this proof,

due to Andrei M. Raigorodskii and to Bernulf Weilbach, which reduces

the dimension to d = 561, and even to d = 560. The current “record” is  Any d-simplex can be split into d + 1
d = 298, achieved by Aicke Hinrichs and Christian Richter in 2002. pieces, each of smaller diameter.
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A. Nilh

Borsuk's conjecture

Theorem. Ler g = p™ be a prime power, . := 4q — 2, and d := (}) =
(2 — 1)(4qg — 3). Then there is a set S € {+1, 1} 0f 2" 2 points in R?
such thar every partition of S, whose parts have smaller digmerer than S,

has at least
anﬂ

N
S

parts. For g = 9 this implies that the Borsuk conjecture is false in dimen-
sion d = 561, Furthermore, f(d) > (I.Z)ﬁ holds for all large encugh d.

B Proof. The construction of the set .S proceeds in four steps.

{1) Let g be a prime power, set n = 4¢ — 2, and let
Q = {:v e{+1,-1}" iz =1, #{i:z; = -1} is even}.

This @ is a set of 2772 vectors in R"™. We will see that {x, 4} = 2 (mod 4)
holds for all vectors =,y € (. We will call x,y nearfy-orthogonal if
|{(x,y}| = 2. We will prove that any subset ¢ C €} which contains no

nearly-orthogonal vectors must be “small™: || < 922 ("71).

(2) From (J, we construct the set

of 2°~2 symmeiric (n x n)-matrices of rank 1. We interpret them as vectors
with n? components, R C K", We will show that there are only acute
angles between these vectors: they have positive scalar products, which are
at least 4. Furthermore, if /i C 1 contains no two vectors with minimal
scalar product 4, then [R| is “small™: |R'| < "9 2 (*71).

Vectors, matrices, and scalar products

In our notation all vectors &, , . . . are column vectors; the transposed
vectors z7,y7, ... are thus row vectors. The matrix product zz” is
a matrix of rank 1, with (xz”);; = z;7;.

If &, y are column vectors, then their scalar product is

We will also need scalar products for matrices X, Y € R™*™ which
can be interpreted as vectors of length n2, and thus their scalar
product is
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{3) From 1, we obtain the set of points in R{%) whose coordinates are the
subdiagonal entries of the corresponding matrices:
{(SBSC)! )f>j : ZEZET S R}

Again, 5§ consists of 2"~2 points. The maximal distance between these
points is precisely obtained for the nearly-orthogonal vectors x, ¢ € Q.
We conclude that a subset 5" C 5 of smaller diameter than S must be
I ., w,u 1
small™: |$'] < 32425 ("71).
{4) Estimates: From (3) we see that one needs at least

24q74

S

parts in every diameter-reducing partition of 5. Thus
(2g — 1)(4¢ — 3).

Therefore, whenever we have g(¢) > (2q— 1)}(4g — 3) + I, then we have a
counterexample to Borsuk's conjecture in dimension d = (2¢ — 1}{4g — 3).

We will calculate below that g(9} > 562, which yields the counterexample
in dimension d = 561, and that
e (27\°
G442 \ 16

(1.2} for d large enough.

glq)

Hdy = max{gig).d+ 1} for d =

q(q)

which yields the asymptotic bound [(d) =

Details for (1): We start with some harmless divisibility considerations.

Lemma. The function P{z) := (;:i) is a polynomial of degree ¢ — 2. It
vields integer values for all integers z. The integer P{z) is divisible by p if
and only if z is not congruent to ) or | modulo «.

B Proof. For this we write the binomial coefficient as
(zﬁi’) = =3) - {z—gt+ 1)
g—2 lg—D(g-3)- ... ... -2-1
and compare the number of p-factors in the denominator and in the numer-
ator. The denominator has the same number of p-factors as {¢ — 2}!, or as
{g—1}!, since ¢ — 1 is not divisible by p. Indeed, by the claim in the margin
we get an integer with the same number of p-factors if we take any product
of ¢ — 1 inlegers, one from each non-zero residue class modulo 4.
Now if = is congruent to 0 or 1 {mod ¢), then the numerator is also of this
type: All factors in the product are from different residue classes, and the
only classes that do not occur are the zero class (the multiples of ¢), and the
class either of —1 or of +1, but neither +1 nor —1 is divisible by p. Thus

denominator and numerator have the same number of p-factors, and hence
the quotient is not divisible by p.

P{z) =

Claim. If o = b # 0(modgq), then
« and b have the same number of p-

facrors.

B Proof. Wc have a = b+ sp™, where
b is not divisible by p™ = ¢. So cvery
power p~ that divides b satisfics & < m,
and thus it also divides «. The statement
is symmetric in ¢ and b. d



88

Borsuk’s conjecture

On the other hand, if z # 0, 1 (mod ¢), then the numerator of (x) contains
one factor that is divisible by ¢ = p™. At the same time, the product has no
factors from two adjacent nonzero residue classes: one of them represents
numbers that have no p-factors at all, the other one has fewer p-factors
than ¢ = p™. Hence there are more p-factors in the numerator than in the
denominator, and the quotient is divisible by p. |

Now we consider an arbitrary subset Q' C @ that does not contain any
nearly-orthogonal vectors. We want to establish that ()’ must be “small.”

Claim 1. If x,y are distinct vectors from Q, then % ({x,y) +2) is
an integer in the range

—(g-2) < f(=zy)+2) < g1

Both x and y have an even number of (—1)-components, so the number of
components in which x and y differ is even, too. Thus

(x,y) = (49—2) — 2#{i: 2z, # vy} = —2 (mod4)

forall z,y € Q, thatis, 2((x,y) + 2) is an integer.

From z,y € {+1,—1}%972 we see that —(4¢g — 2) < (z,y) < 4q - 2,
thatis, —(¢ — 1) < 2((z,y) + 2) < q. The lower bound never holds with
equality, since z; = y; = 1 implies that  # —y. The upper bound holds
with equality only if & = y.

Claim 2. Foranyy € Q', the polynomial innvariablesz1, ..., x,
of degree q — 2 given by

(i((w,w +2) ‘2>

Fy(z) = P{;((z,y)+2) q-—2

satisfies that Fy,(x) is divisible by p for every x € Q"\{y}, but
not forx = y.

The representation by a binomial coefficient shows that Fy, () is an integer-
valued polynomial. For x = y, we get f(y) = 1. For ¢ # y, the
Lemma yields that F () is not divisible by p if and only if }(({z, y)+2)is
congruent to 0 or 1 (mod ¢). By Claim 1, this happens only if 1 ((z, y) +2)
is either 0 or 1, that is, if (x,y) € {—2,4+2}. So « and y must be nearly-
orthogonal for this, which contradicts the definition of @)’.

Claim 3. The same is true for the polynomials F',(z) in the n — 1
variables x3, . . ., %y, that are obtained as follows: Expand Fy,(x)
into monomials and remove the variable x1, and reduce all higher
powers of other variables, by substituting 1 = 1, and =% = 1 for
i > 1. The polynomials F(z) have degree at most q — 2.

The vectors z € Q C {+1,—1}" all satisfy x; = 1 and zZ = 1. Thus
the substitutions do not change the values of the polynomials on the set Q.
They also do not increase the degree, so F'(x) has degree at most ¢ — 2.
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Claim 4. There is no linear relation (with rational coefficients)
between the polynomials I'y{x), that is, the polynomials I'y(z),
y C @, are linearly independent over Q. In particuiar, they are
distinct.

Assume that there is a relation of the form 3 - o @y Fy {2} = U such that
not all coefficients c,, are zero, After multiplication with a suitable scalar
we may assume that all the coefficients are integers, but not all of them are
divisible by p. But then for every y € @' the evaluation at & 1= y yields
that cry, 'y (s} is divisible by p, and hence 50 is cuy, since Ty, (3) is not.

Claim 5. || is bounded by the number of squarefree monomials

of degree at most g — 2 inn — 1 variables, which is Zf;f ("7,

By construction the polynomials Fy are squarefree: none of their mono-
mials conlains a variable with higher degree than 1. Thus each F—y{:c) 1B
linear combination of the squarefree monomials of degree at most ¢ — 2 in
the n — | variables x4, ..., T,. Since the polynomials Fy(m} are lincarly
independent, their number (which is '(J'[) cannot be larger than the number
of monomials in question,

Details for (2): The first column of 227 is . Thus for distinct £ £
we obtain distinct matrices Af (z) := za”, We interpret these mairices as
vectors of length »? with components r,z;. A simple computation

mn n

(M(z). M)y = 33 (e yiw)

i=1j_1

- (Z”)(Z%%) = (z,y)" > 4

i=1 =1

shows that the scalar product of A {z} and A (y} is minimized if and only
if &,y € ¢ are nearly-orthogonal.

Details for (3): Let U(z) € {+1.—1}% denote the vector of all sub-
diagonal entries of M (z). Since M{(x) = xax” is symmetric with diagonal
values +1, we see that Af{x) # M(y) implies U{x) # U/(y). Further-
more,
4 < Mz}, M{y)) = 20U{x).U(y) 1 n,
that is,
7

U, U) = -5 12

with equality if and only if & and y are nearly-orthogonal. Since all the vec-

tors I/ {z) € 5 have the same length /(I (). U{z)) = 1/ (5), this means

that the maximal distance between points U (2}, U(y) € 5 is achieved
exactly when @ and y are nearly-orthogonal.

Details for (4): For ¢ = 9 we have g(9) =~ 768.31, which is greater than
d+1=(})+1 =562
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To obtain a general bound for large d, we use monotonicity and unimodality
of the binomial coefficients and the estimates n! > e(Z)* and n! < en(2)"
(see the appendix to Chapter 2} and derive
dq
) ( 206)
3y )3q e \N27 /7

B <o) o <o )

=0

Thus we conclude

2491 e 727\4
Hd)y 2 g9la) = = > = 5()-
49—-3 q 16
= ()

From this, with
= (20— 1)(4¢—3) = 5¢° + (g —3)(3g— 1) = 5¢* forq >3,

54 /g+ﬁ>\/§, and (27)‘F>12032
we gel

fldy > l'id

A counterexample of dimension 560 is obtained by noting that for ¢ = 9 the
quotient g{g) = T58 is much larger than the dimension d{g) = 561. Thus
one gets a counterexample for d = 560 by taking only the “three fourths”
of the points in § that satisfy zo; + 2a; + @30 = — 1.

{1 2032) > (1.2) Vd  forall large enough d. (I

Borsuk’s conjecture is known to be true for ¢ < 3, but it has not been
verified for any larger dimension. In contrast to this, it is trucup to d = 8
if we restrict ourselves to subsels S C {1, —1}¢, as constructed above
{see [8]). In either case it is quite possible that counterexamples can be
found in reasonably small dimensions.,
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Sets, functions, Chapter 16
and the continuum hypothesis

Set theory, founded by Georg Cantor in the second half of the 19th cen-
tury, has profoundly transformed mathematics. Modern day mathematics
is unthinkable without the concept of a set, or as David Hilbert put it; “No-
body will drive us from the paradise (of set theory) that Cantor has created
for us.”

One of Cantor’s basic concepts was the notion of the size or cardinaliry of
a set A, denoted by |Af|. For finite sets. this presents no difficulties: we
Jjust count the number of elements and say that A{ is an n-set or has size 7.
it M contains precisely n elements. Thus two finite sets A and NV have
equal size, | M| = | V|, if they contain the same number of elements.

To carry this notion of equal size over to infinite sets, we use the following
suggestive thought experiment for finite sets, Suppose a number of people
board a bus, When will we say that the number of people 1s the same as the
number of available seats? Simple enough, we let all people sit down. If
everyone finds & seat, and no seat remains empty, then and only then do the
twao sets (of the people and of the seats) agree in number. In other words,
the two sizes are the same if there is a bijection of one set onto the other.

This is then our definition: Two arbitrary sets M and N (finite or infinite) ~ ©corg Cantor

are said to be of equal size or cardinality, if and only if there exists a bi-
jection from M onto V. Clearly, this notion of equal size is an equivalence
relation, and we can thus associate a number, called cardinal number, to
every class of equal-sized sets. For example, we obtain for finite sets the
cardinal numbers 0, 1,2 ... n, ... where i stands for the ¢lass of n-sets,
and, in particular, 0 for the empty set 2. We further obhserve the cbvious tact
that a proper subset of a finite set Af invariably has smaller size than M.

The theory becomes very interesting (and highly non-intuitive) when we
turn to infinite sets. Consider the set ¥ = {1, 2,3, ...} of natura] numbers.
We call a set M countable if it can be put in one-to-one correspondence
with M. In other words, A 1s countable if we can list the elements of A as

I, e, My, .. .. But now a strange phenomenon occurs. Suppose we add
to N a new element 2. Then NU {x} is still countable, and hence has equal
size with M!

This fact is delightfully illustrated by “Hilbert's hotel”” Suppose a hotel
has countably many rooms, numbered 1,2, 3, ... with guest ¢; occupying
room Z; so the hotel is fully booked. Now a new guest = arrives asking
for a room, whereupon the hotel manager tells him: Sorry, all rooms are
taken. No problem, says the new arrival, just move guest g; to room 2,
g2 1o room 3, gz to room 4, and so on, and I will then take room 1. To the
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manager's surprise (he is not a mathematician} this works; he can still put
up all guests plus the new arrival x!

Now it is clear that he can also put up another guest y, and anather one z,
and so on. In particular, we note that, in contrast to finite sets, it may well
happen that a proper suhset of an infinite set Af has the same size as M. In
fact, as we will see, this is a characterization of infinity: A set is infinite if
and only if it has the same size as some proper subsel.

Let us leave Hilbert's hotel and look at our familiar numher sets. The sct
Z of integers is again countable, since we may enumerate Z in the form
Z=1{0,1,-1,2,-2,3,-3,...}. It may come more as a surprise that the
rationals can be enumerated in a similar way.

Theorem 1, The set (@ of rational numbers is countable.

B Proof. By listing the set Q7 of positive rationals as suggested in the
figure in the margin, but leaving out numbers already encountered, we see
that @ is countable, and hence so is @ by listing O at the heginning and
—% right after ‘3 With this listing

Q - {Ua 117132: 729%v7%1%a7é133 73141 "'4:%a_g:"' ] O

Another way to interpret the figure is the following statement:
The union of countably many countable sets M, is again countable.

Indeed, set AMf,, = {a,1, Qn2, Gng, - - -} and list

a0
J M, = {ai1,021,a12,013, 022,431, @41, @32, 023, Q14, ... }
=1

precisely as hefore,

Let us contemplate Cantor's enumeration of the positive rationals a hit
more. Looking at the figure we obtained the sequence

4
11 g0 3 2 1y Tr 92 8 42 Hro4r Zr Ty T v
and then had to strike out the duplicates suchas 2 = £ or 2 = £,
But there is a listing that is even more elegant and systematic, and which
contains no duplicates — found only quile recently by Neil Calkin and

Herhert Wilf. Their new list starts as follows:

121 1 2 3 4 3 2 1 1 2 3 4 &
1

11 2 1 3 2 3
1!

3 4
1+ 31 3 20 3

1 3
i 3 5

B3|
[

) PRI

anbs
Bl

1

Lelon

b ¥

Here the denominator of the #-th rational number equals the numerator of
the (n + 1)-st number. In other words, the n-th fraction is b(rn)/b(re + 1),
where {b(n}) is a sequence that starts with

nzl
(1,1,2,1,3,2,3,1,4,3,5,2,5,3,4, 1,5, ..).

This sequence has first been studied by a German mathematician, Morilz
Abraham Stern, in a paper from 1858, and is has become known as “Stern’s
diatomic series.”
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How do we obtain this sequence, and hence the Calkin-Wilf listing of the
positive fractions? Consider the infinite binary tree in the margin. We
immediately note its recursive rule:

e L isontop of the tree, and

e every node Ji has twe sons: the left son is % and the right son is z—?
We can easily check the following four properties:

(1) All fractions in the tree are reduced, that is, if = appears in the tree,
then v and s are relatively prime.

This holds for the mp 2, and then we use induction downward. If » and s
are relatively prime, then soare T and 7 + 5, as well as s and r + s.

(2) Bvery reduced fraction 7 > () appears in the tree.

We use induction on the sum r 4+ s. The smallest value is r + s = 2, that
is £ = -, and this appears at the top. If » > s, then “== appears in the trce
by mductmn and so we get T as its right son. Slmllarly ifr < s,
appears, which has T as its left son.

{3) Every reduced fraction appears exactly once.

The argument is similar. If  appears more than once, then r 7é 5, since
any node in the tree except the top is of the form —— H < lor =t ? > 1. But
it r > s or r < s, then we argue by inducticn as before.

Every positive rational appears therefore exactly once in our tree, and we
may write them down listing the numbers level-by-level from left to right.
This yields precisely the initial segment shown abhove.

(4} The denominator of the n-th fraction in our Jist equals the numerator
of the (rn + 1}-st.

This is certainly true for n = 0, or when the n-th fraction is a left son.
Suppose the n-th number % is a right son. If © is at the right boundary,
then s = 1, and the successor lies at the left boundary and has numerator 1.
Finally, if f is in the interior and r: is the next fraction in our sequence,

-

then 7 is the right son of , = is the left son of -, and by induction

the dLnommator of I=

® i the numerator of = ,s0 we get s =7,

Well, this is nice, but there is even more to come. There are two natural
guestions:

— Does the sequence (b(n))}, . have a “meaning™? That is, does b(n)
count anything simple?

— Given 7, is there an easy way Lo determine the successor in the listing?

N

PR Y

%%

#% %% %%

%%%%%&%%%ﬁ%ﬁ%ﬁ%%

=
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For example, h{6) = 3, with the hyper-
binary representations

6 =442

6=44+14+1

6=2+4+24+14+1

R

O
N
/\ /\

To answer the first question, we work out that the node b(n}/b(n + 1) has
the two sons b{2n + 1}/6(2n + 2} and b{2n + 2)/b(2n + 3}. By the set-up
of the tree we oblain the recursions

b(2n+ 1) =b(n} and B(2n+2) = b(n)+b(n+1). (N

With 6(0) = 1 the sequence (b(n}}, >0 is completely determined by (1}.
So, is there 4 “nice” “known” sequence which obeys the same recursion?
Yes, there is, We know that any number r: can be uniquely written as a sum
of distinct powers of 2 — this is the usual binary representation of 7. A
hyper-binary representation of n is a rcpresentation of n a sum of powers
of 2, where every power 2% appears at most rwice. Let i{n) be the number
of such representations for n. You arc invited 10 check that the sequence
h{n) obeys the recursion (1}, and this gives b{n) = h(n) for all n.

Incidentally, we have proved a surprising fact: Let £ be a reduced fraction,
there exists precisely one integer n with r = h{n) and 8 = hin+1).

Let us look at the second question. We have in our tree

r

/ ’ \ that is, with z := / \

7 ris
r+s 8 l+.r r+1

We now use this to generate an even larger infinite binary tree (without a
root} as follows:

.

T / .
/\ /\ Ay
/\\ PR m

M A A A RAARAA

=<

e
g 1] 1

[y I I
=
=

M H f\ Hd NWWWWWM

[ =)
[l
Wl

i

=

T

WWWWWWM

L=

In this tree all rows are equal, and they all display the Calkin-Wilf listing
of the positive rationals (starting with an additional ).
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So how docs one get from one rational to the next? To answer this, we first

record that for every rational x its right son is & + 1, the right grand- son is

& + 2, so the k-fold rlght son is  + k. Similarly, the left son ot TS T, Y

whose left son is 25—, and so on: The k-fold left son of 7 is 5. / \
Now to find how to get from £ = x to the “next” rational f(r) in the ;

listing, we have to analyze the situation depicted in the margin. In fact, if ff{; y+1
we consider any nonnegative rational number 2 in cur infinite binary tree, Pl
then it is the k-fold right son of the left son of some rational y > 0 (for

some & = {)), while f(2) is given as the A-fold left son of the right son of §] %

the same y. Thus with the formulas for k-fold left sons and k-fold right % %

sons, we get
= A + k.
1+

as claimed in the figure in the margin. Here & = [z is the integral part
of z, while 7= = {z} is the fractional part. And from this we obtain

y+1 1 1 1

f(‘”)r1+k(y+1):ﬁ+ﬂ F1=3h a1t

¥+l
1+y +k Ly k(y+1)

Thus we have obtained a beautiful formula for the successor f{z) of r,
found very recently by Moshe Newman:

The function
() ,
[ — = —
lz] +1—{x}
generates the Calkin-Wilf sequence
1 L 2 1 3 2 3 L 4
S i S i S - S S B S B S S

which contains every positive rational number exactly once.

The Calkin-Wilf-Newman way to enumerate the positive rationals has a \

number of additional remarkable properties. For example, one may ask for !

a fast way to determine the n-th fraction in the sequence, say forn = 108. 1

Here it is; / \
To find the n-th fraction in the Calkin-Wilf sequence, express n as a % %
binary number n. = {b;bi_1...b1by)a, and then follow the path in the ;/ \ 0/ \

o

Calkin-Wilf tree that is determined by its digits, starting at ; = (1—)

Here b; = 1 means “take the right son,” that is, “add the denominator ! 2 2 g
to the numerator,” while b; = (0 means “‘take the left son,” that is, “add 04
the numerator to the denominator.” ﬂ; ﬁ % §] } §] % ﬁ

The figure in the margin shows the resulting path for n = 25 = {11001},:

1 4 3 5 2 5 3 4

So the 25th number in the Calkin-Wilf sequence is £. The reader could A ;ﬁ ;ﬁ ;ﬁ P‘ﬁ\l P& A A
7
5

easily work out a similar scheme that computes for a gwnn fraction ¢ (the
binary representation of) its position 7 in the Calkin-Wilf sequence.

| —
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A bijective f: (0,1] — (0, 1)

Let us move on to the real numbers IR. Are they still countable? No, they
are not, and the means by which this is shown — Cantor’s diagonalization
method — is not only of fundamental importance for all of set theory, but
certainly belongs into The Book as a rare stroke of genius,

Theorem 2. The set R of real numbers is not countable,

M Proof. Any subset N of a countable set M — {m,, ma,m3,...} is ar
mast countable (that is, finite or countable). In fact, just list the elements
of NV as they appear in M. Accordingly, if we can find a subset of R which
is not countable, then a fortiori R cannot be countable. The subset Af
of B we wanl to look at is the interval (0, 1} of all positive real numbers r
with 0 < r < 1. Suppose, to the contrary, that A/ is countable, and let
M = {ri.ra,ry,...} be alisting of M. We wrile v, as its unique infinite
decimal expansion without an infinite sequence of zeros at the end:

rn = Dayaueang...

where a,; € {0,1,...,9} for all » and i. For example, 0.7 = 0.6999...
Consider now the doubly infinite array

r = {layaiediy...

" 0.a2103za23...

I'n = O-anlan‘lan3- .

For every n, choose by, & {1,..., 8} different from a,,,: clearly this can be
done. Then b = 0.b1bsb3...b,... is a real number in our set A and hence
must have an index, say b = ;. But this cannot be, since by, is different
from az;. And this is the whole proof! a

Let us stay with the real numbers [or a moment. We note that all four
types ol intervals {0, 1), (0, 1],[0,1) and [0, 1} have the same size. As an
example, we verify that (0, 1] and (0, 1) have equal cardinality. The map
f:{0,1] — (0,1}, © — y defined by

—x for J<u

-z for 1<z

1 -
for 3 <&

IA 1A TA

wlus e |ia kit
L= A3 —

|

does the job. Indeed, the map is bijective, since the range of y in the first line
is % < y < 1, in the second line % <y < %,in the third line % <y < %
and so on.
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Next we [ind that any two intervals (of [inite length > 0} have equal size
by considering the central projection as in the figure. Even more is true:
Every interval (of length > 0) has the same size as the whole real line R.
To see this, look at the bent open interval (0, 1) and project it onto R from
the center 5.

So, in conclusion, any open, half-open, closed (finite or infinite) interval of
length > 0 has the same size, and we denote this size by ¢, where ¢ stands
for confinuum (a name sometimes used for the interval [().1]).

That finite and infinite intcrvals have the same size may come expected on
second thought, but here is a faci that is downright counter-intuitive.

Theorem 3. The set RE of all ordered pairs of real numbers (that is, the
real plane) has the same size as R.

B Proof. To see this, it suffices to prove that the set of all pairs (z, y).
0 < 2,y < 1, can be mapped bijectively onto (0, 1]. The proof is again
from The Book. Consider the pair {x, %) and write x,y in their unique
non-lerminating decimal expansion as in the following example:

r — 03 01 2 007 08
y = 0.009 2 05 1 0008

Note that we have separated the digits of x and y into groups by always
going Lo the next nonzero digit, inclusive. Now we associate to (x, y) the
number z € (0, 1] by writing down the first z-group, after that the first
y-group, then the second x-group, and so on. Thus, in our cxample, we

oblain
z = 0.300901 2205007108 0008 ...

Since neither «x nor y exhibits only zeros from a certain point on, we find
that the expression for z is again a non-terminating decimal expansion,
Conversely, from the expansion of z we can immediately read off the
preimage (i, y)}, and the map is bijective — end of proof. [

As (z,y) — x + iy is a bijection from &2 onto the complex numbers C,
we conclude that [T} = [R| — ¢. Why is the result [R?| = |R| so unex-
pected? Because it goes against our intuition of dimension. It says that the
2-dimensional plane K? (and, in general, by induction, the n-dimensional
space R™) can be mapped bijectively onto the 1-dimensional line R. Thus
dimension is not generally preserved by bijective maps. If, however, we
require the map and its inverse to be continuous, then the dimension is pre-
served, as was [irst shown by Luitzen Brouwer.

Let us go a little further. So far, we have the notion of equal size. When
will we say that A is at most as large as N7 Mappings provide again the
key. We say that the cardinal number m is less than or equal to n, if for
sets M and N with (M| = m, |N| = n, there exists an injection from A
into N. Clearly, the relation m < n is independent of the representative
sets M and N chosen. For finite sets this corresponds again to our intuitive
notion: An m-sel is at most as large as an ri-set if and only if ym < n.
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“Schriider and Bermstein painting”

Now we are faced with a basic problem. We would certainly like to have
that the usual laws concerning inequalities also hold for cardinal numbers.
But is this true for infinite cardinals? In particular, is it true that m < n,
n < mimply m = n? This is not at all obvious: We are given infinite
sets M and NV as wellasmaps f : M — Nandg : N — M that
are injective bul nol necessarily surjective. This suggests to construct a
bijection by relating some elements . € M to f(m) € N, and some
elements n € N to g(n) € M, But it is not clear whether the many
possible choices can be made to “fit logether.”

The affirmative answer is provided by the famous Schrider-Bernstein
theorem, which Cantor announced in 1883, The first proofs were given
by Friedrich Schrider und Felix Bemstein guite some time later. The fol-
lowing proof appears in a litile book by one of the twentieth century giants
of sel theory, Paul Cohen, who is famous for resolving the continuum
hypothesis (which we will discuss below).

Theorem 4. [f each of two sets M and N can be mapped injectively into
the other, then there is a bijection from M to N, that is, [M| = |N|.

B Proof. We may certainly assume that A/ and NV are disjoint — if not,
then we just replace NV by a new copy.

Now f and g map back and forth between the elements of M and those
of W. One way 1o bring this potentially confusing situation into perfect
clarity and order is to align A U /V into chains of elements: Take an arbi-
trary element mg € M, say, and from this generate a chain of elements by
applying f. then g, then f again, then g, and so on. The chain may close np
(this is Case 1)if we reach g again in this process, or it may continue with
distinct elements indefinitely. (The first “duplicate™ in the chain cannot be
an element different {rom mg, by injectivity.)

If the chain continues indefinitely, then we try to follow it backwards:
From myg to g~ ' (my) if my is in the image of g, then to f~ (g™ (o))
il ¢~ (rg) is in the image of f, and so on. Three more cases may arise
here: The process of following the chain backwards may go on indefinitely
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{Case 2), it may stop in an element of Af that does not lie in the image of g
{Case 3), or it may stop in an element of N that does not lie in the image
of f (Case 4).

Thus A L N splits perfectly into four types of chains, whose elements
we may label in such a way that a bijection is simply given by pulting
F' 2oy —— n;. We verify this in the four cases separately:

Case 1. Finite cycles on 2k + 2 distinct elements (k = 0)

f 7 f f

mp —}':=-— Hp — ] —F=> S My —3F= Ng

\\ 9 ./

Case 2. Two-way infinite chains of distinct elements

o f g f

T T —3= T —e- TR —3= N —L)-— Hly —e=

Case 3. The one-way infinile chains of distinct elements that start at the
elements mg € M\g{N)

f g f g f

M —F== Tl — e Tl —F 11| — W 1) —

Case 4. The one-way infiniie chains of distinct elements that start at the
elements g € N\ f{A])

g f g f

Ny — I 1) T 1] — e M — = - []

What aboul the other relations governing inequalities? As usual, we set
m < nif m < n, but m % n. We have just seen that for any two cardinals
m and n at most one of the three possibilitics

m<n, m=n.m>n

holds, and it follows from the theory of cardinal numbers tha, in fact, pre-
cisely one relation is true. {See the appendix 1o this chaptier, Proposition 2.)

Furthermore, the Schroder-Bernstein Theorem tells us that the relation < is
transitive, that is, m < nand n < p imply m < p. Thus the cardinalities
are arranged in linear order starting with the finite cardinals 0,1,2. 3. . .,
Invoking the usual Zermelo-Fraenkel axiom system (in particular, the ax-
iom of choice) we easily find that any infinite sct A conlains a countable
subsct. In fact, Af contains an element, say m;. The set M\ {m; } is not
empty (since it is infinite) and hence contains an element 729, Consider-
ing M\ {m,,ma} we infer the existence of my, and so on. So, the sizc
of a countable set is the smallest infinite cardinal, usually denoted by R
{pronounced “aleph zero™).

“The smallest infinite cardinal”
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With this we have also proved a result
announced earlier;

Every infinite set has the same size as
some proper subset.

As a corollary to ¥y < m for any infinite cardinal m, we can immediately
prove “Hilbert’s hotel” for any infinite cardinal number m, that is, we have
M U {z}! = |M] for any infinite set M. Indeed, A contains a subset
N = {mq,mg, ma,...}. Now map z onto my, 1y onto my, and so on,
keeping the elements of M\ ¥V fixed. This gives the desired bijection.

As another consequence of the Schréder-Bernstein theorem we may prove
that the set P(N) of all subsets of I has cardinality . As noted above, it
suffices to show that |P(N)\{@}| = |(0,1]]. An example of an injective
map is

FPEN{EY — 01, A o Y10

=y
while
g: (0,1 — PR\ {a}, 0.bibobs... —— {b;10%: i € N}
defines an injection in the other direction.

Up to now we know the cardinal numbers 0, 1,2, ..., ¥y, and further that
the cardinality ¢ ol B is higger than ¥y. The passage from ) with || = ¥y
to R with |R| = ¢ immediately suggests the next question:

Iy ¢ = |R] the next infinite cardinal number after ¥ ?

Now, of course, we have the problem whether there is a next larger cardinal
number, or in other words, whether ¥, has a meaning at all. It does — the
prool for this is outlined in the appendix to this chapter.

The statement ¢ = ¥; hecame known as the continuum hypothesis. The
question whether the continuum hypothesis is true presented for many
decades one ol the supreme challenges in all of mathematics. The answer,
finally given by Kurt Godel and Paul Cohen, takes us to the limit of
logical thought. They showed that the statement ¢ = W, is independent
of the Zermelo-Fraenkel axiom systemn, in the same way as the parallel
axiom is independent ol the other axioms of Euclidian geometry. There are
madels where ¢ = ¥ holds, and there are other models of set theory where
¢ # ¥ holds.

In the light of this [act it is quite interesting to ask whether there are other
conditions (from analysis, say) which are equivalent to the continuum
hypothesis. Indeed, it is natural to ask [or an analysis example, since his-
torically the first substantial applications ol Cantor’s set theory oceurred in
analysis, specifically in complex function theory. In the following we want
to present one such instance and its extremely elegant and simple solution
by Paul Erdds. In 1962, Wetzel asked the following question:

Let { .} be a family of pairwise distinct analytic functions on the
complex numbers such that for each z € C the set of values { fo(z)}
is at most countable (that is, it is either finite or countable); let us
call this property (Fy).

Does it then follow that the family itself is at most countable?
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Very shortly afterwards ErdSs showed that, surprisingly, the answer de-
pends on the continuum hypothesis.

Theorem 5. Ifc > Ny, then every family { fo } satisfying (P) is countable.
If, on the other hand, ¢ = Wy, then there exists some family {f,} with
property (o) which has size c.

For the proof we need some basic facts on cardinal and ordinal numbers.
For readers who are unfamiliar with these concepts, this chapter has an
appendix where all the necessary results are collected.

M Proof of Theorem 5. Assume first ¢ > ®;. We shall show that for any
family { f., } of size Ry of analytic functions there exists a complex number
zg such that alf ¥ values f,(zy) are distinet. Consequently, if a family of
functions satisfies { /), then it must he countahle.

To see this, we make use of our knowledge of ordinal numbers. First, we
well-order the family { f,,} according to the initial ordinal numher w, of ¥;.
This means by Proposition 1 of the appendix that the index set runs through
all ordinal numbers « which are smaller than w,. Next we show that the
set of pairs (a,3), @ < [ < wi, has size Ny. Since any § < wy is a
countable ordinal, the set of pairs (@, 3), @ < 3, is countshle for every
fixed 3. Taking the union over all ®;-many 3, we find from Proposition &
of the appendix that the set of all pairs (e, 3), v < 3, has size N;.

Consider now for any pair a < 3 the set
S(a.f) = {z€ C: fulz) = f5(2)}.

We claim that each set S(o, 8) is counlable. To verify this, consider the
disks Oy of radius £ = 1,2,3, ... around the origin in the complex plane,
If f, and f3 agree on infinitely many points in some CY. then f, and f5
are identical by a well-known result on analytic functions. Hence f, and f3
agree only in finitely many points in each C);, and hence in at most count-
ably many points altogether. Now we set S := |J, .53 5{(c, 5). Again by
Proposition 6, we find that S has size ¥,, as each set S(a, ) is countable.
And herc is the punch line: Because, as we know, C has size ¢, and ¢ is
larger than N by assumption, there exists a complex number zp notin S,
and for this zg all ¥ values f,,(zg) are distinct.

Next we assume ¢ = ;. Consider the set D T C of complex numbers
p + ig with rational real and imaginary part. Since for each p the set
{p+1iq: q € Q} is countable, we find that I is countable. Furthermore,
D is a dense set in C: Every open disk in the complex plane contains some
point of 1). Let {z, : 0 € & < w;} be a well-ordering of C. We shall
now construct a family {f3 : 0 < 3 < w;} of ®;-many distinct analytic
functions such that

fi(za) € D whenevera < j. (1)

Any such family satisfies the condition (%), Indeed, each point 2 € C has
some index, say z = z,. Now, for all § > «, the values { f3(z,)} liein
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“A legend ralks about St Augustin who,
walking along the seashore and contem-
plating infinity, saw a child rying 1o
empty the ocean with a small shell .. "

the countable set D. Since « is a countable ordinal number, the functions
fa with 4 < « will contribute at most countably further values f3{z,). so
that the set of all values { fz{z,)} is likewise at most countable. Hence, if
we can construct a family {fs} satisfying (1), then the second part of the
theorem is proved.

The construction of { fs} is by transfinite induction. For f; we may take
any analytic function, for example f, = constant. Suppose fs has already
been constructed for all 7 < . Since v is a countable ordinal, we may
reorder {fz : 0 < /A < -~} into a sequence g1, g2, g3, .- .- The same re-
ordering of {z, : 0 < «w < ~v} yields a sequence wy, wq, ws, .. .. We shall
now construct a function f., satistying for each » the conditions

fylwn) € D and Fr(wn) # gnlwy). (2)

The second condition will ensure that all functions £, (0 < 4 < w,) are
distinct, and the first condition is just (1), implying (%) by our previous
argument. Notice that the condition f,{w,) # gn(um) is once more a
diagonalization argument.

To construct f-,, we write

fz) = eoFe{z—wi) 42l —wn )z —wy)
+es{z —w )z —w){z -wn) + ...

If ~ is a finite ordinal, then f, is a polynomial and hence analytic, and we
can certainly choose numbers £; such that (2) is satisfied. Now supposc -y
is a countable ordinal, then

- &3

fi(z) = Z Ealz —wy) - {z — wy). (3

n=0

Note that the values of ¢,,, {m > n) have no influence on the value f, (wy,),
hence we may choose the ¢, step by step. It the sequence (e,,) converges
to 0 sufficiently fast, then (3) defines an analytic function. Finally, since
I} is a dense set, we may choose this sequence (£,) so that f, meets the
requirements of (2}, and the proof is complete. g

Appendix: On cardinal and ordinal numbers

Let us first discuss the question whether to each cardinal number there ex-
ists a next larger one. As a start we show that to every cardinal number m
there always is a cardinal number n larger than m. To do this we employ
again a version of Cantor’s diagonalization method.

Let A1 be a set, then we claim that the set P{M} of all subsets of M has
larger size than M. By letting m € M correspond to {m} € P(M),
we sce that A7 can be mapped bijectively onto a subset of P({A), which
implies |A| < |P{M)| by definition. It remains to show that P(M) can
not be mapped bijectively onto a subset of M. Suppose, on the contrary,
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2+ N — P(M) is a bijection of N C M onto P{A{). Consider the
subset {7 C N of all elements of N which are ot contained in their image
under ¢, thatis, {/ = {m € N : m & »(m)}. Since +» is a bijection, there
exists u € N with {u} = U. Now, either v € (/ or u & U, but both
alternatives are impossible! Indeed, if u € U, then u & w(u) = UV by the
definition of {7, and il u & {/ = (u). then 1 € {7, contradiction.

Most likely, the reader has seen this argument before, It is the old barber
riddle: A barber is the man who shaves all men who do not shave them-
selves. Does Lhe barber shave himself?”

To get further in the theory we introduce another great concept of Cantor's,
ordered sets and ordinal numbers. A set A is ordered by < il the relation
< is transitive, and if for any two distinct elements a and b of A we either
have u < borb < a. Forexample, we can order N in the usual way accord-
ing to magnitude, M = {1,2.3,4....}, but, of course, we can also order N
the other way round, N ={....4,3,2. 1}, or N = {1,3,5....,2,4.6,...}
by listing first the odd numbers and then the even numbers.

Ilere is the seminal concepi. An ordered set A is called well-ordered it
every nonempty subset ot Af has a first element, Thus the first and third
orderings of N above are well-orderings, but not the second ordering. The
lundamental well-ordering theorem, implied by the axioms (including the
axiomn of choice), now states that every set Af admits a well-ordering. From
now on, we only consider sets endowed with a well-ordering.

Let us say that two well-ordered sets A7 and N are similar (or of the same
order-fype} if there exists a bijection > from M on N which respects the
ordering, that is, m. < ,; n implies (M) <, w{n). Note that any ordered
set which is similar to 2 well-ordered set is itsell well-ordered.

Similarity is obviously an equivalence relation, and we can thus speak of
an ordinal number o belonging to a class of similar sets. For finite sets,
any two orderings are similar well-orderings, and we use again the ordinal
number n for the class of n-sets. Note that, by definition, two similar sets
have the same cardinality. Hence it makes sense (o speak of the cardinality
lov| of an ordinal number . Note further that any subset of a well-ordered
set is also well-ordered under the induced ordering.

As we did for cardinal numbers, we now compare ordinal numbers. Let A7
be a well-ordered set, m € M, then M, = {x € M : = < m} is called the
{initial) segment ol M determined by rn; N is a segmentof A I[N = M,
for some m. Thus, in particular, A, is the empty set when m is the first
element of M. Now let ;4 and v be the ordinal numbers of the well-ordered
sets M and V. We say thal j is smaller than v, p < v, if M is similar
1o a segment of N. Again, we have the transitive law that 1 < v, v < 7
implies g < m, since under a similarity mapping a segment is mapped onto
a segment.

Clearly, for finite sets, . < n corresponds to the usual meaning. Let
us denote by w the ordinal number of N = {1,2,3,4,...} ordered ac-
cording to magnitude. By considering the segment M,y we find n < w
for any finile n. Next we see that w < o holds for any infinite ordinal

The well-ordered seis N = {1,2,3,.. .}
and N = {1,3,5,...,2,4,6,...} arc
rot similar: the first ordering has only
onc element without an immediate pre-

decessor, while the second one has two.

The ordinal number of {1,2.3,...}
is smaller than the ordinal number of
{1,3,5,...,2,4,6,...}.
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number . Indeed, if the infinite well-ordered set A/ has ordinal num-
ber o, then Af contains a first element m,, the set A7\{rmn,} contains a
first element mg, M\ {1, m.} contains a first element m3z. Continuing
in this way, we produce the sequence my < mg < mz < ...in M, If
M = {my.my,ms,...}, then M is similar to I, and hence a = w. If,
on the other hand, .M\{mq .M, ...} is nonempty, then il contains a first
element rr, and we conclude that N is similar to the segment M, that is,
w < a by definition.

We now state (without the proofs, which are not difficult) three basic re-
sults on ordinal numbers. The first says that any ordinal number ;. has a
“standard” representative well-ordered set W,.

Proposition 1. Let i be an ordinal number and denote by W, the set of
ordinal numbers smaller than pp. Then the following holds:

(i) The elements of W, are pairwise comparable.

(it) If we order W, according to magnitude, then W, is well-ordered and
has ordinal number p.

Proposition 2. Any rwo ordinal numbers 11 and v satisfy precisely one of
the relations p < v, L. =v, or i > .

Proposition 3. Every sei of ordinal numbers (ordered according to
magnitude ) is well-ordered.

After this excursion to ordinal numbers we come back to cardinal num-
bers. Let m be a cardinal number, and denote by Oy, the set of all ordinal
numbers 1 with |;zf = m. By Proposition 3 there is a smallesr ordinal
number wm in O, which we call the initial ordinal number of m, As an
example, w is the initial ordinal number of Rg.

With these preparations we can now prove a basic result for this chapter.

Proposition 4. For every cardinal number w there is a definite next larger
cardinal number.

B Proof. We already know that there is some larger cardinal number n.
Consider now the set K of all cardinal numbers larger than m and at most
as large as . We associate to cach p € X its initial ordinal number wy.
Among these initial numbers there is a smallest (Proposition 3), and the
corresponding cardinal number is then the smallest in K2, and thus is the
desired next larger cardinal number o m. O

Proposition 5. Let the infinite set M have cardinality m, and let M be
well-ordered according to the inirial ordinal number wy. Then M has no
last element,

@ Proof. Indeed, if M had a last element m, then the segment Af,,, would
have an ordinal number g < wyy with || = wm, contradicting the definition
of wm. 0
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What we finally need is a considerable strenghthening of the result that the
union of countably many countable sets is again countable. In the following
result we consider arbitrary families of countable sets.

Proposition 6. Suppose { A} is a family of size m of countable sets A,,

where m is an infinite cardinal. Then the union | ) A has size at most m.
[0

B Proof. We may assume that the sets A, are pairwise disjoint, since this
can only increase the size of the union. Let M with |A/| = m be the index
set, and well-order it according to the initial ordinal number wy,. We now
replace each a € M by a countable set By = {ba1 = @, ba2,003,- .-}
ordered according to w, and call the new set M. Then M is again well-
ordered by setting bo; < bsj for a < B and by; < ba; fori < j. Let i be
the ordinal number of M. Since M is a subset of M, we have @ < pbyan
earlier argument. If u = g, then M is similar to M, and if u < 1, then M
is similar to a segment of M. Now, since the ordering wy of M has no last
element (Proposition 5), we see that M is in both cases similar to the union
of countable sets B, and hence of the same cardinality.

The rest is easy. Let p : |JBg — M be a bijection, and suppose that
@(Bg) = {o,a2,as,...}. Replace each o; by A,, and consider the
union | J Aq,. Since | J Aq, is the union of countably many countable sets
(and hence countable), we see that Bs has the same size as | A,,. In
other words, there is a bijection from Bg to | J A, for all 3, and hence
a bijection ¢ from |JBg to |J Aa. But now ¢p~! gives the desired
bijection from M to | J A, and thus || Ao| = m. O
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In praise of inequalities

Analysis abounds with inequalities, as witnessed for example by the famous
book “Inequalities” by Hardy, Littlewood and Pdlya. Let us single out two
of the most hasic inequalities with two applications each, and let us listen
in to George Pélya, who was himsclf a champion of the Book Proof, about
what he considers the most appropriate proofs.

Our first inequality is variously attrihuted to Cauchy, Schwarz and/or to
Buniakowski:

Theorem I (Cauchy-Schwarz inequality)
Let {a, b} be an inner product on a real vector space V (with the norm
al|? := {a.a)). Then

(a.by* < ‘af*|bf

holds for all vectors a.b € 'V, with equality if and only if a and b are
linearly dependent.

B Prool. The following (folklore) proof is probably the shortest. Consider
the quadratic function

|za + b2 = z%|al® + 2r{a,b} + |b}?

in the variable r. We may assume a # 0. If b = Aa, then clearly
{a,b}? = 1a|?|b|?. If. on the other hand, @ and b are linearly independent,
then ;za + b|? = 0 for all z, and thus the discriminant {a.b)? — |a|?|b|? is
less than (. a

Qur second example is the inequality of the harmonic, geomeiric and
arithmetic mean:

Theorem IT  (Harmonic, geometric and arithmetic mean)
Letay,. .., a, be positive real numbers, then
T 2+ ...+ an

_— < Yaaz...0
Loy L - "= T

[2y] y

with equality in both cases if and only if all a,’s are equal.

B Proof. The following beautiful non-standard induction proof is attributed
to Cauchy (see [7]}. Let P(n) be the statement of the sccond inequality,
written in the form

m—{—...—l—an)“

a1ag...0, < (
T

Chapter 17
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For nn = 2, we have a az < (£422)% <= (a; — a2)* > 0, which is true.

Now we proceed in the following two steps:

(A) P(n} = P(n 1)
(B) P(n)and P(2) = P(2n)

which will clearly imply the full result.

Hi—1

To prove (A), set A := 5 -2 then
k=1
1 n-1 n
il Pin) ar + A ~1 Aym
(H(Lk)A < (kgl * ) = (@_L) = A"
k=1 n "
n—1 n—1 n—1
275
and hence Hak < AT = (kgl ) ;
k1 72— 1
For (B}, we see
2n L 2n Pin) 7 ap\n 2n ap\"™
[Toe= (Tloe)( IT @) = (X)X T)
k=1 k=1 k=n+t+1 k=1 k=n+1

2n

2n Qe 2n in
FP(2) — Qe
g (E) _(El )
2 2n

The condition for equality is derived just as easily.

The left-hand inequality, between the harmonic and the geomeltric mean,
follows now by considering =, ..., . ad
M Another Proof. Of the many other proofs of the arithmetic-geometric
mean inequality {the monograph [2] lists more than 50), let us single out a
particularly striking one by Alzer which is of recent date. As a matter of
fact, this proof yields the stronger inequality

PP i
&11(122 . aﬂ < ma -+ Pado + ...+ Pniln

for any positive numbers @1, ..., @n, P1,-..,Pn With 3 p; = 1, Let us
denote the expression on the left side by (7, and on the right side by A. We
may assume a; < ... < an. Clearly ¢y < & < a,, so there must exist

some k& with ap < G < agyq. It follows that

k

G . a;
ZP{/(%—é)dt + 3 p,](é—%)dt >0 (N
: ’ i=k+1 5

Qi
since all integrands are > 0. Rewriting (1) we obtain
ay

im/édt > ipi/%dt
i=l o i=1 &
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where the left-hand side equals
i =G A
BT T e
1=1
while the right-hand side is
Zpi(log a; —log G) = log Haf‘ ~logG =10.
i=1 i=1
We conclude & — 1 > 0. which is A > . In the case of equality, all
integrals in (1) must be 8, which implies ¢y = ... = a, = G. ]
Our first application 1s a beautiful result of Laguerre (see [7]) concerning
the location of roots of polynomials,
Theorem 1. Suppose all roots of the polynomial ™ +an 12" 1 +. . 4 aq
are real. Then the roots are contained in the interval with the endpoints
Q-1 n—1 2n
—ml oy 2 - g,
T n \/;"’1 nfla1 2
M Proof. Let ¥ be one of the roots and yy, ..., y,—1 thc others. Then
the polynomial is {(z — y}{r —y1)- - (& — yn—1}. Thus by comparing
coefficients
—n. 1 = y+yl+"'+yn—la
Mz =yl o Fya) F Y v,
i<
and so
n-1
al_ | -2 2- ¥y = qu
i=1
By Cauchy’s inequality applied to (y1,...,Y¥s—1and {1,... 1),
(an+w? = Wyt +w)
n—1
< (n—1) ny = (n—1)(a*_; ~ 2an_2 — y°),
i—1
or : 5
o 2y 2(n — -2
y? 4+ = ler ( )anﬁz—n al < 0.
T 7
Thus y (and hence all y;) lie between the two roots of the quadratic function,
and these roots are our bounds. O
For our second application we start from a well-known elementary property
of a parabola. Consider the parabola described by f{x) = 1 — 2% between
r = —1land x = 1. We associate to f(x) the rangential triangle and the -
tangential rectangle as in the figure. (—1,0) (1,0)
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(iro,yo)

-1
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Erdlls, P. and Grinwald, T. On polynomiala with oaly real
roste. Ann. of Mach, 40, 537-586 (1939, [MF 93}
Es sei f(x) ein Polyncen mit nur reellen Worzeln,

Ji=1)=f{1)=0, 0<fx)=fu) fur —1<5<,

wobei —1 <u<l, so dass 4 die Stelle des Maximums von
Jig) im Intervall (=1, 1} lwdeutet. Daen st

rwr-n

.
—— Vew - 2],
FiyopCy = Foet

We find that the shaded area A = f_11 (1—z?)dz is equal to % and the areas
T and R of the triangle and rectangle are both equal to 2. Thus £ = 2

R _ 3
ﬂndj—Q.

In a beautiful paper, Paul Erdds and Tibor Gallai asked what happens
when f(z) is an arbitrary n-th degree real polynomial with f{z) > 0 for
—1 <z < l,and f(—1) = f(1) = 0. The area A is then f_11 F(x)dx. Sup-
pose that f(x) assumes in (—1,1) its maximum value at b, then 1T = 2 f{b).
Computing the tangents at —1 and at 1, it is readily seen (see the hox)
that

_ 27D o

S = -1

respectively 7' =0 for f'(1) = f'(—1) =0.

The tangential triangte

The area T of the tangential triangle is precisely yg, where (g, ¥o)
is the point of intersection of the two tangents. The equation of these
tangentsare y = f'(—1}{z + 1) and y = f'{1)(x — 1}, hence

o= S+ 1)
U= rey

and thus

f+ (=1 1) _ SIS

w = S0 (E— ey Y 7 e

In general, there are no nontrivial hounds for % and %. To see this, take

f(z) =1 —2* Then T = 2n, A = 57", and thus T > n. Similarly,

R=2and £ = 221 which approaches 1 with n to infinity.

But, as Erdds and Gallai showed, for polynomials which have only real
roots such bounds do indeed exist.

Theorem 2. Let f(x) be a real polynomial of degree n. > 2 with only real
roots, such that f(x) > 0 for —1 < x < land f(—1) = f(1) = 0. Then

and equality holds in both cases only forn = 2.

Erdés and Gallai established this result with an intricate induction proofl.
In the review of their paper, which appeared on the first page of the first
issue of the Mathematical Reviews in 1940, George Pdlya explained how
the Krst inequality can also be proved by the inequality of the arithmetic
and geometric mean — a heautiful example of a conscientious review and
a Book Proof at the same time.
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B Proof of %T < A. Since f{z) has only real roots, and none of them in
the open interval { —1, 1), it can be written — apart from a constant positive
[actor which cancels out in the end — in the form

flz) = (1- 3:2)1_[((15 — ) H('Hj + ) )
i J
with ¢y = 1, 3; > 1. Hence

1

A= /(1 - 2% H(Q‘i - I)H(,Bj + x)dz.

,‘1 i a

By making the substitution z: —— —x, we find that also

A= /(l - %) H(r}, +z) H(,ﬁj — xydir,
1

i i

and hence by the inequality of the arithmetic and the geometric mean {note
that all factors are > (1)

1

i = [yl a e le a6 +o +
1 i J
(1-—z%) H(a,— + ) H(,Bj —x) }dr.
i J
; 172
> (1 =29 (H(nf — IZ)H(Bj - .'1:2)) da
8 i ;

IV
—
—
i
i
t3
v
~—
—
—
2
B
|
=
—
)
e
|
W
S
=
[ =]
[~
)

21
4 . 1/2
= 3 ([T -0 Tw -1)
i J
Let us compute f/{1) and f'(—1). (We may assume f'(—1), f'(1) # 0,
since otherwise T = (} and the inequality %T < A becomes trivial.) By (3)

we sce

a1 (GRS | (R

J
and similarly

Fi=1 = 2Tt + ]85 - ).

i i

Hence we conclude

A2 S mpE
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Applying now the inequality of the harmonic and the geometric mean
to —/'(1} and f(1), we arrive by (2) at the conclusion

2 _ A rwrey oz

2
A Z = = -
il s w77y e R S

which is what we wanted to show. By analyzing the case of equality in
all our inequalities the reader can easily supply the last statement of the
theorem. a

The reader is invited to search for an equally inspired proof of the second
inequality in Theorem 2.

Well, analysis is inequalities after all, but here is an example from graph
theory where the use of inequalities comes in quite unexpected. In Chap-
ter 32 we will discuss Turdn’s theorem. In the simpiest case it takes on the
following form:

Theorem 3. Suppm‘e G is a graph on n verfices without triangles. Then (3
has at most - edges, and equality holds only when n is even and GG is the
complete btparrfre graph K, ;5 ..o,

B First proof. This proof, using Cauchy’s inequality, is due to Mantel. Let
V = {1,...,n} be the vertex set and £ the edge set of . By d; we denote
the degree of ¢, hence .- d, = 2|£| (see page 143 in the chapter on
double counting). Suppose #j is an edge. Since & has no triangles, we find
d; +d; < n since no vertex is a neighbor of both ¢ and 7.

It follows that
Z (di +d;} = nlE|

ijcE

Note that d; appears exactly d; times in the sum, so we pet

nEl = > (di+dy) = dl,

ije iy

and hence with Cauchy’s inequality applied to the vectors (d;, ..., d,) and
(1,...,1),
(Cdi)® _ 4EP?

2 i
= Zdi - n on

iEV

and the result follows. In the case of equality we find d; = d; for all
i,j, and further d; = % (since d; + d; = n). Since G is triangle-free,
G = Ky .n/2 is immediately seen from this. U
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B Second proof. The following proof of Theorem 3, using the inequality
of the arithmetic and the geomeiric mean, is a folklore Book Proof. Let o
be the size of a largest independent set A, and set 3 = n — . Since 7 is
triangle-free, the neighbors of a verlex ¢ form an independent set, and we
infer d; < o forall 4.

The set B = V\ A of size § meets every edge of (7. Counting the edges
of G according to their endvertices in B, we obtain [E| < 3., d;. The
inequality of the arithmetic and geometric mean now yiclds

; o+ B2 n?
|E|Szdiﬁﬂﬁ$(2):7:
i€B
and again the case of equality is easily dealt with. O
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A theorem of Polya on polynomials Chapter 18

Among the many contributions of George Pélya to analysis, the following
has always been Erdds’ fuvorite, both for the surprising result and for the
heauty of its proot. Suppose that

is a complex polynomial of degree n > 1 with leading coefficient 1. Asso-
ciate with f(z) the set

C :={ze€C:|f(z)| <2},

that is, C is the set of points which are mapped under f into the circle of
radius 2 around the origin in the complex plane, So forn = 1 the domain C
1s just a circular disk of diameter 4.

By an astoundingly sirnple argument, POlya revealed the following beauti-
ful property of this set {:

Take any line L in the complex plane and consider the orthogonal
praojection Cy, of the set C onto 1., Then the total length of any such

George Polya
projection never exceeds 4.

What do we mean by the total length of the projection C;, being at most 4?7
We will see that Cy, is a finite union of disjeint intervals {1, ..., I, and the
condition means that £(5;) +... + #{f;) < 4, where £(1;) is the usual
length of an interval,

By rotating the plane we see that it suffices to consider the case when L is
the real axis of the complex plane. With these comments in mind, let us
state Pélya’s result.

Theorem 1. Let f{z) be a complex polynomial of degree at least 1 and
leading coefficient 1. Set C = {z € C : |f(2)| < 2} and let R be the
crthogonal projection of C onto the real axis. Then there are intervals
I, ..., I on the real line which together cover R and satisfy

) +...+ L) < 4

Clearly the bound of 4 in the theorem is attained for n = 1. To get more
of a feeling for the problem let us look al the polynomial f{z) = 2% — 2,
which also attains the bound of 4. If z = x + iy is a complex number, then
2 is its orthogonal projection onto the real line. Hence

R={xr€R:z+iy e forsome y}.
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Pavnuty Chebyshev on a Soviet stamp
from 1946

A theorem of Pdlya on polynomials

The reader can easily prove that for f(z) = 27 — 2 we have . + iy £ Cif
and only if

(@ + 22 < 4@ =)
It follows that z* < (22 + %) < 4x?%, and thus 22 < 4, that is, |z| < 2.
On the other hand, any z = & € R with |z| < 2 satisfies |2Z — 2| < 2, and
we find that R is preciscly the interval [—2, 2] of Tength 4.
As a first step towards the proof write f(2) = (z—-m) - - - (2—¢,) witheg =
ax + by, and consider the real polynomial p(2) = (z — a1) -+ (2 — an).
Let z = x + 4y € C, then by the theorem of Pythagoras

and hence |z — ag| < |z — | for all k, that is,

Thus we find that R is contained in the set P = {z & R : |p(z)| < 2},
and if we can show that this latter set 1s covered by intervals of total length
at most 4, then we are done. Accordingly, our main Theorem 1 will be a
consequence of the following resuit.

Theorem 2. Ler p(x) be a real polynomial of degree n = 1 with leading
coefficient 1, and afl roots real. Then the set P = {x € R : |p(z)] < 2}
can be covered by intervals of total length at most 4.

As Pélya shows in his paper [2], Theorem 2 is, in turn, a conseguence
of the following famous resuit due to Chebyshev. To make this chapter
self-contained, we have included a proof in the appendix (following the
beautiful exposition by Pdlya and Szeg8).

Chebyshev’s Theorem.
Let p(x) be a real polynomial of degree n > 1 with leading coefficient 1.
Then 1

Let us first note the following immediate consequence.

Corollary. Let p(x) be a real polynomial of degree n > 1 with leading
coefficient 1, and suppose that |p(z)| < 2 for all x in the interval |a, ).
Thenb—a < 4.

W Proof. Consider the substitution y = 2-(z — a) — 1. This maps the
z-interval [a, b] onto the y-interval [—1, 1]. The corresponding polynomial

qly) = p(®52(y+1) +a}

has leading coefficient (L’Zzﬂ)” and satisfies
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By Chebyshev's theorem we deduce

> a . = b.__a . 1 -9 b—un
EfQE%m@H_(z);ﬂ (540",
and thus & — @ < 4, as desired. O

This corollary brings us already very close to the statement of Thecrem 2.

1 143 3.0

0

If the set P = {z : [p{xr}l < 2} is an interval, then the length of P is
at most 4. The set P may, however, not be an interval, as in the example
depicted here, where P consists of two intervals.

What can we say about P? Since p(r} is a continuous function, we know
at any rate that P is the union of disjoint closed intervals Iy, fs,. .., and
that p{z) assumes the value 2 or —2 at each endpoint of an interval [, This
implies that there are only finitely many intervals I, . .., Iy, since p(2:) can
assume any value only finitely ofien.

%.

F=

For the polynomial p(z} = 2%(xz — 3)

Pélya’s wonderful idea was to construct another polynomial p(z) of degree  we get P = [1—+/3, 1JU[14++/3, == 3.2]

n, again with leading coefficient 1, such that P = {x : |p(x)| < 2}is an
interval of length at least £{1;) + ... -+ £({;). The corollary then proves

{I) + ...+ (L) < ¢(P) < 4, and we are done.

B Proof of Theorem 2. Consider p(x) = {xr — ay)---{z — a,) with
P=JlwecR:ip(r) <2} =1 U...UlI, where we arrange the intervals
I; such that Iy is the leftmost and I, the rightmost interval. First we claim
that any interval I, contains a root of p(ir). We know that p{ir) assumes the
values 2 or —2 at the endpoints of I;. If one value is 2 and the other —2,
then there is certainly a root in [;. S0 assume p(z) = 2 at both endpoints
{the case —2 being analogous). Suppose b € I; is a point where p(x)
assumes its minimum in I;. Then p’(b) = 0 and p”(b) > 0. If p"(b) = 0,
then b is a multiple root of p’{x), and hence a root of p(x:) by Fact 1 from
the box on the next page. If, on the other hand, p’(b) > 0, then we deduce
p(b) = 0 from Fact 2 from the same box. Hence either p(h) = 0, and we
have our root, or p{b) < 0, and we obtain a root in the interval from b to
either endpoint of 1.

Here is the final idea of the proof. Let Iy, ..., I; be the intervals as before,
and suppose the rightmaost interval [, contains m roots of p(x}, counted
with their multiplicities. If m = n, then I; is the only interval (by what
we just proved), and we are finished. So assume m < 7, and let 4 be

the distance between I, and I as in tbe figure. Let b1,..., b be the
roots of p{x) which lie in I, and ¢;, . . . ¢ the remaining roots. We now
write p(x) = g(x)r{x) where g(z) = (z — b1)- - {x — byy) and r(z) = I

(x—e1)- (r = ¢y ), and set py () = g(x + d)r(x). The polynomial
p1(x) is again of degree n with leading coefficient 1. Forz € L. UL
we have |z + d — b;] < |x — b;] for all i, und hence |g{x + d)| < |g(2)]. It
follows that

lpr(z)] < [p(z)] < 2 for ce HU...UL_y.
If, on the other hand, x € I;, then we find |r{xx — d)} < |+(x)| and thus
pz —d)f = lgl)llr(z —d)i < |plz)] £ 2,

I

It,f'l
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which means that [, — d C 7y = {z : |p1(2)| < 2}

In summary, we see that P contains 73 U. . U1 1 U (f; —d) and hence has
total length at least as large as 7. Notice now that with the passage from
p(z) to p1(z} the intervals I,y and I, — d merge into a single interval,
We concludc that the intervals Jy, ..., J, of py (&) making up P have total
length at least £(f1) +. ..+ €(1¢). and that the rightmost interval J, contains
more than m roots of py (x). Repeating this procedure at most £ — 1 times,
we finally arrive at a polynomial 5{z) with P = {z : Ip(x)| < 2} being an
interval of length £(7) > £(I1 }+.. . £(4;), and the proof is complete. O

Two facts about polynomials with real roots
Let p{x} be a non-constant polynomial with only real roots.
Fact 1. If b is @ multiple root of p' (), then b is also a root of p(x).

B Proof. Let b),..., b, be the roots of p{z) with multiplicities
Sly-vo 8py 251 85 = n. From p(x) = (z — b;)" h(x) we infer
that b; is a root of p/(x) if s; > 2, and the multiplicity of b; in p(x)
is 3; — 1. Furthermore, there is a root of p’{x) between &, and b,
another root between by and bs, ..., and one between b. 1 and b,,
and all these roots must be single roots, since Z;=1 (¢ ~-1)+(r—1)
counts already up to the degree n — 1 of p/(z). Consequently, the
multiple roots of p' () can only occur among the roots of p(z). [

Fact 2. We have p'(z)? = p(x)p’(x) forall T € R.

W Proof. If x = a; is a root of p{z), then there is nothing to show.
Assume then  is not a root. The product rule of differentiation yields

n

' N / n 1
@) = 22 i, 28y

k:'lm_-

Differentiating this again we have
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Appendix: Chebyshev’s theorem

Theorem. Let p(x) be a real polynomial of degree n > 1 with leading

coefficient 1. Then
1

gn—1 )

Before we start, let us look at some examples where we have equality. The
margin depicts the graphs of polynomials of degrees 1, 2 and 3, where we
have cquality in each case. Indeed, we will see that for every degree there
is precisely onc polynomial with equality in Chebyshev's theorem.

P plr) =
_max lp(x)| =

@ Proof. Consider a real polynomial p(z) = 2™ + a,-14™ ' +... + ao
with leading coefficient 1. Since we are interested in therange —1 < = < L,
we set z = cos ¥ and denote by g(9) := p(cos?) the resulting polynomial
in cos ¢,

g(¥) = {cos D)™ + an_1{cos )" +... +ao. (1)

The proof proceeds now in the following two steps which are both classical
results and interesting in their own right.

{A) We express g{¢/) as a so-called cosine polynomial, that is, a polynomial
of the form

gt = bycosnd +by_ycosin—1)d+ .. +brcosd+b  (2)
with &; £ R, and show that its leading coefficient is b, = 2,%1

(B) Given any cosine polynomial h{) of order n {meaning that X, is the
highest nonvanishing coefficient)

h{(1) = Aqcosnid + A,_qycos(n — 1)9 4+ ... 4 Ap, (3

we show |\, | < max|k{#)|, which when applied to g{«/) will then prove
the theorem.

Proof of (A}. To pass from (1) to the representation (2), we have o ex-
press all powers (cos9)* as cosine polynomials. For example, the addition
theorem for the cosine gives

0529 = cos?? —sin?d = 2cos?d — 1,

so that cos® ¥ = § cos 200 + % To do this for an arbitrary power {cos )"
we go into the complex numbers, via the relation ** = cosz + isinz.
The ¢** are the complex numbers of absolute value | (see the box on com-
plex unit roots on page 25). In particular, this yields

e’ = cosnd + isinnd. {4)
(On the other hand,

e = (& = (cosd +isind)”. &)

The polynomials p1{x) = x, palz) =
z* — 1 and ps(z} = 1° — 3z achicve

equality in Chehyshev’s theorcm.
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Yesa{a) = 277" holds for n > 0
Every subsetof {1,2,...,n—1} yields
an even sized subset of {1,2,.. ., n} if
we add the etement 2 "if needed.”

Equating the real parts in (4) and (5) we obtain by i*+2 = —1, 4% = | and
sin?f = 1—cos?d

cosni = Z (Z) {cos )" (1 - cos® )2

£z
(6)
n
- Z (46 N 2) {cosd)™ 721 — cos? )T,
£20
We conclude that cosnd is a polynomial in cos,
cosn® = cp(cos ) + o, {cos "4 e (7)

From {6) we obtain for the highest coefficient

n ke
o = ]+ . ) = 271_1-
‘ 2 (4e) @Zo (4e +2

£20

Now we turn our argument around. Assuming by induction that for & < r,
(cosa)* can he expressed as a cosine polynomial of order k, we infer from
(7) that (cos )™ can be written as a cosine polynomial of order n with
leading coefficient b,, = 2—1_—1

Proof of (B). Let k{:}) be a cosine polynomial of order n as in {3), and
assume without loss of generality A, > (0. Now we set () := X, cosnad)
and find
m(En) = (—1)* A, for k=0,1,...,n.
Suppose, for a proof by contradiction, that max |h(#)| < An. Then
miEm) - h(Em) = (=1)*A, - h{fr)

is positive for even & and negative for odd k in the range 0 < &k < n. We
conclude that m(#) — k(<) has at least n roots in the interval [0, 7]. But
this cannot be since m(¥J) — hA(1#) is a cosinc polynomial of order n — 1,
which can be wrilten in the form (1) and thus has at most n — 1 roots.

The proof of (B) and thus of Chebyshev’s theorem is complete. O

The reader can now easily complete the analysis, showing that g, (1}) =
#r cosnd is the only cosine polynomial of order n with leading coefh-
cient 1 that achieves the equality max |g(d)| = S+

The polynomials T, (x) = cosv¥, © = cosd, are called the Chebyshev
polynomials (of the first kind); thus =T, () is the unique monic poly-
nomial of degree 7. where equality holds in Chebyshev’s theorem.
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On a lemma
of Littlewood and Offord

In their work on the distribution of roots of algebraic equations, Littlewood
and Offord proved in 1943 the following result:

Let 1. an, . .., an be complex numbers with ;| > 1 for all i, and
consider the 2" linear combinations » ., &,a; withe; € {1, —1}
Then the number of sums Z?:l £;a; which lie in the interior of any
circle of radins 1 is not greater than

o

c——= logn for some constant ¢ > (.
n

NG

A few years later Paul Erdds improved this bound by removing the logn
term, but what is more interesting, he showed that this is, in fact, a simple
consequence of the theorem of Sperner (see page 151).

To get a [eeling for his argument, let us look at the case when all u; are
real. We may assume that all a; are positive (by changing a; to —a; and &,
to —s; whenever o; < (). Now suppose that a set of combinations 3 ¢;n;
lies in the interior of an interval of length 2, Let & = {1,2,...,n} be the
index set. Forevery 3 ej0; weset /:={i€ N :g, = 1}. Nowif I G /'
for two such sets, then we conclude that

which is a contradiction. Hence the sets [ form an antichain, and we
conclude from the theorem of Sperner that there are at most ([HT;?.J) such
combinations. By Stirling’s formula (see page 11} we have

For n even and all a; = 1 we obtain (n’}z) combinations Y- | £;a; that
sum 1o 0. Looking at the interval {—1.1) we thus find that the hinomial
number gives the ¢xact bound.

In the same paper Erdds conjectured that (LT'7EJ) was the right bound for

complex numbers as well (he could only prove ¢ 2"*n~1/2 for some ¢} and
indeed that the same bound is valid for vectors @;.. ... a, with |a;| > lin

a real Hilbert space, when the circle of radius 1 is replaced by an open ball
of radius 1.

Chapter 19

Sperner’s theorem. Any antichain of
subsets of an n-set has size at most

(Ln??])'
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Erd&s was right, but it took twenty years until Gyula Katona and Daniel
Kleitman independently came up with a proof for the complex numbers
(or, what is the same, for the plane R?). Their proofs used explicitly the
2-dimensionality of the plane, and it was not at all clear how they could be
extended to cover finite dimensional real vector spaces.

But then in 1970 Kleitman proved the (ull conjecture on Hilbert spaces
with an argument of stunning simplicity. In fact, he proved even more. His
argument is a prime example ol what you can do whben you find the right
induction hypothesis.

A word of comlort for al! readers who are not familiar with the notion of
a Hilhert space: We do not really need general Hilbert spaces. Since we
only deal with finitely many vectors a;, it is enough to consider the real
space R® with the usual scalar product. Here is Kleitman's result.

Theorem. Let @y,...,a, be vectors in R each of length
at least 1, and let Ry,..., Ry be k open regions of R%, where
|® — y| < 2 for any @,y that lie in the same region R;.

Then the number of linear combinations 3 .., €:a;, £; € {1, -1},
that can lie in the union | ); R; of the regions is at most the sum of
the k largest binomial coefficients (?)

In particular, we get the bound ([n’}zj) fork =1.

Before turning to the proof note that the bound is exact for

a =..=a, =a = (1,0,....007.

L3

Indeed, for even n we obtain (,7,) sums equal to 0, (, /2—1) sums equal (o
(—2)a, (n/;-l—l) sums equal to 2a, and so on. Choosing balls of radius 1
around

—2[%1Ta, ... (~2)a, 0, 2a, ... 2|%|a,

we obtain

sums lying in these & balls, and this is our promised expression, since the
largest binomial coefficients are centered around the middle (see page 12).
A similar reasoning works when n is odd.

B Proof. We may assume, without loss of generality, that the regions R,
are disjoint, and will do so from now on. The key to the proofl is the recur-
sion of the binomial coefficients, which tells us how the largest binomial
coefficients of n and n — 1 are related. Set r = [2=K+1| o = [%H,
then (), (7 }+-- -, (7) are the k largest binomial coefficients for n. The
recursion (7) = (*7") + (*7)) implies

z
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() - 20) 20

i=r i=—r i

5 o 5—1 -
i=r ' i=r—1 ’

> (")),

i=r—1 i=r

and an easy calculation shows that the first sum adds the k& + 1 largest
hinomial coefticients (":1), and the second sum the largest k — 1.

Kleitman’s proof proceeds by induction on n, the case n. = 1 being trivial.
In the light of (1) we need only show for the induction step that the linear

combinations of a;,...,a, that lie in & disjoint regions can be mapped
Bijectively onto combinations of @;....,@n-1 thatliein k+ lork — 1
regions,

Claim. At least one of the translated regions B; — a,, is disjoint
from all the rranslated regions Ry + a,,, ..., Ry + an.

To prove this, consider the hyperplane H = {r : (a@,.x) = ¢} orthogonal
to a,., which contains all translates R; + a,, on the side that is given by
{@n.x) > c, and which touches the closure of some region, say It; + an.
Such a hyperplane exists since the regions are bounded. Now |z — y| < 2
bolds for any € R; and y in the closure of ;, since R; is open. We want
to show that i, — a,, lies on the other side of H. Suppose, on the contrary,
that (@,. = — a,} > ¢ for some @ € R;, thatis, (a,, ) > |a,|° + ¢
Lety + a, be a point where /I touches It; + a,, then y is in the closure
of B;,and (@n, ¥y + @n) = ¢, thatis, {a,, —¥) = |a,|* - c. Hence

a,|*,

(C"?i:m_y) 2 2

and we infer from the Cauchy-Schwarz inequality

2lan? € {an.z—y) < lan|lz—y

k]

and thus (with |a,,| > 1) we get2 < 2|a,| < |z — y|, a contradiction.

The rest is easy. We classify the combinations >_ =;a,; which come (o lie in
RyU. ..U Ry as follows. Into Class | weputall 3°1 , £, withe,, = —1
and all >°7 | £;@; with £, = 1 lying in R,, and into Class 2 we throw

in the remaining combinations > " &;a; with &, = 1, notin R;. It

follows that the combinations Z?_]l g,a; corresponding to Class 1 lie in

the k& + 1 disjoint regions By + @y, ..., Ax + a, and B; — a,,, and the
combinations Z;:] £;a; corresponding to Class 2 lie in the & — 1 disjoint
regions By —a.,, ..., Ry — an, without B; — a,,. By induction, Class 1 con-
tains at most >, ("7} combinations, while Class 2 contains at most
Zf;: (™, ") combinations — and by (1) this is the whole proof, straight

from The Book. O
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Cotangent and the Herglotz trick Chapter 20

What is the most interesting formula involving elementary functions? In
his beautiful article [2], whose exposition we closely follow, Jirgen Elstrodt
ngminates as a first candidate the partial fraction expansion of the cotangent
function:

This elegant formula was proved by Euler in §178 of his Introductio in
Analysin Infinitorum from 1748 and it certainly counts among his finest
achievements. We can also write it even more elegantly as
N
1
T COL " = i ]
Teot AT ’VILI.D% Zry—kn (N

n=—

but one has to note that the evaluation of the sum 3., —— is a bit
dangerous, since the sum is only conditionally convergent, so its value

depends on the “right” order of summation.
We shall derive (1) by an argument of stunning simplicity which is Gustav Herglotz
attributed to Gustav Herglotz — the “Herglotz trick.” To get started, set

N

2

[ are 0

and let us try to derive enough common properties of these functions to see
in the end that they must coincide. ..

(A) The functions f and g are defined for all non-integral values and are
continuous there.

For the cotangent function f(z) = wcot wr = TSEEE thig is clear (sce
Bl

the figure). For g{x), we first use the identity 1~ + L~ = — 2 1o
rewrite Euler’s formula as

Thus for {A) we have to prove that for every » ¢ Z the series

converges uniformly in a neighborhood of . The function f(x) = 7 cot. 7z
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Addition theorems:
sin{r+y) =sinxcosy + coswsiny
cos(x + y) = coszcosy — sinxsiny

= sin{wr+ §) = cosx
e i — 21
cos{r + §) = —sinz
ing = 2sin L eos &
sing = 2sin 3 cos 3

r=cost £ —gip? &
CO3 T = COs 5 SII1 5

For this, we don’t get any problem with the first term, for n = 1, or with
the terms with 2n — 1 < x2, since there is oniy a finite number of them. On
the other hand, forn > 2 and 2n— 1 > z%, thatis n? —z% > (n— 1)% > 0,
the summands are bounded by

1 1

2 _ g2 {n—1)%’

T
and this bound is not only true for = itseIf but also for values in a neighbor-
hood of r. Finally the fact that 3 m 1)2 converges (o %, scc page 35)
provides the uniform convergence reeded for the proof of (A)

(B) Both f and g are periodic of period 1, thatis, f(z + 1} = f(z} and

glx + 1) = g(x) hold for all x € R\Z.

Since the cotangent has period m, we find that f has period 1 (sec again the
figure above). For g we argue as follows. Let

N

1
anie) = DL
n=—N
then

~ 1 Mgl 1

I o iV
":7N:r+1+n niﬁN“m—{- T

() + 1 N 1

r T .

In-1 T+ N 2+ N+1

Hence g(xr 4+ 1) = hm q,\,(:c—l—l)— lim g  (a) = g(z).

N—on

(C) Both f and g are odd functions, that is, we have f(—x) = — f(z) and

g(—x) = —g(x) forall z € R\Z,

The function f obviously has this property, and for g we just have o
observe that g (—r) = —g, ().

The final two facts constitute the Herglotz trick: First we show that f and g
satisfy the same functional cquation, and secondly that » := f — g can be
continuously extended to all of R.

(D) The two functions f and g satisfy the same [unctional equation:
FO8)+ =) =27 (n) and g(3) + g(41) = 29(a).

For f(x) this results from the addition theorems for the sine and cosine
functions:

cos X sin X
4 ‘g + :1:1-1 — 2 2
FE D) ™| sin ZE cos ZF
cos(ZE 4 IE)
- Qﬂ-'iin('é“l-é) = 2w
£ 2 2
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The functional equation for g follows from

2
€ r+1 _ -
QN('g) + QN( ] ) = 292;\;(-1‘) + z+ N+ 1
which in turn follows from
1 n 1 B 2( 1 + 1 )
£4n I—-BLIWLR N r+22 r+2n+1/

Now let us look at

hiz) = fla) - glz) = wcotﬂmg(%—iﬁ%), 3)

We know by now that A is a continuous function on R\Z that satisfies the
properties (B), (C), (D). Whai happens at the integral values? From the sine

. . . . , . \ 2 a 6
and cosine series expansions, or by applying de I'Hospital’s rule twice, we  cosz =1~ 4 + 4 — & &
find . . P z z7

) 1 . reosr —sina sint=z— 5 +%5 -5 &
lim (cot.;r — —) = lim —————— — — = ), - ’
x—(} e x—0 rsimzx

and hence also 1
lim (11' cot i — —) = 0.
e

r—l

Bul since the last sum Z;’Ql nTz_JT; in (3) convergesto () with » — 0, we

have in fact l‘imU h{z) =0, and thus by periodicity

lin h(z) = 0 foralln € Z.

I 'R

In summary, we have shown the following:

(E} By sctting h{x) := 0 for z € Z, h becomes a continuous function
on all of R that shares the properties given in (B), (C) and (D).

We are ready for the coup de grdce. Since h is a periodic continuous func-
tion, it possesses a maximum . Let iy, be a pointin |0, 1] with A{xy} = m.
It follows from (D) that

hZ) + h(ZH) = 2m,

and hence that h{*3*) = m. Iteration gives h($4) = wm for all n, and hence
h(0) = m by continuity. But h(0) = 0, and so 1 = 0, that is, h(x) < 0
forall z € R. As k(r} is an odd function, h{x) < {0 is impossible, hence

h{x) = Ofor all x € R, and Euler’s theorem is proved. O

A great many corollanies can be derived from (1), the most famous of which
concerns the values of Riemann’s zeta function at even positive integers
(see the Appendix to Chapter 6),

20

k) = Yo (ken) @

n=1
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So to finish our story let us see how Euler — a few ycars later, in 1755 —
treated the series (4). We start with formula (2). Multiplying (2} by z and
setting y = wx we find for jy| < m

y
yCOty = 1 QZW
n=1 !
_ A
= 1-2 7 2p;2 R
1 1= (&)

The last factor is the sum of a geometric series, hence

i

yeoty =
n=1k=1
_ ; 4 by, 2k
- I—JZ(W%ZH%)?’ *
E=1 n=—1

and we have proved the remarkable resuit:

Forallk € N, the coefficient of 4?* in the power series expansion of ycoty

equals ] 2 N1 2
[°*] yeoty = *ﬁznj = —oas(2h). ®

-1

There is another, perhaps much more “canonical,” way 1o oblain a series
expansion of y cot . We know from analysis that " = cosy + i siny. and
thus

gl 4 @i eV T
cosy = ———————, siny = ———
2 2
which yields
. e 4 e ey
HCOoLg = Yy—_-———————— = — .
¥ ) yew pa—y (34 ol — 1

We now substitute z = 24y, and get

[

-+

m
w2

oz 2
2 + ez —1°
Thus all we need is a power series expansion of the function —*—=; note
that this function 15 defined and continuous on all of R {for z = 0 use the
power series of the exponential function, or alternatively de 1’Hospital’s
rule, which yields the value 1}, We write

1 > B @

n>0

ycoty = (6)

2 Z

ro|
)
—

The coctficients B, are known as the Bernoulli numbers. The lefi-hand
side of (6) is an even function (thatis, f{z} = f{—=z)), and thus we see that
I3, =0foroddn > 3, while B) = —% corresponds to the term of £ in (6).



Cotangent and the Hergloiz trick

131

From

) =

—
)
S
=
R
~——
lwd
[o]

nx n=0 >l
we obtain by comparing coefficients for 2™:
nil By, _ 1 forn =1, (%)
Elln—k) 0 forn # 1.

k—0

We may compute the Bernoulli numberq recursively from (8). The value

=1lgives By =1, n=2 ylelds + By = 0, thatis By = -3, and
50 0n.
Now we are almost done: The combination of (6) and (7} yields
Zw = (—1)*22 B,
ty = Y B = o
yeoty Z 2k o g o
and cut comes, with (5). Euler’s formula lor {(2k):
o —l)kfl'zzk—lek ok
= _ T k< Ny,
Z 2 (k€ M) (9

n=1

Looking at our table of the Bernoulli numbers, we thus obtain once again
the sum 3~ - =

il_n’
ot ey

%2 from Chapter 6, and further

ﬁ

= 1
e

™
S-m
nb .r'

n=1i

10 x5 1

93555°

Z 69l q?
— pl2 638512875

=
Z ”](]

n—1

The Bernoulli numher 35 = YF
but the next value By, = — {,730, needed for ((12), contains the large prime
factor 691 in the numerator. Euler had first computed some values ¢(2k)
without noticing the connection to the Bernoulli numbers. Only the appcar-
ance of the strange prime 691 put him on the right track.

Incidentally, since ({2k) convergesto | for k — oo, equation (9) tells us
that the numhers | Dy | grow very fust — something that is not clear from
the first few values.

In contrast to all this, one knows very little about the values of the Riemann
zeta function at the odd integers & 2> 3; see page 41.

that gets us {10} looks innocuous encugh,
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Page 131 of Euler’s 1748 “Introxductio in
Analysin Infinitorum™
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Buffon’s needle problem Chapter 21

A French nobleman, Georges Louis Leclerc, Comte de Buffon, posed the
tollowing problem in 1777:

1 Suppose that you drop a short needle on ruled paper — what is then
the probability that the needle comes to lie in a position where it
t crosses one of the lines?

The probability depends on the distance d between the lines of the ruled
paper, and it depends on the length ¢ of the needle that we drop — or
rather it depends only on the ratio ,éi_ A short needle for our purpose is one
of length £ < d. In other words, a short needle is one that cannot cross
two lines at the same time (and will come to touch two lines only with
probability zero}. The answer to Buffon’s problem may come as a surprise:
It involves the number .

Theorem {(*‘Buffon’s needle problem™)
If a short needle, of length £, is dropped on paper that is ruled with equally
spaced lines of distance d > £, then the probability that the needle comes

to lie in a position where it crosses one of the lines is exact! .
P f Y Le Comte de Buffon

The result means that from an experiment one can get approximate val-
ues for m: If you drop a needle V times, and get a positive answer (an
intersection) in P cases, then % should be approximately %5, that is, 7
should be approximated by %. The most extensive (and exhaustive)
test was perhaps done by Lazzarini in 1901, who allegedly even built a
machine in order to drop a stick 3408 times (with (g = g) He found
that it came to cross a line 1808 times, which yields the approximation
5 3408

TR 2. 2 igg = 3.1415929...., which is correct to six digits of 7, and

much too good to be true! (The values that Lazzarini chose lead directly

to the well-known approximation « == %; see page 31. This explains the
more than suspicious choices of 3408 and %, where %3408 is a multiple

of 355. See [5] for a discussion of Lazzarini’s hoax.)

The needle problem can be solved by evaluating an integral. We will do that
below, and by this method we will also solve the problem for a long needle.
But the Book Proof, presented by E. Barbier in 1860, needs no integrals.
It just drops a different needle ...
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Il you drop any needle, short or long, then the expected number of crossings
will be

' = ;i +2p+3ps+...,

where 1 is the probability that the needle will come to lie with exactly one
crossing, p» is the prohability that we get exactly two crossings, ps is the
probability for three crossings, etc. The probability that we get at least one
crossing, which Buffon’s problem asks for, is thus

p=pitpztpt..

{Events where the needle comes to lie exactly on a line, or with an end-
point on one of the lines, have probability zero — so they can he ignored
throughout cur discussion,)

On the other hand, if the needle is short then the prohability of more than
one crossing is zero, pp = p3 = ... = 0, and thus we get ' = p»: The
prohahility that we are looking for is just the expecied number of crossings.
This reformulation is extremely useful, because now we can vse linearity of
expectation (cf. page 84). Indeed, let us write I7(£) for the expected number
of crossings that will be produced hy dropping a straight needle of length £,
If this length is £ = x + y, and we consider the “front part” of length  and
the “back part” of length y of the needle separately, then we get

Ele ty) = E(x) + E(y),

since the crossings produced are always just those produced by the front
part, plus those of the hack part.

By induction on + this “[unctional equation” implies that F{nz) = nE(z)
forall n € N, and then that mE{Zz) = E(mZw) = E(nz) = nk(x).
so that #{rz) = rE(z) holds for all rational » € Q. Furthermore, E{x)
is clearly monotone in z > 0, from which we get that E{z) = cz for all
z = 0, where ¢ = FE{1) is some constant,

But what is the constant?

For that we use needles of different shape. Indeed, let’s drop a “'polygonal”
needle of total length £, which consists of straight pieces. Then the number
of crossings it produces is (with probability 1) the sum of the numbers of
crossings produced by its straight pieces. Hence, the expected number of
crossings 18 again

E = ¢,

by linearity of cxpectation. (For that it is not even important whether the
straight pieces are joined together in a rigid or in a Acxible way!)

The key to Barbier’s solution ol Buffon’s needle problem is to consider a
necdle that is a perfect circle (' of diameter 4, which has length x = dr,
Such a needle, if dropped onto ruled paper, produces exactly two inter-
scctions, always!
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The circle can be approximated by polygons. Just imagine that together
with the circular needle ' we are dropping an inscribed polygon P, as
well as a circumscribed polygon 7. Every line that intersects P, will also
intersect (', and if a line intersects (7 then it also hits ™. Thus the expected
numbers of intersections satisfy

£(p,) = E(C) = E(PY)

Now both £, and P" are polygons, so the number of crossings that we may
expect is “c times length” for both of them, while for C it is 2, whence

cb(Py) < 2 < cf(P"). (H
Both P, and P" approximate C' for n — oc. In particular,

lim #P,) = dr = lim #P7),
n—o0

n— 00

and thus for n — = we infer from (1) that
cdnr < 2 < cdm,
which givesc = 2}, 0

But we could also have done it by calculus! The trick to obtain an “easy”
integral is to first consider the slope of the needle; let’s say it drops to lie
with an angle of « away from horizontal, where « will be in the range
0< o< % (We will ignore the casc where the needle comes to lic with
negative slope, since that case is symmetric to the case of positive slope, and
produces the same probability.) A needle that lies with angle « has height
# sin cr, and the probability that such a needle crosses one of the borizontal
lines of distance  is m%. Thus we get the probability by averaging over
the possible angles o, as

w/2

2 [ fsing 21,’( yRi2 2¢
D= - 7 da = ;EL—L‘Ob(‘!]O = r

0

£ein a

For a long needle, we get the same probability =27 as long as £sino < d,
that is, in the range 0 < o < arcsin %. However, for larger angles o the
needle must cross a tine, so the probability is 1. Hence we compute

w i

9 aresin(d/£) £ si
p = —(/ ‘;mada + / 1da)
7\ d

}
arcsin{d /9

2,0 arcsin(d/f) T ., d
= E(a[—cosnh +(§—ar(}bm?))
2

= 1+—§(§(1 —/1 - (;—z) —a.rcsin?)
for £ > d.

So the answer isn’t that pretty for a longer needle, but it provides us with a
nice cxcrcise: Show (“just for safety™) that the formula yields % for £ = d,
that it is strictly increasing in £, and that it tends to 1 for { — 0.

—_—
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Pigeon-hole and double counting

Some mathematical principles, such as the two in the title of this chapter,
are so obvious that you might think they would only produce equally
obvious results, To convince you that “It ain’t necessarily so” we
illustrate them with examples that were suggested by Paul Erd8s to be
included in The Book. We will encounter instances of them also in later
chapters.

Pigeon-hole principle.
If n objects are placed in r boxes, where v < n, then at least one of
the boxes contains more than one object,

Well. this is indeed obvious, there is nothing to prove. In the language of
mappings our principle reads as follows: Let N and R be two finite sets
with

IN]=n>r=|R

1

and let f : N — R be a mapping. Then there exists some a € R with
1f "Y{a)| = 2. We may even state a stronger inequality: There exists some
a & R with

I~ a)] = E] (1)

In fact, otberwisc we would have |f ~"(a)| < 2 for all a, and hence
n= % |f'(a)] <rZ =n, which cannot be.
ac R

1. Numbers

Claim. Consider the numbers 1,23, ... .2n, and take anyn + 1
of them. Then there are two among these n + | numbers which are
relatively prime.

This is again obvious. There must be two numbers which are only 1 apart,
and hence relatively prime,

But let us now turn the condition around.

Claim. Suppose again A C {1,2,...,2n} with |A| = n+1. Then
there are always two numbers in A such that one divides the other.

Chapter 22

“The pigeon-holes from a bird’s

perspective’”
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Both results arc no longer true if one
replaces n+1 by n: For this consider
the sets {2,4,6,...,2n}, respectively
{n+1l.n42, .. .. Mn}.

The reader may have fun in proving that
for mn numbers the statement remains
no longer truc in general,

This is not so clear. As Erd&s told us, he put this question to young Lajos
Posa during dinner, and when the meal was over, Lajos had the answer, Tt
has remained onc of Erdds’ favorite “initiation™ questions 1o mathematics.
The (affirmative) solution is provided by the pigeon-hole principle. Write
every number a £ A in the form o = 2¥m, where m is an odd number
between | and 2n — 1. Since there are n + 1 numbers in A, but only »
different odd parts, there must be two numbers in A with the same odd
part, Hence one is a multiple of the other, O

2. Sequences

Here is another one of Erd8s’ favorites, contained in a paper of Erdds and
Szekeres on Ramsey problems.

Claim. In any sequence a|,az, . .., Umnt1 of mn+1distinct real
numbers, there exists an increasing subsequence

gy < Qig <o <G, (?‘:1 < g << L. <?:m+1)
of length m + 1, or a decreasing subsequence

@, >y, > ..0> e, (1 <Jo <. o< jnt1)
of length n + 1, or both.

This time the application of the pigeon-hole principle is not immediate.
Associate to cach a; the number £, which is the length of a lorgest increas-
ing subsequence starting at o;. I #; > m 4+ 1 for some 4, then we have
an increasing subsequence of length m 4+ 1. Suppose then that ¢; < m for

all ¢, The function f : a; —— #; mapping {a;,...,@muy1} 1o {1,...,m}
tells us by (1) that there is some s € {1,...,m} such that f(a;) = 5 for
BR 41 = n+1numbers a;. Let uj,, g, ... a5,,, (F1 <. < Jno1)

be these numbers. Now look at two consecutive numbers aj,, aj,,,. If
@, < ug;,,. then we would obtain an increasing subsequence of length
& starting at a4, . and consequently an increasing subscquence of length
s + 1 starting at @;,, which cannot be since f(a;,) = s. We thus obtain a
decreasing subsequence a;, > a;, > ... > a;, ., of lengthn + 1. O

This simple-sounding result on monotone subsequences has a highly non-
obvious consequence on the dimension of graphs. We don’t need here the
notion of dimension for general graphs, but only for complele graphs £,.
It can be phrased in the following way. Let N = {1,...,n}, n > 3, and
consider m permutations ., ..., T,, of N. We say that the permutations
m; represent K, if to every three distinct numbers ¢, j, k there exists a per-
mutation 7 in which &k comes after both ¢ and j. The dimension of K, is
then the smallest m for which a representation my. ..., m,, exists.

As an example we have dim({K4) = 3 since any one of the three numbers
must come last, as in m; = (1,2,3), me = (2,3,1), m3 = (3,1, 2). What
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about K47 Note first dim(K,) < dim{#,1,): just delete n + 1 in a
representation of K11, So, dim({Ky) > 3, and, in fact, dim(A,) = 3, by
taking

Wl={1,2,3.4), W2:(214,3,l) ’.'T;;;i(l,‘—'l,B,Q).

It is not quite so easy to prove dim(K'5) = 4, but then, surprisingly, the
dimension stays at 4 up to n = 12, while dim(K 3} = 3. So dim(K,,)
seems (o be a pretty wild function. Well, it is not! With n going to infinity,
dim( A, ) is, in fact, a very well-behaved function — and the key for finding
a lower bound is the pigeon-hole principle. We claim

dim{A,) = log,logs n. (2)

Since, as we have seen, dim( K, ) is a monotone function in 7., it suffices to
verify (2) for n = 22" 4 1, that is, we have to show that

dim(K,) = p+1 for n=2"+1.

Suppose, on the contrary, dim(K,,) < p, and let 7y, . .., m, be representing
permutationsof N = {[,2,..., 2" 4 1}. Now we use our result on mono-
tone subsequences p times. In 7; there exists 2 monotone subsequence A,
of length 22" + 1 (it does not matter whether increasing or decreasing).
Look at this set A, in m3. Using our resolt again, we {ind a monotonc sub-
sequence A, of Ay in 72 of length 22”77 & 1, and Aj is, of course, also
monotone in 7;. Continuing, we eventually find a subsequence A, of size
22° 4 1 = 3 which is monotone in alf permutations 7. Let A, = {a. b, ),
then eithera < b < cora > b > cin all m;. But this cannot be, since there
must be a permutation where & comes after a and c. O

The right asymptotic growth was provided by Joel Spencer (upper bound)
and by Erd&s, Szemerédi and Trotter (lower bound):

1
dim(K,) = log,log,n+ (5 + 0{1)) log, log, log, n.

But this is not the whole story: Very recently, Morris and Hogten found
a method which, in principle, establishes the precise value of dim{A,).
Using their result and a computer one can obtain the values given in the
margin. This is truly astounding! Just consider how many permutations of
size 1422564 there are. How does onc decide whether 7 or 8 of them are
required to represent Kqgs05647

3. Sums

Paul Erd6s attributes the following nice application of the pigcon-hole
principle to Andrew Vdzsonyi and Marta Sved:

Claim. Suppose we are given n integers a1.. .., a0, which need
not be distinct. Then there is alwaf's a set of consecutive numbers
pla By, - - -, B¢ WRoSe sum Zizk—i-l a, I5 a multiple of n.

7:1 23 5
723 4 R

G 7
76

8 9101112 4
5121110 91

7323 4 11112 910 6 5 8 7 2
mard 1 210 91211 7 B 5 63

These four permutations represent K2

dim{K,) <4
dim{K,} <5
dim{K,) <6
dim( ) <7

I

n <12

n < 81

n < 26405

n < 1422564
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=
[

S0 ~1 N U e W

2 5 6 7 8
1 1 1 11
1 i 1

I
1

1
1
1

1

For the proof weset N = {0.1,....,n}and B = {0,1,...,n — 1}. Con-
sider the map f : N — R, where f{m) is the remainderof a1 + ... + am
upon division by n. Since |N| =n+ 1 > n = | £/, it follows that there are
two sums a4y + ... + ag, a1 + ... + dg (k < £) with the same remainder,
where the first sum may be the empty sum denoted by Q. It follows that

[4 £ ke

Y

E a; — E a; — E a;
i=1 =1

i=k41

has remainder (0 — end of proof. 0

Let us turn to the second principle: counting in two ways. By this we mean
the following.

Double counting.

Suppose that we are given two finite sets B and C' and a subset
8 C Rx C. Whenever (p,q) € 5, then we say p and g are incident.
If v, denotes the number of elements that are incident to p € R,
and g denotes the number of elements that are incident to ¢ € (),

then
S =18l =D cq (3)

pER el

Again, there is nothing to prove, The first sum classifies the pairs in &
according to the first entry, while the second sum classifies the same pairs
according to the second entry.

There is a useful way to picture the set S. Considcr the matrix 4 = (i),
the incidence matrix of S, where the rows and columns of 4 are indexed
by the elements of 12 and C, respectively, with

1 if(p,gie S
" 0 if(p.g) ¢S

With this set-up, rp, is the sum of the p-th row of 4 and ¢, is the sum of the
g-th column. Hence the first sum in (3) adds the entries of A (that is, counts
the elements in .S) by rows, and the second sum by columns.

The following cxample should make this correspondence clear. Let [I =
C =1{1.2,...,8}, and set § = {(4.7) : i divides 7}. We then obtain the
maltrix in the margin, which only displays the 1’s.

4. Numbers again

Look at the table on the left. The number of 1°s in column 7 is precisely the
number of divisors of j; let us denote this number by £(7). Let us ask bow
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large this number £(j} is on the average when 4 ranges from 1 to n. Thus,
we ask for the quantity

)
=1
o

o

i |1 2
f(n):%ZL(j]. |1 ¢

i=1

4
22

Wi S
e

-5

rajen

Wl

The first few values of £{n)

How large 1s {{n) for arbitrary n? At first glance, this seems hopeless. For
prime numbers p we have #{p) = 2, while [or 2% we oblain a large number
L{2%) = k + 1. So, {(n) is a wildly jumping function, and we surmise that
the sume is true for £(1). Wrong guess, the opposite is true! Counting in
two ways provides an unexpected and simple answer.

Consider the matrix A {as above) for the integers 1 up to n. Counting by
columns we get -7, #(j}. How many 1’s are in row i? Easy enough, the
I’s correspond to the multiples of #: 17,2¢,. .., and the last multiple not
exceeding n is | 7 |i. Hence we obtain

I L

_ 1 1 n, 1 O~ n "1

l{n) = — iy = — L7J<— - = -,

() nz(ﬂ nZ i *nZi Zz
=1 =1 =1 =1

where the error in each summand, when passing from |Z] 1o &, is less

than 1. Now the last sum is the n-th harmonic number H,,, so we obtain

H, - L < t(n) < H,, and together with the estimates of H,, on page L1

this gives
1 _
logn—1 <« H,—1-—— < tn) < H, < logn+1.
n

Thus we have proved the remarkable result that, while ¢ () 1s totally erratic,
the average t{n) behaves beausifully: It differs from log n hy less than 1.

5. Graphs

Let £ be a finite simple graph with vertex set V' and edge set £. We have 1 6
defined in Chapter 11 the degree d{v) of a vertex v as the number of edges

which have v as an end-vertex. In the example of the figure, the vertices 4 5
1.2,....7have degrees 3, 2,4, 3, 3. 2, 3, respectively. 2
Almost every book in graph theory starts with the following result (that we
have already encountered in Chapters 11 and 17):

> divy = 20E]. (4)

vEV

For the proof consider § C V' x E, where § is the set of pairs (v, €) such
that v € V is an end-vertex of e € £. Counting S in two ways gives on the
one hand )~ | d(v), since every vertex contribules (v} 1o the count, and
on the other hand 2| E|, since every edge has two ends. |

As simple as the result {(4) appears, il has many important consequences,
some of which will be discussed as we go along. We want to single out in
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this section the following beautiful application to an extremal problem on
graphs. Here is the problem:

Suppose ¢ = (V. E) has n vertices and contains no cycle of
length 4 (denoted by Cy), that is, no subgraph I:I How many
edges can G have at most?

As an example, the graph in the margin on 5 vertices contains no 4-cycle
and has 6 edges. The reader may easily show that on 5 vertices the maximal
number of edges is 6, and that this graph is indeed the only graph on 5
vertices with 6 edges that has no 4-cycle.

Let us tackle the general problem. Let (¢ be a graph on n vertices without
a 4-cycle. As above we denote by d(u) the degree of w. Now we count
the lollowing set S in two ways: S is the set of pairs (u, {#,w}) where
u is adjacent 10 v and to w, with » # w. In other words, we count all
occurrences of 12

’U/\’IU

Summing over u, we find |§] = 3 ., (*4). On the other hand,
every pair {#, w} has at most one commen neighbor (by the C';-condition),
Hence |S| < (7). and we conclude

(%)= ()

Z d(u)? < nin—1)+ Z d(u). (5)

uel ueV

or

Next (and this is guite typical for this sort of extremal problems) we
apply the Cauchy-Schwarz inequality to the vectors (d{u; ), . .., d{u,,)) and
(1.1,....1), obtaining

2
( Z d(u)) < n Z d(u)?,
uel ueV
and hence by (5)
p)
( 3 d(u)) < nfn-1+n Y du).
W weV
Invoking {4) we find
4|E* < n*(n—1)+2n|E

or 5
n={n —1
n{n —1) < 0.

1
Solving the corresponding quadratic equation we thus obtain the lollowing
result of Istvan Reiman.

T
B2 2B -
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Theorem. [fthe graph G on n vertices contains no 4-cycles, then

Bl < |50+ van<3)|. 6)

[/

For n = 5 this gives |F] < 6, and the graph above shows that equality
can hold.

Counting in two ways has thus produced in an casy way an upper bound
on the number of edges. But how good is the bound (6) in general? The
following beautiful example {2] (3] (6] shows that it is almost sharp. Asis
often the case in such problems, finite geometry leads the way.

In presenting the example we assume that the reader is familiar with the
finite field Z,, of integers modulo a prime p (see page 18). Consider the
3-dimensional vector space X over Z,. We construct from X the fol-
lowing graph &,. The vertices of {/, are the one-dimensicnal subspaces
[v] := spang {v}. 0 # v € X, and we connect two such subspaces
[v], [w] by an edge if

(v, = mun + vatwg + vgwy = 0.

Note that it does not matter which vector # 0 we take from the subspace.
In the language of geometry, the vertices are the points of the projective
plane over Z. and [w] is adjacent to [v] if w2 lies on the polar line of v.
As an example, the graph G5 has no 4-cycle and contains 9 edges, which
almost reaches the bound 10 given by (6). We want to show that this is true
for any prime p.

Let us first prove that &, satisfies the C'y-condition. If [a] is a common
neighbor of [v] and {w), then w is a solution of the linear equations

nmx + vy + vz =0
unT + uwpy +wyz = 0

Since v and w are linearly independent, we infer that the solution space
has dimension 1, and hence that the common neighbor {#] is unique.

Next, we ask how many vertices (i, has, It's double counting again. The
space X contains p* — 1 vectors # 0. Since every one-dimensional sub-
space contains p — 1 vectors # 0, we infer that X has %‘Tl =P +tpt1l
ane-dimensional subspaces, that is, G, has n = p® + p + 1 vertices, Simi-

larly, any two-dimensional subspace contains p? — 1 vectors # 0, and hence
";ifli = p+ 1 one-dimensional subspaces.

It remains to determine the number of edges in (7, or, what is the samc by
(4), the degrees. By the consiruction of G, the vertices adjacent to [u)] are

the solutions of the equation
tr + uzy + wyz = O {7y

The solution space of (7) is a two-dimensional subspace, and hence there
are p + 1 vertices adjacent to [u]. Bul beware, it may happen that w itself
is a solution of (7). In this case there are only p vertices adjacent to [u].

(0,0,1)

(1,0,1) » (0,1,1)
St
N

(1,0,0) (1,1, (0,1,0;

The graph (G2: its vertices are all seven
nonzero triples (z,y, z).
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L

Il
OO~ P~ = O
O~ O = O

o

0

The matrix for

1
1
0
0
0
1
0
G

2

_ oo~ O O

— o= OO0O O

—= =0 O = OO

O == -0 00

In summary, we obtain the following result: If u lies on the conic given by
z? + y? 4+ 22 = 0, then d([u]) = p, and, if not, then d([u]) = p + 1. So it
remains to find the number of one-dimensional subspaces on the conic

2 +yi+2=0
Let us anticipate the result which we shall prove in a moment.

Claim. There are precisely p* solutions (x,vy, z) of the equation
22+ 42+ 22 = 0, and hence (excepting the zero solution) precisely

2
Ep_;ll = p + 1 vertices in Gp, of degree p.

With this, we complete our analysis of G,. There are p + 1 vertices of
degree p, hence (p? +p + 1) — (p + 1) = p? vertices of degree p + 1.
Using (4), we obtain

(p+1Lp  p’lp+1)  (p+1)°p
2 + 2 o 2

—(—])—Z—l)lz(l—i—@p—i—l)) - psz(1+\/4p2+4p+ 1).

Bl =

Il

Setting n = p? + p + 1, the last equation reads

Bl =" (4 VA —3),

and we see that this almost agrees with (6).

Now to the proof of the claim. The following argument is a beautiful appli-
cation of linear algebra involving symmetric matrices and their eigenvalues.
We will encounter the same method in Chapter 34, which is no coincidence:
both proofs are from the same paper by Erdés, Rényi and Sés.

We represent the one-dimensional subspaces of X as before by vectors
V1,02, ..., Up2fpi1, A0Y (WO of which are linearly independent. Similarly,
we may represent the two-dimensional subspaces by the same set of vec-
tors, where the subspace corresponding to w = (u1, ug, u3) is the set of so-
lutions of the equation u1x+u2y+uzz = 0 asin (7). (Of course, this is just
the duality principle of linear algebra.) Hence, by (7), a one-dimensional
subspace, represented by v;, is contained in the two-dimensional subspace,
represented by v, if and only if (v;,v;) = 0.

Consider now the matrix A = (a;;) of size (p?+p+1)x (p*+p+1), defined
as follows: The rows and columns of A correspond to vy, . .., Vp2py1 (We
use the same numbering for rows and columns) with

Qi = 1 if(vi,v]-):(),
CE 0 otherwise.

A is thus a real symmetric matrix, and we have a;; = 1 if {v;, v;) = 0, that
is, precisely when v; lies on the conic z2 + y? + 22 = 0. Thus, all that
remains to show is that

trace A = p+ 1.
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From linear algebra we know that the trace equals the sum of the eigenval-
ues. And here comes the trick: While A looks complicated, the matrix A*
is easy to analyze. We note two facts;

+ Any row of A contains precisely p+ 1 1’s. This implics that p + 1 1s an
eigenvalue of A4, since A1 = (p+ 1)1, where 1 is the vector consisting
of I’s.

¢ For any two distinct rows vy, v; there is exactly onc column with a 1 in
both rows (the column corresponding to the unique subspace spanned
by v, v;).

Using these facts we find

pHl 1 1
Ag: 1 p‘l‘l : _ pI—I—J,
- p+1

where [ is the identity matrix and J is the all-ones-matrix. Now, J has
the eigenvalue p® + p + 1 (of multiplicity 1} and 0 (of muliplicity p* + p).
Hence A? has the eigenvalues p? + 2p+ 1 = (p+ 1)? of multiplicity | and p
of multiplicity p? + p. Since A is real and symmetric, hence diagonalizable,
we find that A4 has the eigenvalue p+ 1 or —(p+ 1) and p* + p eigenvalues
+./p. I'rom Fact 1 above, the first eigenvalue must be p + 1. Suppose
that \/p has multiplicity r, and — /5 multiplicity s. then

trace A = (p+ 1)+ rp — s/p.

But now we are home: Since the trace is an integer, we must have r = s,
so trace A = p + 1. ]

6. Sperner’s Lemma

In 1911, Luitzen Brouwer published his famous fixed point theorem:

Every continuous function f: B® — B of an ni-dimensional ball
to itself has a fixed point (a point © € B™ with f{x) = z).

For dimension 1, that is for an interval, this follows easily from the inter-
mediate value theorem, but for higher dimensions Brouwer's proof needed
some sophisticated machinery. It was therefore quite a surprise when in
1928 young Emanuel Sperner (he was 23 at the time) produced a simple
combinatorial result from which both Brouwer's fixed point tbeorem and
the invariance of the dimension under continuous hijective maps could be
deduced. And what’s more, Sperner’s ingenious lemma is matcbed by an
equally beautiful proof — it is just double counting.
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The triangles with three different colors
are shaded

We discuss Sperner’s lemma, and Brouwer’s theorem as a consequence, for
the first interesting case, that of dimension 7 = 2. The reader should have
no difficulty to extend the proofs to higher dimensions (by induction on the
dimension).

Sperner’s Lemma.

Suppose that some "big” triangle with vertices V1, Vo, V3 is triangulated
(that is, decomposed into a finite number of "small” triangles that fit to-
gether edge-by-edge).

Assume that the vertices in the triangulation get “colors™ from the set
{1,2,3} such that V; receives the color i (for each i), and only the col-
ors i and j are used for vertices along the edge from Vi to Vy (for i # j),
while the interior veriices are colored arbitrarily with 1, 2 or 3.

Then in the triangulation there must be a small “tricolored” rriangle, which
has all three different vertex colors.,

B Proof, We will prove a stronger statement: the number of tricolored
triangles is not only nonzero, it is always odd.

Consider the dual graph to the triangulation, but don’t take all its edges
— only those which cross an edge that has endvertices with the (different)
colors | and 2. Thus we get a “partial dual graph™ which has degree 1 at all
vertices that correspond to tricolored triangles, degree 2 for all triangles in
which the two colors 1 and 2 appear, and degree () for (riangles that do not
have both celors 1 and 2, Thus only the tricolored triangles correspond to
vertices of odd degree (of degree 1).

However, the vertex of the dual graph which corresponds to the outside of
the triangulation has odd degree: in fact, along the big edge from V] 10 V5,
there is an odd number of changes between 1 and 2. Thus an odd number
of edges of the partial dual graph crosses this big edge, while the other big
edges cannot have both 1 and 2 occurring as colors.

Now since the number of odd vertices in any finite graph is even (by equa-
tion {4}), we find that the number of small triangles with three different
colors (corresponding to odd inside vertices of our dual graph)is odd. O

With this lemma, it is easy to derive Brouwer’s theorem.

M Proof of Brouwer’s fixed point theorem (for n = 2). Let A be the tri-
angle in B3 with vertices e, = {1,0,0), ez = (0,1,0), and ez = {0,0,1).
It suffices to prove that every continuous map f: A — A has a fixed point,
since A is homeomorphic to the two-dimensional ball I3s.

We use 6(7 ) to denote the maximal length of an edge in a triangulation 7,
One can easily construct an infinite sequence of triangulations 77,73, ...
of A such that the sequence of maximal diameters §{7;) converges to 0.
Such a sequence can be obtained by explicit construction, or inductively,
for example by taking 73+ to be the barycentric subdivision of 7.

For each of these triangulations, we define a 3-coloring of their vertices v
by setting A(v) := min{i : f(v), < w}, thatis, A(v) is the smallest index 3
such that the i-th coordinate of f(v) — v is negative. Assuming that f has
no fixed point, this is well-defined. To see this, note that every v € A lies
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in the plane x1 + oy + 73 = 1, hence 3, v = 1. Soil f{w) # v, then at
least one of the coordinates of f{v) — ¥ must be negative {and at least one
must he positive).

Let us check that this coloring satisfies the assumptions of Sperner’s lemma.
First, the vertex e; must receive color i, since the only possible negative
component of f{e;) — e; is the i-th component. Moreover, if # lies on the
cdge opposite to e,, then v, = (), 50 the 7-th component of f{#) — v cannot
be negative, and hence v does not get the color 7.

Spemmer’s lemma now tells us that in cach triangulation 7y therc is a tri-

colored triangle {v*', %2 »*3} with A(v*%) = i. The sequence of

points (vk:l)kzl need not converge, but since the simplex A is compact
some subsequence has a limit point. After replacing the sequence ol tri-
angulations 7, by the corresponding subsequence (which for simplicity
we also denote by T;) we can assumc that (v51), converges to a point
v € A. Now the distance of ©** and v*3 from v*'! is at most the mesh
length §(7;.), which converges to 0. Thus the sequences (%2} and (v%%)
converge to the same point v.

But where is f{v)? We know that the first coordinate f(v*'!) is smaller
than that of ©*! for all k, Now since f is continuous, we derive that the
first coordinate ol f{v) is smaller or equal to that of v. The same reasoning
works for the second and third coordinates, Thus none of the coordinates
of f(v) — v is positive ~— and we have already seen that this contradicts
the assumption f{v) # v. O
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Three famous theorems Chapter 23
on finite sets

In this chapter we are concerned with a basic theme of combinatorics:
properties and sizes of special families F of subsets of a finite set N =
{1.2,....n}. We start with two results which are classics in the field: the
theorems of Spemer and of Erdds-Ko-Rado. These two results have in com-
mon that they were reproved many times and that each of them initiated a
new field of combinatorial set theory. For both theorems, induction seems
to be the natural method, but the arguments we are going to discuss are
quite different and truly inspired.

In 1928 Emanuel Sperner asked and answered the following question: Sup-
pose we are given the set N = {1,2, ..., n}. Call a family F of subsets of
N an antichain if no set of F contains anather set of the family #. What is
the size of a largest antichain? Clearly, the family F;, of all k-sets satisties
the antichain property with [Fx| = (}). Looking at the maximum of the
binomial coefficients (see page 12) we conclude that there is an antichain
of size (;rz?zj) = max; (). Spemer’s theorem now asserts that there are
no larger ones.

Theorem 1. The size of a largest antichain of an n-set is (lﬂ/ZJ)' Emanuel Sperncr
B Proof. Of the many proofs the following one, due to David Lubell, is

probably the shortest and most elegant. Let F be an arbitrary antichain.

Then we have to show |F| < (LT:;QJ)' The key to the proof is that we

consider chainsof subsets @2 =Ch C Cy C Ch C ... C O, = N, where

|(:;] =i fori=0,...,n. How many chains are there? Clearly, we obtain

a chain by adding one by one the elements of ¥V, so there are just as many

chains as there arc permutations of N, namely n!. Next, foraset 4 € F

we ask how many of these chains contain A. Again this is easy. To get

from & 10 A we have to add the elements of A one by one, and then to pass

from A to A we have to add the remaining elements. Thus if A contains %

clements, then by considering all these pairs of chains linked together we

sec that there are precisely £!(n — k)! such chains. Note that no chain can

pass through two different sets A and B of . since F is an antichain.

To complete the proof, let my. be the number of k-scts in F. Thus |F| =

«—o M. Then it follows from our discussion that the number of chains
passing through some member of F is

and this expression cannot exceed the number n! of alf chains. Hence
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we conclude

™

k13

klin — k) TI
ka(n—;) < 1. or ”:k < 1.
E=0D n k=0 (A)

Replacing the denominators by the largest binomial coefficient, we there-
fore obtain

™ kel

1 7
— my < 1, that is, [Fl = my < ( ) )
(_n,f'zj) k=0 k_Z_:rO |_72‘/2J
and the proof is complete. O

Our second result is of an entirely different nature. Again we consider the
set N = {1,...,n}. Callafamily F of subsets an intersecting family il any
two sets in F have at least one element in common. It is almost immediate
that the size of a largest intersecting family is 2"~'. If A £ F. then the
complement A° = N\ A has emply intersection with A and accordingly
cannot be in F. Hence we conclude that an intersecting family contains at
most half the number 2™ of all subsets, that is, |F| < 27!, On the other
hand, if we consider the family of all sets conlaining a fixed element, say
the family 7 of all sets containing 1, then clearly || = 27!, and the
problemn is settled.

But now let us ask the following question: How large can an intersecting
family JF be if ali sets in F have the same size, say k& ? Let vs call such fami-
lies intersecting k-families. To avoid trivialities, we assume n > 2k since
otherwise any two k-sets intersect, and there is nothing to prove. Taking
up the above idea, we certainly obtain such a family 7, by considering all
k-sets containing a fixed element, say 1. Clearly, we obtain all sets in 7,
by adding to I all (k — 1)-subsets of {2,3,...,n}, hence [Fi| = (37 ]).
Can we do better? No — and this is the theorem of Erdgis-Ko-Rado.

Theorem 2. The largest size of an intersecting k-family in an n-set is (2:11)
when n > 2k.

Paul Erdds, Chao Ko and Richard Rade found this result in 1938, but it
was not published until 23 years later. Since then multitudes of proofs and
variants have been given, but the following argument due to Gyula Katona
is particularly elegant,

B Proof. The key to the proof is the following simple lemma, which at
first sight seems to be totally unrelated to our problem. Consider a circle 7
divided by n points into n edges. Let an arc of length £ consistof & + 1
consecutive points and the & edges between them.

Lemma. Lern > 2k, and suppose we are given t distinct arcs Ay, ..., A,
of length k, such that any two arcs have an edge in cormnon, Then t < k.

To prove the lemma, note first that any point of (' is the endpoint of at most
one arc. Indeed, if A;. A; had a common endpoint v, then they would have
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to start in different direction (since they are distinct). But then they cannot
have an edge in comnmon as n > 2k, Let us fix A,. Since any A, (i > 2)
has an edge in common with 4,, onc of the endpoints of 4, is an inner
point of A,. Since these endpoints must be distinct as we have just seen,
and since A; contains & — 1 inner points, we conclude that there can be at
most & — 1 further arcs, and thus at most k arcs altogether. O

Now we proceed with the proof of the Erd&s-Ko-Rado theorem. Let F be
an intersecting &-family. Consider a circle 7 with 2 points and n edges as
above. We take any cyclic permutation 7 = {ay, dz, ..., a,) and write the
numbers «; clockwise next to the edges of (C. Let us count the number of
scts A € F which appear as k consecutive numbers on ¢, Since F is an
intersecting family we sec by our lemma that we get at most & such sets.
Since this holds for any cyclic permutation, and since there are {n — 1)!
cyclic permutations, we produce in this way at most

k{n — 1)

sets of F which appear as consecutive elements of some cyclic permutation.
How often do we count a fixed set A € F7 Easy enough: A appears in =
if the k elements of A appear consecutively in some order. Hence we have
k! possibilities to write A consecutively, and (n — k}! ways to order the
remaining elements. So we conclude that a fixed set 4 appears in preciscly
kl{n — k)! eyelic permutations, and hence that

o o k-1 (n— 1) _(n-1
F1 = Bn -k~ (k=DMn—-1—-{k-10 (;;_1)' =

Again we may ask whether the families containing a fixed element are the
only intersecting k-families. This is certainly not true for n = 2k. For
example, for n = 4 and & = 2 the family {1,2}, {1.3}, {2, 3]} also has
size (|} = 3. More generally, for n = 2k we get thc maximal intersecting
k-familics, of size £(}) = (¥}, by arbitrarily including one out of every
pair of sets formed by a k-set A and its complement N\ A. But for n > 2k
the special families containing a fixed element are indeed the only ones.
The reader is invited to try his hand at the proof.

Finally, we turn to the third result which is arguably the most important
basic theorem in finite set theory, the “marriage theorem™ of Philip Hall
proved in 1935. It opened the door to what is today called matching theory,
with a wide variety of applications, some ol which we shall see as we
go along.

Consider a finite set X and a collection Ay, .. ... A,, of subsets of X (which
need not be distinct). Let us call a sequence 1. ..., 2, a system of distinct
representatives of {A). ..., A, } if the x; are distinct elements of X, and

if r; © A; forall i. Of course, such a system, abbreviated SDR, need not
exist, for example when one of the sets 4; is empty. The content of the
theorem of Hall is the precise condition under which an SDR exists.

An intersecting family forn =4, k = 2
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“A mass wedding”

{B. ', 2} is a critical family

Before giving the result let us stale the human interpretation which gave it
the folklore name marriage theorem: Consider a set {1,...,n} of girls and
a sel X of boys. Whenever » € A;, then girl ¢ and boy x are inclined to
get married, thus A; is just the set of possible matches of girl 4. An SDR
represents then a mass-wedding where every girl marries a boy she likes.

Back to sets, here is the statement of the result.

Theorem 3. Let Ay,..., A, be a collection of subsets of a finite set X.
Then there exists a system of distinct representatives if and vnly if the union
of any m. sets A, contains at least m elements, for 1 < m < n.

The condition is clearly necessary: If m sets 4; conlain between them
fewer than m elements, then these m sets can certainly not be represented
by distinct elements. The surprising fact (resulting in the universal ap-
plicability) is that this obvious condition is also sufficient. Hall’s original
proof was rather complicated, and subsequently many different proofs were
given, of which the following one (due to Easterfield and rediscovered by
Halmos and Vaughan) may be the most natural.

B Proof. We use induction on n2. For n = 1 there is nothing to prove. Let
n > 1, and suppose {Ap,..., A,} satisfies the condition of the theorem
which we abbreviate hy (H). Call a collection of £sets A, with1 < f < na
critical family if its union has cardinality {. Now we distinguish two cases.

Case 1: There is no critical family.

Choose any element .z € A,,. Delete 2 from X and consider the collection
fooo AL with A = A\ {z}. Since there is no critical family, we find

that the union of any m sets A; contains at least m elements. Hence by

induction on r there exists an SDR zq,..., 2, 1 0f {A]...., AL _,}, and

together with z,, = =, this gives an SDR for the original collection.

Case 2: There exists a critical family.

After renumbering the sets we may assume that {Ai, ..., Ag} is a critical

family. Then Uf,,l A; = X with |X| = ¢. Since ¢ < n, we infer the exis-

tence of an SDR for A,,..., A; by induction, that is, there is a numbering

T1,...,2p of X such that x; € A; forall 4 < £,

Consider now the remaining collection Apy4, ..., A,, and take any m of
these sets. Since the union of Aq,. .., Az and these mn sets contains at least
¢ + m elements by condition (H), we infer that the m sets contain at least
m elements outside X. In other words, condition (H) is satisfied for the
family

A[q,l\i’, - ,An\f
Induction now gives an SDR for Agyq, ..., A, that avoids X. Combin-

ing it with x,,..., 2 we obtain an SDR for all sets A;. This completes
the proof. D
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As we mentioned, Hall’s theorem was the beginning of the now vast field
of matching theory [6]. Of the many variants and ramifications Iet us state
one particularly appealing result which the reader is invited to prove for
himself:

Suppose the sets Ay, ... Ay, all have size k > 1 and suppose
SJurther that no element is contained in more than k sets. Then
there exist k SDR's such that for any i the k representatives of A;
are distinct and thus together form the set A;.

A beautiful result which should open new horizons on marriage possi-
hilities.
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Shuffling cards Chapter 24

How often does ore have to shuffle a deck of cards until it is random?

The analysis of random processes is a familiar duty in life (“How long does
it take to gel to the airport during rush-hour?”) as well as in mathematics.
Of course, getting meaningful answers to such problems heavily depends
on formulating meaningful questions. For the card shuffling problem, this
means that we have

e o specify the size of the deck {n = 52 cards, say),

¢ to say how we shuffle (we’ll analyze top-in-at-random shuffles first,
and then the more realistic and effective riffle shuffles), and finally

# 10 explain what we mean by “is random’ or “is close to random.”

So our goal in this chapter is an analysis of the riffle shuffle, due to Edgar
N. Gilbert and Claude Shannon (1955, unpublished) and Jim Reeds (1981,
unpublished), following the statistician David Aldous and the former ma-
gician turned mathematician Persi Diaconis according to [1]. We will not
reach the final precise result that 7 riffle shuffles are sufficient to get a deck
of n = 52 cards very close to random, while 6 riffle shuffles do not suf-
fice — but we will obtain an upper bound of 12, and we will see some
extremely beautiful ideas on the way: the concepts of stopping rules and
of “strong uniform time,” the lemma that strong uniform time bounds the
variation distance, Reeds’ inversion lemma, and thus the interpretation of
shuffling as “reversed sorting.” In the end, everything will be reduced to
two very classical combinatorial problems, namely the coupon collector
and the birthday paradox. So let’s start with these!

The birthday paradox

Take n random people — the participants of a class or seminar, say. What
is the probability that they all have different birthdays? With the uswal  Persi Diaconis’ business card as a magi-
simplifying assumptions (365 days a year, no seasonal effects, no twins  cian. Inalater interview he satd: “If you
present) the probability is say that you are a professor at Stanford
- - people treat you respectfully. If you say
pln) = H ( 1 )! that you invent magic tricks, they don't
i=1

1— — ) . .
365 want to introduce you to their daughter.”



158

Shuffling cards

ZI571(1 —x)s =

s>l

s—1 5
E £ 5 — E TS

axl s>l
Z:J:"(s—l— 1} — Z:r'qs
s3>0 220

1
gms T 1oz

where al the end we sum a geomeltric
series (see page 28).

which is smaller than % for n = 23 (this is the “birthday paradox™!), less
than 9 percent for n = 42, and exactly 0 for n > 365 (the “pigecon-hole
principle,” see Chapter 22). The formula is easy to see — if we take the
persons in some fixed order: Il the first 4 persons have distinct birthdays,
then the probability that the (i + 1)-st person doesn’t spoil the series is
1 — 5&=, since there are 365 — i birthdays left.

Similarly, if n balls are placed independently and randomly into K boxes,
then the probability that no box gets more than one ball is

n—1

(%)

i=

pln, K) =

The coupon collector

Children buy photos of pop stars (or soccer stars) for their albums, but they
buy them in little non-transparent envelopes, so they don’t know which
photo they will get, If there are n different photos, what is the expected
number of pictures a kid has to buy until he or she gets every motil at
least once?

Equivalently, if you randomly take balls [rom a bow] thatl containg 7 dis-
tinguishable balls, and if you put your ball back each time, and then again
mix well, how often do you have to draw on average until you have drawn
each ball at [east once?

If you already have drawn & distinct balls, then the probability not to get
a new one in the next drawing is % So the probability to need exactly s
drawings for the next new ball is (£)*=3(1 — £). And thus the expected

I

number of drawings for the next new ball is

ST = e

s>l n

as we get from the series in the margin. So the expected number of drawings
until we have drawn each of the n different balls at least once is

n—1
Z 1 _on n n +
E T L _
n 1— " 7 n—1
with the bounds on the size of harmonic numbers that we had obtained on

page 11. So the answer to the coupon collector’s problem is that we have
to expect that roughly n log n drawings are necessary.

= nH, =~ nlogn,

+ o4
2

—13

The estimate Lhat we need in the following is for the probability that you
need significantly more than nlogn trials. If V), denotes the number of
drawings needed (this is the random vadable whose expectled value is
E[V,] = nlogn), then for n > 1 and ¢ > (0, the probability that we
need more than m := [nlogn + cn drawings is

Prob[V11 > m} < g7 "
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Indeed, if A4; denotes the event that the ball 7 is not drawn in the first m
drawings, then

Prob[V,, > m| = Prob{U A; ] ZProb

Now let’'s grab a deck of n cards. We number them | up to 5 in the or-
der in which they come — so the card numbered “17 is at the top of the
deck, while “n” is at the bottomn. Let us denote from now on by &,, the
set of all permutations of 1....,n. Shuffling the deck amounts to the ap-
plication of centain random permutations to the order of the cards. Ide-
ally, this might mean that we apply an arbitrary permutation 7= € &, to

our starting order (1, 2, ... n), each of thern with the same pr()bablllty
Thus, after doing this _|US[ once, we would have our deck of cards in order
7 = {w{1},7(2),...,7(n}), and this would be a perfect random order. But

that's not what happens in real life. Rather, when shuffling only “certain”
permutations occur, perhaps not all of them with the same probability, and
this is repeated a “certain” number of times. After that, we expect or hope
the deck to be at least “close to random.”

Top-in-at-random shuffles

These arc performed as follows: you take the top card from the deck, and
insert it into the deck at one of the n distinct possible places, each of them
with probability % Thus one of the permutations

is applied, 1 < ¢ < n. After one such shuffle the deck doesn’t look random,
and indeed we expect to need lots of such shuffles until we reach that goal.

)

o

A typical run of top-in-at-random shuffles may look as follows (forn = &

—_—

IIIII

How should we measure “being close to random™? Probabilists have cooked
up the “variation distance” as a rather unforgiving measure of randomness:
We look at the probability distribution on the n! different orderings of our
deck, or equivalently, on the n! different permutations o € 6,, that yield
the orderings.

A little calculus shows that (1 — )" is

¥
4n increasing function in n, which con-
verges to 1/e. So (1—1)" < 1 holds

forall m > 1.

Top-in-at-random

\\.



160

Shuffling cards

For card players, the guestion is not

“exactly how close to uniform is the
deck after a million riffle shuffles?”, but
“is T shuffles enough?””

1

{Aldous & Diaconis [1]}

ﬁ}d(fc)

RN

1 Fo-

!‘C[)

Two examples are our starting distribution E, which is given by

E(idy = 1,
E{m) = 0 otherwise,

and the uniform distribution U given by
Ulr) = & forall x € &,

The variation distance between two probability distnbutions Q; and Qs is
now defined as

Q1 —Qaf = § ) |Qu(m) — Qalw)l.
el
By setting S := {7 € &n : Qu{m) > Qq{m)} and using 3" Q,{r) =
> Qz(m) = | we can rewrite this as
— Q2 = max S) — 5,

Q1 — Qufl Joax [Qi(5) — Q2(5)
with Q;(5) = 3., .5 Qi(r). Clearly we have 0 < [|Q; — Q| < L
In the following, “being close to random”™ will be interpreted as “having
small variation distance [rom the vniform distribution.”” Here the distance
between the starting distribution and the uniform distribution is very close
to 1:

J[E-Ul = 1-4.
After one top-in-at-random shuffle, this will not he much hetter:

The probability distribution on &,, that we obtain by applying the top-in-at-
random shuffle  times will be denoted by Top™*. So how does || Top™ —U]|
behave if £ gets larger, that is, il we repeat the shulfling? And similarly for
other types ol shuffling? General theory (in particular, Markov chains on
finite groups; see e. g. Behrends [3]) implies that for large & the variation
distance d(k) := | Top™® — U|| goes to 7ero exponentially fast, but it does
not yicld the “cut-off” phenomenon that one ohserves in practice: After a
certain number kg of shuffles “suddenly” d(k) goes to zero rather fast. Our
margin displays a schematic sketch of the situation.

Strong uniform stopping rules

The amazing idea of strong uniform stopping rules by Aldous and Diaconis
captures the essential features. Imagine that the casino manager closely
watches the shuffling process, analyzes the specific permutations that are
applied to the deck in each step, and alter a number of steps that depends on
the permutations that he has scen calls “STOP!”. So he has a stopping rule
that ends the shuffling process. It depends only on the (random) shuffles
that have already been applied. The stopping rule is strong uniform if the
following condition holds for all £ > 0:

If the process is stopped after exactly k steps, then the resulting
permutations of the deck have uniform distribution (exactly!).
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Let T be the number of steps that are performed until the stopping rule
tells the manager to cry “STOP!™; so this is a random variahle. Similarly,
the ordering of the deck after & shuffles is given by a random variable X
(with vaiues in &), With this, the stopping rule is strong uniform if for all
feasible values of k,

Prob

1
Xp=n|T=k] = = forallre &,.

n!

—

Three aspects make this interesting, useful, and remarkable:

1. Strong uniform stopping rules exist: For many examples they are quite
simple.

2. Morcover, these can be analyzed: Trying Lo determine Prob[T > k]
leads often to simple combinatorial problems.

3. This yields effective upper bounds on the variation distances such as
d(k) = | Top™ — U],

For example, for the top-in-at-random shuffles a strong uniform stopping
rule is

“STOP afler the original bottom card (labelled ) is first inserted
back into the deck.”

Indeed, it we trace the card n during these shuffles,

—

Relative probabilities
The relative probability

Prob[A | B]

denotes the prabability of the event
A under the condition that 2 hap-
pens. This is just the probability that
both events happen, divided by the
probability that B is true, that is,

Prob[A A B)

Prob[A | B] = Prob[B]

IHM

(1]

we see that during the whole process tbe ordering of the cards below this
card is completely uniform. So, after the card n rises (o the top and then is
inserted at random, the deck is uniformly distributed; we just don’t know
when precisely this happens (but the manager does).

Now let 75 be the random variable which counts the number of shuffles that
are performed until for the first time ¢ cards lie below card 7. So we have
to determine the distribution of

T — T +(T2 —Tl) + ...+ {T'n—l —Tn_g) + (T*Tnfl).

Bur each summand in this corresponds to a coupon collector’s problem:
'f; - T;-1 is the time until the top card is inserted a1 one of the ¢ possible
places below the card n. So it is also the time that the coupon collectar
takes from the (n — #)-th coupon to the (rn — ¢ 4 1)-st coupon. Let V; be
the number of pictures bought until he has ¢ different pictures. Then

‘/] + (‘/2 - V‘[) +... 4 (anl —‘/-”,2) + (I'/H, - I’/n.*l),-

Vi =
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and we have seen that Prob[T; — 731 = ] = Prob[V,,_;11 — Vi = 7]
for all 7 and j. Hence the coupon collector and the top-in-at-random shuffler
perform equivalent sequences of independent random processes, just in the
opposite order {for the coupon collector, it’s hard at the end). Thus we know
that the strong uniform stopping rule for the top-in-at-random shuffles takes
more than & — [nlogn + en] steps with low probability:

Prob[T = k| < e~

And this in turn means that after & — [nlogn + en lop-in-at-random
shuffles, our deck is “close to random,” with
d(k) — [[Top™ ~ Ui < € ™°

due to the following simple but crucial lemma.

Lemma. fet Q : &, — R be any probability distribution that defines a
shuffling process Q** with a strong uniform stopping rule whose stopping
time is T. Then forall k > 0,

1Q* —U| < Prob[T =K.

M Proof. If X is a random variable with values in &,,, with probability
distribution Q, then we write Q{.5) for the probability that X takes a value
in § C &, Thus Q(Y) = ProblX € 5], and in the case of the uniform
distribution @ = U we get

15|

nl’

U(S) = Prob[X € 5] =

For every subset § C &,,, we get the probability that afier & steps our deck
is ordered according to a permutation in .5 as

Q**(5) — Prob[X; € 5]
= Y Prob[X, €8 AT =] + Prob[X, € S ATkl

i<k

= S U($) Prob[T = j] + Prob{X, € §|7T > k] - Prob{T > k]
J=k

= U(S)(1— Prob[T = &]) + Prob[X, € 5|T > k] - Prob[T > k]
= U(S) + (Prob[Xy € §|T > k] — U(S)) - Prob|T > K].

This yields
|Q*F(S) = U(S)| < Prob[T > k]
since
Prob[X; € S|T > k] — U(S5)
is a difference of two probabilities, so it has absolute value at most 1. a

This is the point where we have completed our analysis of the top-in-at-
random shufile: We have proved the following upper bound for the number
of shuffles needed to get “close to random.”



Shuffling cards

163

Theorem 1. Let ¢ > O and k 1= [nlogn + cn]. Then after performing k
top-in-at-random shuffles on a deck of n cards, the variation distance from
the uniform distribution satisfies

dk) = |Top™ ~U|| < e
One can also verify that the variation distance d(&) stays large if we do
significantly fewer than n logn top-in-at-random shuffles. The reason is
that a smaller number of shuffles will not soffice to destroy the relative
ordering on the lowest few cards in the deck.
Of course, top-in-at-random shuffles are extremely ineffective — with the
bounds of our theorem, we need roughly nlogn = 205 top-in-at random
shuffles until a deck of n = 52 cards 1s mixed up well. Thus we now switch
our attention to a much more interesting and realistic medel of shuffling.

Riffle shuffles

This is what dealers do at the casino: They take the deck, split it into two
parts, and thesc arc then interleaved, for example by dropping cards (rom
the bottoms of the two half-decks in some irregular pattern,

Apgain a riffle shuffle performs a certain permutation on the cards in the
deck, which we initially assume to be labelled from 1 to n, where 1 is the
top card. The riffle shuffles correspond exactly to the permutations 7 € &,
such that the sequence

(m{1).7(2)., ...

consists of two interlaced increasing sequences (only for the identity per-
mutation it is one increasing scquence), and that there are exactly 2" — n
distinct riffle shuffles on a deck of n cards.

ca(n))

—_ = =

I R I S
l')< >< 13 ]
3 I-4

o[ 2]
5]

—_ =

In fact, if the pack is split such that the top ¢ cards are taken into the right
hand () < ¢ < n) and the other nn — ¢t cards into the left hand, then there are
(?) ways (o interleave the two hands, all of which generate distinct permu-
tations — except that for each { there is one possibility to obtain the identity
permutation.

Now it's not clear which probability distribution one should put on the riffle
shuffics — there is no unique answer since amateurs and prolcssional deal-
ers would shuffle differently. However, the following model, developed
first hy Edgar N. Gilbert and Claude Shannoen in (955 (at the legendary

A riffie shuffle
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The inverse riffle shuffles correspond to
the permutations = = {w{1},..., @ (n))
that are increasing except for al most
one “descent.” (Only the identity per-
mutation has no descent.}

Bell Labs “Mathematics of Communication™ department at the time), has
several virtues:

e it is elegant, simple, and seems natural,

e it models quite well the way an amateur would perform riffle shuffles,

¢ and we have a chance 1o analyze it

Here are three descriptions — all of them describe the same probability
distribution Rif on &,,:

1. Rif : &,, — R is defined by
ol if g =id,

D
1
n

Rif (7} = if 7 consists of two increasing sequences,

an
0 otberwise.

2. Cut off t cards from the deck with probability 5{’). take them into
your right hand, and take the rest of the deck into your left hand. Now
when you have r cards in the right hand and £ in the left, “drop” the
bottom card (rom your right hand with probability and from your

left hand with probability . Repeat!

»
r+§°

3. Aninverse shuffle would take a subset of the cards in the deck, remove
them from the deck, and place them on top of the remaining cards of
the deck — while maintaining the relative order in hoth parts of the
deck. Such a move is determined by the subset of the cards: Take all
subsets with cqual probability.

Equivalently. assigh a label “0” or “1” to each card, randomly and in-
dependently with probabilities %, and move the cards labelled “0” to
the top.

It is easy so see that these descriptions yield the same probability distri-
butions, For (1} <= (3) just observe that we get the identity permutation
whenever all the O-cards are on top of all the cards that are assigned a 1.

This defines the model. So how can we analyze it? How many riffle shuffles
are needed to get close to random? We won’t get the precise best-possible
answer, but quite a good one, by combining three components:

(1) We analyze inverse riffle sbuffles instead,
(2) we describe a strong uniform stopping rule for these,

(3) and show that the key to its analysis is given by the birthday paradox!

Theorem 2. Ajfier performing & riffle shuffles on a deck of n cards, the
variation distance from a uniform distribution satisfies

n—1 .
Lk i
|Rif** —u|| < 1-1'[(1—?).

i=1
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R Proof. (1) We may indeed analyze inverse riffle shuffles and try to see
how fast they get us from the starting distribution to (close to) uniform.
These inverse shuffles correspond to the probability distribution that is given
by Rif(r) := Rif(x~1).

Now the fact that every permutation has its unique inverse, and the fact that

U(r) = U(r~1), yield
IRif** ~ul = [IRT" - uj.

(This is Reeds’ inversion lemma!)
(2) In every inverse riffle shuffie, each card gets associated a digit 0 or 1:

><

If we remember these digits — say we just write them onto the cards —
then after % inverse riffle shuffles, each card has gotten an ordered string of
k digits. Our stopping rule is:

0
0

T
~—

—_ = = OO

—_ =

“STOP as soon as all cards have distinct strings.”

When this happens, the cards in the deck are sorted according to the binary
numbers bibx_1...b2b1, where b; is the bit that the card has picked up
in the i-th inverse riffle shuffle. Since these bits are perfectly random and
independent, this stopping rule is strong uniform!

In the following example, for n = 5 cards, we need 1" = 3 inverse shuffles
until we stop:

000 4

001 012
010— <01 5 | <=
101 0] 1

111 3

(3) The expected time T taken by this stopping rule is distributed according
to the birthday paradox, for K = 2*: We put two cards into the same box
if they have the same label bybg_ .. .bob1 € {0,1}F. So there are K = 2F
boxes, and the probability that some box gets more than one card ist

Prob[T > k] = 1—n1:[1<1#2ik)

i=1

= = OO

and as we have seen this bounds the variation distance ||Rif** — U|| =
——xk
I|Rif ~ — Ul

|
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k| dik) So how often do we have to shuffle? For large n we will need roughly
11 1.000 k = 2log,(n) shuffles. Indeed, setting & := 2log,(¢n) for some ¢ > 1 we
2| 1.000 find (with a bit of calculus) that P[T > k] ~ 1 — g2 & %2’
3 1 1.000 Explicitly, for r. = 52 cards the upper bound of Theorem 2 reads d{ 10} <
4| 1.000 0.73, d(12) < 0.28, d(14) < 0.08 — so k = 12 should be “random
5 0.952 enough™ for all practical purposes. But we don’t do 12 shuffles “in practice”
6| 0614 — and they are not really necessary, as a more detailed analysis shows
710334 (with the results given in the margin). The analysis of niffle shuffles is part
8| 0.167 of a lively ongoing discussion about the right measure of what is “random
91 0.085 enough.” Diaconis [4] is a guide to recent developments.
10 | 0.043

The variation distance after & ritfle shuf-

fles, according (o [2]

Random enough?

Indeed, does it matter? Yes, it does: Even after three good riffle shuffles a
sorted deck of 52 cards looks quite random ... but it isn’t. Martin Gardner
[5, Chapter 7] describes a number of striking card tricks that are based on
the hidden order in such a deck!
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Lattice paths and determinants

The essence of mathematics is proving theorems — and so, that is what
mathematicians do: They prove theorems. But to tell the truth, what they
rcally want Lo prove, once in their lifetime, is a Lemma, like the one by
Fatou in analysis, the Lemma of Gauss in number theory, or the Burnside-
Frobenius Lemma in combinatorics.

Now whalt makes a mathematical statement a true Lemma? First, it should
be applicable to a wide variety of instances, even seemingly unrelated prob-
lems. Secondly, the statement should, once you have seen it, be completely
obvious. The reaction of the reader might well be one of faint envy: Why
haven’t [ noticed this before? And thirdly, on an esthetic level, the Lemma
— including its proof — should be beautiful!

In this chapter we look at one such marvelous piece of mathematical rea-
soning, a counting lemma that first appeared in a paper by Bernt Lindstrém
in 1972, Largely overlooked at the time, the result became an instant classic
in 1985, when Ira Gessel and Gerard Viennot rediscovered it and demon-
strated in a wonderful paper how the lemma could he successfully applied
to a diversity of difficult comhinatorial enumeration problems.

The starting point is the usual permutation representation of the determinant
of a matrix. Let A/ = (m,;) be a real n x n-matrix. Then

det M = Z Sign T T g(1) Mag(2) " Mipg(n)s (l)

where o runs through all permutations of {1, 2,..., n}, and the sign of o
is 1 or —1, depending on whether & is the product of an even or an odd
number of transpositions.

Now we pass to graphs, more precisely to weighted directed bipartite graphs.

Let the vertices Ay, ..., A, stand for the rows of A, and By,.... 3, for
the columns. For cach pair of < and j draw an arrow from A4, to I3; and give
it the weight m,;, as in the figure,

[n terms of this graph, the formula (1) has the following interpretation:

¢ The left-hand side is the determinant of the path-marrix M, whose
(1,7)-entry is the weight of the (unique) directed path from 4; to H;.

s The right-hand side is the weighted (signed) sum over all vertex-disjoint
path systems from A = {Ay,... A, JwB = {By,...,B,}. Swha
system P is given by paths

AI - BO’{I)? :An - Bn’(ﬂ)a

Chapter 25

Ay A; An
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An acyclic dirccted graph

and the weight of the path system P, is the product of the weights of
the individual paths:

w(TPa) = w(Al — B,(n) w(An — Ba[n)).
In this interpretation formula (1) reads

det M = Z signo w(P,).

And what is the result of Gessel and Viennot? [tis the natural generalization
of (1) from bipartite to arbitrary graphs. [t is precisely this step which
makes the Lemma so widely applicable — and what’s more, the proof is
stupendously simple and elegant.

Lect us first collect the necessary concepls. We are given a finite acyclic
directed graph & = (V. E), where acyclic means that there are no directed
cycles in (7. In particular, there are only finitely many directed paths
between any two vertices A and I3, where we include all trivial paths
A — A of length 0. Every edge ¢ carries a weight w(e). If Pis a
directed path from A to B, written shortly I’ : A — B, then we define
the weight of P as

w{P) = HU!(E),

which is defined to be w(F) = 1if P is a path of length ().

Now let A = {4;,...,A.}and B = {By,...,B,} be two scts of n
vertices, where .4 and B3 need not be disjoint. To .4 and 5 we associate the
path matrix M = {m;) with

mqyy; = Z w(P}.

A — 0y

A path system P from A to B consists of a permutation 7 together with
paths I : Ay — B,y foré = 1,...,n; we write sign P = signo . The
weight of P is the product of the path weights

wP) = [Jwr), {2)
i—=1

which 1s the product of the weights of all the edges of the path system.
Finally, we say that the path system P = (P, ..., ;) is vertex-disjoint if
the paths ol P arc pairwise vertex-disjoint.

Lemma. Let ¢ = (V| E) be a finite weighted acyciic directed graph,
A=1{A,..., A tand B={D,..., B} two n-sets of vertices, and M
the path matrix from Ato B. Then

det M = Z sign P an(P). (3

F vertex-disjoint
path system
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B Proof. A typical summand of det{Af} is signo M) Mupa(n),
which can be wrilten as

signa | Z w(lPy) - | Z w(F,)).

P]:A1_"Bc(]} FrtAun—Boi

Summing over o we immediately find from (2) that

det Al = Zsign'Pw('P),
P

where P runs through alf path systems from 4 to B (vertex-disjoint or not).
Hence to arrive at (3), all we have (o show is

Z signP w(P)y = 0, {4

FeEN

where &V is the set of all path systems that are nor vertex-disjoint. And this
is accomplished by an argumeni of singular beauty, Namely, we exhibit an
involution 7w : N -+ N (without fixed points) such that for P and 7P

w(*ﬁfp) — w('P) and signﬁ’P — —Sign'P.

Clearly. this will imply (4) and thus the formula (3) of the Lemma.

The involution 7 is defined in the most natural way. Let P € N with paths
P+ Ay -+ Bgy;y. By definition, some pair of paths will intersect:

e Let ig he the minimal index such that P, shares some vertex with
another path.

e Let X be the first such common vertex on the path I”;,.

s [.et jy be the minimal index (jy > 1) such that #;, has the vertex X

in common with £ .

Now we construct the new system «#P = {P], ... I’} as follows:

» Set I’} = Py forall k # 4p. jo.
o The new path F} gocs from A;) to X along £, and then continues
to B,y,,; along I, Similarly, I} goes from A;, to X along %, and

conlinues 10 B,y along F .

Clearly 7(7P) = P, since the index g, the vertex X, and the index jq are
the same as before. In other words, applying 7 twice we switch back to
the old paths I%. Next, since 7P and ‘P use precisely the same edges, we
certainly have w(#x’P) = w(P). And finally, since the new permutation ¢’
is ohtained hy multiplying ¢ with the transposition (iy, ji}, we find that
signwP = —signP , and that’s it. 0

The Gessel-Viennot Lemma can be used to derive all basic properties of
determinants, just hy looking at appropriate graphs. Let us consider one
particularly striking example, the formula of Binel-Cauchy. which gives a
very useful generalization of the product rule fur determinants.

10

a(jo)

v

Baig)
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C C;
1
I
12 1
I 3 3 1
1 4 6 4 1
I 5 10 10 5 1
1 6 15 20 15 6
1 7 21 35 35 21

—

1
7

1

Theorem. If I isan (r % s)-matrix and (3 an {8 % r)-marrix, r < s, then

det(PQ) = D _(det Pz){det Qz),

z

where Pz is the (v x r)-submatrix of I with column-set Z, and () z the
(r x r)-submarrix of () with the corresponding rows Z.

M Proof. Ietthe bipartite graph on A and B correspond to [* as before, and
similarly the bipartite graph on B and C to ¢, Consider now the concate-
nated graph as indicated in the figure on the left, and observe that the {1, j)-
entry m;, of the path matrix M from A to C is precisely gy = 31 Piktis.
thus A7 = PQ).

Since the vertex-disjoint path systems from A to C in the concatenated
graph correspond to pairs of systems from .4 to Z resp, from Z to C, the
result follows immediately from the Lemma, by noting that sign {a7) =
(sign o) (sign 7). O

The Lemma of Gessel-Viennot is also the source of a great number of re-
sults that relate determinants to enumerative properties. The recipe is al-
ways the same: Interpret the matrix A as a path matrix, and try to compute
the right-hand side of (3). As an illustration we will consider the original
problem studied by Gessel and Viennot, which led them to their Lemma:

Supposethat o) < az < ... < apandby < by < ... < by are two
sets of natural numbers. We wish to compute the determinant of the
matrix M = (m,;), where ;5 is the binomial coefficient (g’)

i

In other words, Gessel and Viennot were looking at the determinants of
arbitrary square matrices of Pascal’s triangle, such as the matrix

@ G @

3 1 0
det G) (;) (j) = det{ 4 4 1
6 20 15

W @ @
given by the bold entries of Pascal’s triangle, as displayed in the margin.
As a preliminary step to the solution of the problem we recall a well-known
result which connects binomial coefficients to lattice paths. Consider an
a x D-lattice as in the margin. Then the number of paths from the lower
left-hand corner to the upper right-hand comer, where the only steps that
are allowed for the paths are up {North) and Lo the right (East), is (“;b).
The proof of this is easy: each path consists of an arbitrary sequence of b
“east” and @ “north” steps, and thus it can be encoded by a sequence of the
form NENEEEN, consisting of a+b letters, a N's and b E’s. The number of
such strings is the number of ways to choose a positions of leiters N from
a total of a + b positions, which is (a+b) = (a:b).

a
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Now look at the figure to the right, where A, is placed at the point (0, —a;)
and Bj; at (b, —b;).

The number of paths from A; to I3, in this grid that use only steps 1o the
north and east is, by what we just proved, (b"'+(z’:4’i)) = (). In other
words, the matrix ol binomials A is precisely the f)ath matrix from Ato B
in the directed lattice graph for which all edges have weight 1, and all edges
are dirccted to go north or east. Hence to compute det A we may apply
the Gessel-Viennot Lemma. A moment's thought shows that every vertex-
disjoint path system 7 from 4 to 55 must consist of paths B, : 4; — B, for
all . Thus the only possible permutation is the identity, which has sign = 1,
and we obtain the beautiful resule

det ((g:)) = # vertex-disjoint path systems from A4 to .

In particular, this implies the far from obvious fact that det M is always
nonregative, since the right-hand side of the equality counts something.
More precisely, one gets from the Gessel-Viennot Lemma that det A7 = 0
if and only if ; < b; for some 1.

In our previous small example, *

0 G O

1 4 B vertex-disjoint
det (‘) 5 () B #path systems in 4 —
AN 4 -
£ i

“Lattice paths”



172 Lattice paths and determinants

References

[11 1. M. GEssEl & G. VIENNOT: Binomial determinants, puths, and hook length
Jormulae, Advances in Math. 58 (1985), 300-321.

[2] B. LINDSTROM: On the vector representation of induced matroids, Bulletin
London Math. Soc. § (1973), 85-90.



Cayley’s formula
for the number of trees

One of the most beautiful formulas in enumerative combinatorics concerns
the number of labeled trees. Consider the set N = {1,2,...,n}. How
many different trees can we form on this vertex set? Let us denote this
number by 7;,. Enumeration “by hand” vields 77 = 1,7y, = 1,75 = 3,
Ty = 16, with the trees shown in the following table:

Note that we consider labeled trees, that is, although there is only one tree
of order 3 in the sense of graph isomorphism, there are 3 different labeled
trees obtained by marking the inner vertex I, 2 or 3. For n = 5 there are
three non-isomorphic trees:

For the first tree there are clearly 5 different labelings, and for the second
and third there are %1 = 60 labelings, so we obtain T5 = 125. This should
be enough to conjecture T, = n"™ 2, and that is precisely Cayley's resuit.

Theorem, There are n™~2 different labeled trees on n vertices.

This beautiful formula yields to equally beautiful proofs, drawing on a
variety of combinatorial and algebraic techniques. We will outline three
of them before presenting the proof which is to date the most beautiful of
them all.

Chapter 26

T

Arthur Cayley
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2

D

@

The four trees of T2

B First proof (Bijection). The classical and most direct method is to find
a hijection from the set of all trees on n vertices onto another set whose
cardinality is known to he 7.2, Naturally, the set of all ordered sequences
(a1,...,0n—2} with 1 < a; < n comes into mind, Thus we want to
uniquely cncode every trec T by a sequence (@ ..., 0y-2). Such a code
wus found by Priifer and is contained in most books on graph theory.

Here we want to discuss another bijection proof, due to Joyal, which is
less known but of equal elegance and simplicity. For this, we consider not
just trecs L on N = [1,...,n} but trees wgether with two distinguished
vertices, the left end 0 and the right end (L], which may coincide. Let
T = {(t: 3. [])} be this new set; then, clearly, | T, | = n2T,.

Cur goal is thus to prove |T,! = n". Now there is a sel whose size is
known to be n”, namely the sct N of all mappings from & into . Thus
our formula is proved if we can find a bijection from N~ onto 7.

Let f : N —— N be any map. We represent f as a directed graph (?f by
drawing arrows from i to f(¢).

For example, the map

123 4 5 6 7 8 9 10
'f_(7559125847)
is represented by the directed graph in the margin.
Look at a component of éf. Since there is precisely one edge emanating
from each verlex, the component contains cqually many vertices and edges,
and hence precisely one dirccted cycle. Let M C N be the union of the

vertex sets of these cycles. A moment’s thought shows that M is the unique
maximal subset of /V such that the restriction of f onto A acts as a bijection

. a b ... =z
on A, Write flas = such that the numbers
M= sl sty st
a,b, ...,z inthe first row appear in natural order. This gives us an ordering

fla), f(B)...., f(2) of M according to the second row, Now f(a) is our
left end and f(z) is our right end.

The tree ¢ corrcsponding to the map f is now constructed as follows: Draw
fla),..., f(z} in this order as a path from f{a) o f(z), and fill in the
remaining vertices as in iy (deleting the arrows).

In our example above we obtain M = {1,4,5,7,8,9}

Flas = 1 4 5 7 89
M~=17 915 8 4

and thus the tree ¢ depicted in the margin.

It is immediate how to reverse this correspondence: Given a tree £, we look
at the unique path P from the left end to the right end. This gives us the
sct M and the mapping f|as. The remaining correspondences i — f{i) are
then filled in according to the unique paths from ¢ to . O
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B Second proof (Linear Algebra). We can think of T;, as the number of
spanning trees in the complete grapb K,,. Now let us look at an arbitrary
connected simple graph G on V' = {1.2....,n}, denoting by £({7) the
number of spaaning trees; thus 7,, = {(K,,). The lollowing celebrated
result 15 Kirchhoff's matrix-tree thearem {(see [1]). Consider the incidence
matrix 13 = (b;) of &, whose rows are labeled by V', the columns by £,
where we write b, = 1 or 0 depending on whetheri € e or ¢ ¢ e. Note that
|| = n — 1since (7 is connected. In cvery column we replace one of the
two 1's by —1 in an arbitrary manoer (this amounts to an orientation of (3,
and call the new matrix €. Af = CC” is then a symmetric (n x n)-matrix
with the degrees dy, . . ., dy, in the miain diagonal.

Proposition. We have t{(G) = det M;; forall i = 1,...,n, where Al
results from M by deleting the i-th row and the i-th column.

B Proof. The key to the proof is the Binet-Cauchy theorem proved in the
previous chapter: When P is an (r x g)-matrix and (¢ an (s X r)-matrix,
r < s, then det(F(}) equals the sum of the products of determinants of
corresponding (% r)-subtatrices, where “correspending” means that we
take the same indices for the + columns of F and the r rows of ¢J.

For Af;; this means that
det M = D detN-detN' = 3 (det N)?,

where N runs through all {rn — 1) % (n — 1) submatrices of CY\ {row i}. The
i — 1 columns of N correspond to a subgraph of G withn — 1 edgeson n
vertices, and it remains to show that

+1 if these edges span a tree

ot N = !
det { 0 otherwise.

Supposc the n — 1 edges do nol span a tree. Then there exists a component
which does not contain 4. Since the corresponding rows of this component
add to 0, we infer that they are linearly dependent, and hence det N == (.
Assume now that the columns of N span a tree. Then there is a ver-
tex j1 # + of degree 1; let £ be the incident edge. Deleling ji.¢; we
obtain a tree with n — 2 edges. Again there is a vertex j» # < of de-
gree 1 with incident edge ¢, Continue in this way until ji. J2..... Jn_1
and ey, e9,. .., e, with j; € e, are determined. Now permute the rows
and columns to bring jz into the k-th row and e imo the k-th column.
Since by construction jx & e for k < £, we see that the new matrix N’ is
lower triangular with all clements on the main diagonal equal to 1. Thus
det N = xdet N’ = 41, and we are done.

For the special case (z = K, we cleurly obtain
n—1 -1 ... =1
AL, = -—.1 n—1 ' —'1
10 ol

and an easy computation shows det A7;; = n™ 2, 0

“A nonstandurd method of counting
trees: Put a caiinto each tree, walk your
dog, and count how aften he barks.”
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For example, Ty ; = 8 for 4 = {1, 2}

B Third proof (Recursion). Another classical method in enumerative
combinatorics is to establish a recurrence relation and to solve it by
induction. The following idea is esscntially due to Riordun and Rényi.
To find the proper recursion, we consider a more gencral problem (which
already appears in Cayley’s paper). Let A be an arbitrary k-set of the
vertices. By 1), » we denote the number of (labeled) forests on 1.0}
consisting of % trees where the vertices of A appear in different trees.
Clearly, the set 4 does not matter, only the size k. Note that T,, ; = 1),.

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

N AN O (R G ZA

04 3 4 3 4 3 4 3 4 3 4 3 4 3 4
Consider such a forest ¥ with A = {1,2,..., &}, and suppose 1 is adja-
cent to ¢ vertices, as indicated in the margin. Deleting 1, the i neighbors
together with 2, ... k yield one vertex each in the components of a forest

that consists of & — 1 + i trees, As we can (re)construct F by first fixing ¢,
then choosing the ¢ neighbors of 1 and then the forest £\ 1, this yields

n—k

n—k
Tn,k = Z ( ; )’ 1'r|.—1,.'c71+i (l)

i=0
foralln > k > 1, where we set Ty g = 1, 1,0 = 0forn > (). Note that

I5.¢ = 1 is necessary to ensurc 10 n =1

Proposition. We have .
Tux = kn"™""
and thus, in particular, & = kn (2)

Thy = Tp = o2

B Proof. By (1), and using induction, we find

fo = 3 (" e ke
i=0 '
n k R
= Z (n. R k) n—1—4)n-1)""
i=0 ?
ik =
o - o [ " i—1
= ( ? )(n 1) Z( )1(?1 1)
i={ f2=1
n--k
—1—-k
=" " ~(n—k) " )(n.—l)‘_1
P i — 1
n—1l—%
n—k n—1-k q
= ~(n -~ ~1
n (n—k) z{; ( ? )(n )
= 0" K~ — k)pn1 knnlE O
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B Fourth proof (Double Counting). The following marvelous idea due
to Jim Pitman gives Cayley’s formula and its generalization (2) without
induction or bijection — it is just clever counting in two ways.

A rooted forest on {1, ..., n} is a forest together with a choice of a root in
each component tree. Let F,, i be the set of all rooted forests that consist
of krooted trees. Thus F., ; is the set of all rooted trees.

Note that | F,, 1] = nT}, since in every tree there are n choices for the root.
We now regard I, , € F,, i as a directed graph with all edges directed
away from the roots. Say that a forest F' contains another forest F’ if F
contains F’ as directed graph. Clearly, if F" properly contains I, then F
has fewer components than F”. The figure shows two such forests with the
roots on top.

Here is the crucial idea. Call a sequence £, ..., F} of forests a refining
sequence if I; € F,, ; and F; contains F; 1, for all 4.

Now let I, be a fixed forest in F,, 1 and denote

e by N(F}) the number of rooted trees containing F}, and
e by N*(F}) the number of refining sequences ending in Fj.

We count N*(F}) in two ways, first by starting at a tree and secondly by
starting at Fj,. Suppose F; € F, contains Fi. Since we may delete
the k — 1 edges of F\F}; in any possible order to get a refining sequence
from I} to F, we find

N*(F) = N(F) (k= DL 3)

Let us now start at the other end. To produce from F), an Fj_; we have to
add a directed edge, from any vertex a, to any of the k£ — 1 roots of the trees
that do not contain a (see the figure on the right, where we pass from Fj3
to F, by adding the edge 3e——7). Thus we have n(k — 1) choices.
Similarly, for F}_; we may produce a directed edge from any vertex b to
any of the k—2 roots of the trees not containing b. For this we have n(k—2)
choices. Continuing this way, we arrive at

N*(Fy) = n* Yk - 1), (4)
and out comes, with (3), the unexpectedly simple relation
N(Fy) = nk—1 for any £}, € F, 1.

For k = n, F,, consists just of n isolated vertices. Hence N (F},) counts the
number of all rooted trees, and we obtain | F,, 1| = n"~!, and thus Cayley’s
formula. O
But we get even more out of this proof. Formula (4) yields for £ = n:
#{reﬁning sequences (Fi, £y, . .., Fn)} = n""Yn-1). 5)

For F.€F, i, let N**(F}) denote the number of those refining sequences
Fy,....F, whose k-th term is F},. Clearly this is N*(F}) times the number

10

F5 contains F3

8 4

F; 6
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of ways to choose (Fi.q1, ..., Fip). But this latter number is (n» — &)! since
we may delete the n — k edges of F}. in any possible way, and so

N*(F) = N F)n—k) = 2* " k=Dlln-k)L 6

Since this number does not depend on the choice of Iy, dividing (5) hy (6)
yields the number of rooted forests with & trees:

R T(n — 1) LA S Y
|Frkl = b=l — DWn — k) (k)kﬂ ‘

As we may choose the & roots in (7} possible ways, we have reproved the
formula T,, , = kn”*~! without recourse to induction.

Let us end with a historical note. Cayley's paper from 1889 was anticipated
by Carl W. Borchardt (1860), and this fact was acknowledged by Cayley
himself. An equivalent result appeared even earlier in a paper of James J.
Sylvester (1837), see [2, Chapter 3]. The novelty in Cayley’s paper was
the use of graph theory terms, and the theorem has been associated with his
name ever since,
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Completing Latin squares

Some of the oldest combinatorial objects, whose study apparently goes
back to ancicnt times, are the Latin squares. To obtain a Latin square,
one has to fill the n? cells of an (n x n)-square array with the numbers
1.2,..., n so that that every number appears cxactly once in every row and
in every column. In other words, the rows and columns cach represent per-
mutations of the set {1,...,n}. Let us call n the order of the Latin square.
Here is the problem we want to discuss. Suppose someone started filling
the cells with the numbers {1,2,...,n}. At some point he stops and asks
us to fill in the remaining cells so that we get a Latin square. When is this
possible? In order to have a chance at all we must, of course, assume that
at the start of our task any element appcars at most once in cvery row and
in every column. Let us give this situation a name. We speak of a partial
Latin square ol order n if some cells of an (n < n)-array are filled with
numbers from the set {1,...,7} such that every number appears at most
once in every row and column. So the problem is:

When can a partial Latin square be completed 1o a Latin square of
the same order?

Let us lock at a few examples, Suppose the first n — 1 rows are filled and
the last row is empty. Then we can casily fill in the last row. Just note that
every element appears » — 1 times in the partial Latin square and hence is
missing from exactly one column. Hence by writing cach element below
the column where it is missing we have completed the squarc correctly.
Going to the other end, suppose only the first row is filled. Then it is again
easy to complete the square by cyclically rotating the elements one step in
each of the following rows.

So, while in our first cxample the completion is forced, we have lots of
possibilities in the second example. In general, the fewer cells are pre-
filled, the morc freedom we should have in completing the square.
However, the margin displays an example of a partial square with only n
cells filled which clearly cannot be completed, since there is no way to fill
the upper right-hand corner without vielating the row or column condition.

If fewer than n cells are filled in an (n x n)-array, can one then
always complete it 1o obtain a Latin square?

112134
2111413
413|112
14121

A Latin square of order 4

1 (412 (5|3
4 1215 [3 |1
2 (5 (311 |4
5 3|1 (4|2
301 74 (2|5

A cyclic Latin squarc

Chapter 27

n- ]1

n

A partial Latin squarc that cannot be
completed
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1132
21113

J 1201
R:111222333
C:123123123
F:132213321

If we permute the lines of the ahove
example cyclically,

R—  — F —— R, then we
oblain the (ollowing line array and
Latin square:

11213
31112
2131

H:132213321
Ci111222333
E123123123

This question was raised by Trevor Evans in 1960, and the assertion that
a completion is always possible quickly became known as the Evans con-
jecture. Of course, one would try induction, and this is what finally led
to success. But Bohdan Smetaniuk’s proof from 1981, which answered
the question, is a beautiful example of just how subtle an induction proot
may be needed in order to do such a job. And, what’s more, the proof is
constructive, it allows us to complete the Latin square explicitly from any
initial partial configuration.

Betore proceeding to the proof let us take a closer look at Latin squares
in general. We can alternatively view a Latin square as a (3 x n*)-array,
called the line array of the Latin square. The figure to the left shows a Latin
square of order 3 and its associated line array, where R, ¢ and £ stand for
rows, columns and elements.

The condition on the Latin square is equivalent to saying that in any two
lines of the line array all n? ordered pairs appear (and therefore each pair
appears exactly once). Clearly, we may permute the symbols in each line
arbitrarily {corresponding to permutations of rows, columns or elements)
and still obtain a Latin square, But the condition on the (3 x n?)-array tells
us more; There is no special role for the elements. We may also permute
the lines of the array (as a whole) and still preserve the conditions on the
line array and hence obtain a Latin square.

Latin squares that are connected by any such permutation are called con-
jugates. Here is the ohservation which will make the proof transparent:
A partial Latin square obviously corresponds to a partial line array {every
pair appears at most once in any two lines), and any conjugate of a partial
Latin square is again a partial Latin square. In particular, a partial Latin
square can be completed if and only if any conjugate can be completed (just
complete the conjugate and then reverse the permutation of the three lines).

We will need two results, due to Herbert J. Ryser and to Charles C. Lindner,
that were known prior to Smetaniuk’s theorem. If a partial Latin square is
of the form that the first + rows are completely filled and the remaining cells
are empty, then we speak of an (r x n)-Larin rectangle.

Lemma 1. Any (r x n)-Latin rectangle, v < n, can be extended to an
((r+1) x n)-Latin rectangle and hence con be completed 1o a Latin square.

B Proof. We apply Hall’s theorem (see Chapter 23). Let A; be the set
of numbers that do ner appear in column j. An admissible (- 4 1)-st row
corresponds then precisely to a system of distinct representatives for the
collection A,,.... 4,. To prove the lemma we therefore have to verify
Hall’s condition (H). Every set A; has size n — r, and every element is in
precisely n — 7 sets A, (since it appears r times in the rectangle). Any 7
of the sets A; contain together m(n - r) elements and therefore at least m
different ones, which is just condition (H). O

Lemma 2, Let P be a partial Latin square of order n with at most i — 1
cells filled and ar most 7 distinct elements, then I can be completed 1o a
Latin square of order n.
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W Proof, We first transform the problem into a more convenient form.
By the conjugacy principle discussed above, we may replace the condi-
tion “at most % distinct elements™ by tbe condition that the entries appear
in at most 7 rows, and we may further assume that these rows are the top
rows. So let the rows with filled cells be the rows 1, 2,. ... r, with f; filled
cells in row ¢, where r < % and )7 | f; < n — 1. By permuting the rows,
we may assume that f; > fo > ... > f.. Now we complele the rows
1.....r slep by step until we reach an {r x n}-rectangle which can then be
extended to a Latin square by Lemma 1.

Supposc we have already filled rows 1,2,..., £ — 1. In row ¢ there are f;
filled cells which we may assume to be at the end. The current situation is
depicted in the figure, where the shaded part indicates the filled cells.

The completion of row ¢ is performed by another application of Hall’s
theorem, but this time it is guite subtle. Let X be the sct of clements that
do not appear in row £, thus |[X| = n — fe,andforj = 1.....n — fe
let A; denote the set of those elements in X which do nor appear in
column j (neither above nor below row £). Hence in order to complete
row £ we must verify condition (H) for the collection A,..., A, f,.

First we claim
T’L—fg—e-l‘] = 1/—1+ff+1++f, 4]

The case ¢ = | is clear. Otherwise Z:_l fi<mn fL>...> foand
1 < ¢ < ¢ together imply

no> > fio 2 (E=Ufea+feto+fr
i=1

Now either f; | > 2 {in wbicb case (1) holds) or f;_1 = I. In the latter
case, (I reduceston > 2(f — 1) +r —Ff+1=r+¥F— 1, whichis true
because of £ < 7 < 2.

Let vs now take m sets A;, 1 < m < n — fe, and let £ be their union.
We must show | B| > m. Consider the number ¢ of cclls in the m columns
corresponding to the A;’s which contain elements of X. There are at most
(¢ — 1)m such cells above row £ and at most fey1 + ... + f- bclow row £,
and thus

e < (£=1ym+ feer +-..+ fr

On the other hand, each element x € X\ 8B appears in each of thc m
columns, hence ¢ > m(|X| — | B}), and therefore {with |X| =n — f)

Bl > [X|-—de 2 n—fi—(f=1)=- L{forr+... + F).
It follows that |B] = m if
n—fe- €-1)- Z(foort... H fr) > om— 1,
that is, if

min—fe—f+2-m) > fio1+...+ fo (2)

A sitvation forn = 8, with£ =3, f1 =
f2 = fs = 2, fs = 1. The dark squares
represent the pre-filled cells, the lighter
ones show the cells that have been filled
in the completion process.
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Inequality (2) is true form = 1 and form = n— fy— £+ 1 hy (1), and hence
for all values m between 1 and n — fr — £ + 1, since the left-hand side is
a quadratic function in 7 with leading coefficient —1. The remaining case
ism > n— fe — €+ 1, Since any element = of X is contained in at most
£— 1+ fegr + ... + fr rows, it can also appear in at most that many
columns. Invoking (1) once more, we find that x is in one of the sets 4;, so
in this case B = X, |B| = n — f; > m, and the proof is complete. O

Let us finally prove Smetaniuk’s theorem,

Theorem. Any partial Latin square of order n with at most n — 1 filled
cells can be completed to a Latin square of the same order.

M Proof. We use induction on n, the cases 7 < 2 being trivial. Thus we
now study a partial Latin square of order n > 3 with at most n — 1 filled
cells. With the notation used above these cells lie in 7 < n — | different
rows numhered 5, ..., s, which contain fq,..., f. > O filled cells, with
S _fi £n—1 ByLemma2 we may assume that there are more than
7 different elements; thus there is an element that appears only once: after
renumbering and permutation of rows (if necessary) we may assume that
the element n occurs only once, and this is in row 7.

In the next step we want to permute the rows and columns of the partial
Latin square such that after the permutations all the filled cells lie below
the diagonal — except for the cell filled with », which will end up on the
diagonal. (The diagonal consists of the cells (k, k) with 1 < k < n.) We
achieve this as follows: First we permute row s; inio the position f|. By
perimutation of columns we move all the filled cells to the left, so that n
occurs as the last element in ils row, on the diagonal. Next we move row
89 inlo position 1 + f; + f2, and again the filled cells as far to the left
as possible. In general, for | < i <  we move the row s; into position
1+ fi+ fa+...+ f; and the filled cells as far left as possible. This clearly
gives the desired set-up. The drawing to the left shows an example, with
n ="7:therows s = 2,8 = 3,53 = Dand 84 = T with f; = fo = 2
and f3 = f4 = 1 are moved into the rows numhered 2, 5, 6 and 7, and the
columns are permuted “to the left” so that in the end all entries except for
the single 7 come to lie below the diagonal, which is marked by es.

In order to be able to apply induction we now remove the entry n from
the diagonal and ignore the first row and the last column (which do not
not contain any filled cells): thus we are looking at a partial Latin square
of order n — 1 with at most n -- 2 filled cells, which hy induction can he
completed to a Latin square of order 1 — 1. The margin shows one (of
many) completions of the partial Latin square that arises in our example.
In the figure, the original entries are printed bold. They are already final,
as are all the elements in shaded cells; some of the other entries will he
changed in the following, in order to complete the Latin square of order .
In the next siep we want to move the diagonal elements of the square to
the last column and put entrics » onlo the diagonal in their place. How-
ever, in general we cannot do this, since the diagonal elements need not
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be distinct. Thus we proceed more carefully and perform successively, for
k=12,3....,n — 1 (in this order)}, the following operation:

Put the value n into the cell (k.n). This yields a correct partial Latin
square. Now exchange the value 1y in the diagonal cell (k, k) with the
value v in the cell (k,n) in the last column.

If the value i did not already occur in the last column, then our job for the
current £ is completed. After this, the current elements in the k-th column
will not be changed any more.

In our example this works without problems for & = 2, 3 and 1, and the
corresponding diagonal elements 3, 1 and 6 move to the last column. The
following three figures show the corresponding operations.
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Now we have to treat the case in which there is already an element g in
the last column. In this case we proceed as follows:

If there is already an element xi in a cell (j,n) with 2 < j < k, then we
exchange in row j the element xy in the n-th column with the element x/,
in the k-th column. If the element x; also occurs in a cell (7', n}, then we
also exchange the elements in the j'-th row that occur in the n-th and in the
k-th columns, and so on.

If we proceed like this there will never be two equal entries in a row, Qur
exchange process ensures that there also will never be two equal elements in
a column. So we only have to verify that the cxchange process between the
k-th and the 7i-th column does not lead to an infinite loop. This can be seen
from the following bipartite graph GG;: Its vertices correspond to the cells
(i.k) and (j,n) with 2 < 4,7 < k whose elements might be exchanged.
There is an edge between (7, k) and (7, n) if these two cells lie in the same
row (that is, for i = j), or if the cells before the exchange process contain
the same element (which implies i &£ j). In our sketch the edges for i = j
are dotted, the others are not. All vertices in (71, have degree 1 or 2. The
cell {k, n) corresponds to a vertex of degree 1; this vertex is the beginning
of a path which leads to column & on a horizontal edge, then possibly on a
sloped edge back to ¢column », then horizontally back to column & and so
on. It ends in column & at a value that does not occur in column 7. Thus the
exchange operations will end at some point with a step where we move a
new element into the last column. Then the work on column & is completed,
and the elements in the cells (7, k) for¢ > 2 are fixed for good.

Tk
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In our example the “exchange case” happens for & = 5: the element x5 = 3
does already occur in the last column, so that entry has to be moved back
to column & = 5. But the exchange element «f = 6 is not new either, it is
exchanged by »f = 5, and this one is ncw.

2| 7| 4] 16! 5|3 2 (7411|3518
5067|4231 516 714123 |1
1| 2;3|7| 5|46 1 {23 |76 |45
) Ac,
6(4: 52317 6 (415|271 |3
31165 4] 2 31116 (514 |2
4] 5] 2131 1] 6 4 /512341186
Finally, the exchange for £ = 6 = n — 1 poses no problem, and after that
the completion of the Latin square is unique:
713|164 2|4
2714111315146 2(7|4(1|3|5]|6 2| 7141|3156
51617142131 sle|T(4(2](3]!1 516171412131
1121376415 112377645 1 31716415
6145|2713 6452|713 6 (45|27 |13
AN
3165427 3|1|6|5;4|7]|2 316|547 2
4152|3116 4 (523 |1]|6 4 (523|167

...and the same cccurs in general: We put an element n into the cell (r, n),
and after that the first row can be completed by the missing elements of the
respective columns (see Lemma 1), and this completes the preof. In order
to get explicitly a completion of the original partial Latin square of order n,
wc only have to reverse the clement, row and column permutations of the
first two steps of the proof. t
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The Dinitz problem Chapter 28

The four-color problem was a main driving force for the development of
graph theory as we know it today, and coloring is still a topic that many
graph theorists like best. Here is a simple-sounding coloring problem,
raised by Jeff Dinitz in 1978, which defied all attacks until its astonishingly

simple solution by Fred Galvin fifteen years later. i
C(i,J)
Consider n? cells arranged in an (n x n)-square, and let (i, j) de-
note the cell in row © and column j. Suppose that for every cell (1, ) 4
we are given a set C(i, j) of n colors.
— 1

Is it then always possible to color the whole array by picking for
each cell (i,7) a color from its set C(i, ) such that the colors in
each row and each column are distinct?

As a start consider the case when all color sets C(%, j) are the same, say
{1,2,...,n}. Then the Dinitz problem reduces to the following task: Fill
the {n x n)-square with the numbers 1,2,...,n in such a way that the
numbers in any row and column are distinct. In other words, any such
coloring corresponds to a Latin square, as discussed in the previous chapter.
So, in this case, the answer to our question is “yes.”

Since this is so easy, why should it be so much harder in the general case
when the set C':=J; ; C(i, j) contains even more than n colors? The
difficulty derives from the fact that not every color of C is available at each
cell. For example, whereas in the Latin square case we can clearly choose
an arbitrary permutation of the colors for the first row, this is not so anymore
in the general problem. Already the case n = 2 illustrates this difficulty. {1,2}i{2, 3}
Suppose we are given the color sets that are indicated in the figure. If we
choose the colors 1 and 2 for the first row, then we are in trouble since we {1,3} {2,3)
would then have to pick color 3 for both cells in the second row.

Before we tackle the Dinitz problem, let us rephrase the situation in the
language of graph theory. As usual we only consider graphs G = (V, E)
without loops and multiple edges. Let x{G) denote the chromatic number
of the graph, that is, the smallest number of colors that one can assign to
the vertices such that adjacent vertices receive different colors.

In other words, a coloring calls for a partition of V' into classes (colored
with the same color) such that there are no edges within a class. Calling
aset A C V independent if there are no edges within A, we infer that
the chromatic number is the smallest number of independent sets which
partition the vertex set V.
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{1.3}
{1,2}

{1,4}
(3.4} (2.3}

{2,4}

In 1976 Vizing, and three years later Erd8s, Rubin, and Taylor, studied the
following coloring variant which leads us straight to the Dinitz problem.
Suppose in the graph 7 = (V, F) we are given a set (”(v} of colors for
each vertex v. A list coloring is a coloring ¢ : V. —— |J oy C(v) where
c{v) € C(v) for each v € V. The definition of the list chromatic number
x,(G) should now be clear: It is the smallest numher & such for any list
of color sets C'(v) with |(v)| = kforall v € V there always exists a list
coloring. Of course, we have x,(G) < [V (we never run out of colors).
Since ordinary coloring is just the special case of list coloring when all sets
(1) are equal, we ohtain for any graph ¢

X(G) < x,(G)-

To get hack to the Dinitz prohlem, consider the graph 5, which has as
vertex set the n? cells of our (n  7)-array with two cells adjacent if and
only if they are in the same row or column.

Since any n cells in a row are pairwise adjacent we need at least ri colors.
Furthermore, any coloring with 7 colors corresponds to a Latin square,
with the cells occupied by the same number forming a color class. Since
Latin squares, as we have seen, exist, we infer x{5,) = n, and the Dinitz
problem can now be succinctly stated as

X, (8n) = n?

One might think that perhaps x(G) = x,(G) holds for any graph G, but
this is a long shot from the truth, Consider the graph ¢ = Ky 4. The
chromatic number is 2 since we may use one color for the two left vertices
and the second color for the vertices on the right. But now suppose that we
are given the color sets indicated in the figure.

To color the left vertices we have the four possibilities 1|3, 1/4, 2|3 and 2|4,
but any one of these pairs appears as a color set on the right-hand side, so
a list coloring is not possible. Hence x,(G) > 3, and the reader may find
it fun to prove x,(G) = 3 (there is no need to try out all possibilities!).
Generalizing this example, it is not hard to find graphs G where x(G) = 2,
but x, (@) is arbitrarily large! So the list coloring prohlem is not as easy as
it looks at first glance.

Back (o the Dinitz problem. A significant step towards the solution was
made by Jeanette Janssen in 1992 when she proved x,(5,) < n + 1, and
the coup de grdce was delivered by Fred Galvin by ingeniously combining
two results, hoth of which had long been known. We are going o discuss
these two results and show then how they imply XE(S,I) =n.

First we fix some notation. Suppose v is a vertex of the graph (7, then we
denote as before hy d(v) the degree of v. In our square graph 5, every
vertex has degree 2n — 2, accounting for the n — 1 other vertices in the
same row and in the same column. For a subset A C V we denote by G 4
the subgraph which has A as verlex sel and which contains all edges of (7
between vertices of A. We call G4 the subgraph induced by A, and say
that H is an induced subgraph of G if H = (5 4 for some A.
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To state our first result we need directed graphs G = (V, E}, that is, graphs
where cvery cdge e has an orientation. The notation ¢ = (w, ©) means that
there 1s an arc ¢, also denoted by w——+, whose initial vertex is « and whose
terminal vertex is ». It then makes sensc 1o speak of the outdegree d¥ (v)
resp. the indegree d~(v). where d™ (v;) counts the number of edges with v as
initial vertex, and similarly for d ~ (v); furthermore, d™¥ (v} +d {v) = d{v).
When we write (7, we mean the graph & without the orientations.

The following concept originated in the analysis of games and will play a
crucial role in our discussion.

Definition 1. Let G = (V, ) be a directed graph. A kernel K € Visa
subsct of the vertices such thai

(i) K isindependentin (7, and

(i) for every u & K there exisis a vertex v € K with an edge u — wv.

Let us look at the example in the figure. The set {&, ¢, /] constitutes a
kernel, but the subgraph induced by {a, ¢, ¢} does not have a kernel since
the three edges cycle through the vertices.

With all these preparations we are ready to state the first result.

Lemma 1. Let G = (V. E) be a directed graph, and suppose that for each
vertex v € V we have a color set C(v) that is larger than the outdegree,
|C(v)| = dF(v) + 1. If every induced subgraph of G possesses a kernel,
then there exists a list coloring of G with a color from C'(v) for each v.

B Proof. We proceed by induction on |V]. For [V| = 1 there is nothing Lo
prove. Choose acolor c € C' = | J, o C'(v) and set

Afe) == {veV:eec Cv)}.

By bypothesis, the induced subgraph GG 4.y possesses a kernel K (c). Now
we color all v € K(«) with the color « (this is possible since K¢} is
independent), and delete A {c) from G and ¢ from C'. Let {’ be the induced
subgraph of G on V\ K (2) with C'(v} = C{#)\r as the new list of color
sets. Notice that for cach v € A(c)\ K (¢), the outdegree d* (v) is decreased
by at least 1 (due to condition (ii} of a kernel). Sod™ (v} 4+ 1 < |{C'(v)| still
holds in G’. The same condition also holds for the vertices outside A(c),
since in this case the color sets (v} remain unchanged. The new graph G’
contains fewer vertices than (7, and we are done by induction. 4

The method of attack for the Dinitz problem is now ohvious: We have to
find an orientation of the graph §,, with outdegrees d* (#) < . — 1 for all v
and which ensures the existence of a kernel for all induced subgraphs. This
is accomplished by our second result,

Again we need a few preparations. Recall (from Chapter 9) that a biparzite
graph G = (X UY. £} is a graph with the following property: The vertex
set V' is split into two parts X and Y such that every edge has onc endvertex
in X and the other in Y. In other words, the bipartile graphs are precisely
those which can be colored with two colors (one for X and one for ).
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A bipartite graph with a matching

The bold edges constitute a stable
matching. In each prionty list, the
choice leading to a stable matching is
printed bold.

Now we come (0 an important concept, “stable matchings,” with a down-
to-earth interpretation. A maiching M in a bipartite graph (7 = (X UY, E)
is a set of edges such that no two edges in Af have a common endvertex. In
the displayed graph the edges drawn in bold lines constitute a matching.
Consider X to be a set of men and Y a set of women and interpret wv € E
to mean that « and v might marry, A matching is then a mass-wedding with
no person committing bigamy. For our purposes we need a more refined
(and more realistic?) version of a matching, suggested by David Gate and
Lloyd S. Shapley. Clearly, in real life every person has preferences, and
this is what we add to the set-up. In G = (X U Y, E) we assume that for
every v € X U Y there is a ranking of the set N{v) of vertices adjacent
tow, N{v} = {z1 > 22 > ... > 2zqqy}- Thus z; is the top choice for v,
followed by 22, and so on.

Definition 2. A matching M of G = (X U Y, E} is called stable if the
following condition holds: Whenever wv € FAM, uw € X, 1 € V, then
either uy € M withy > vin N{u} or zw € M withz > u in N(v),
or both.

In our real life interpretation a set of marriages is stable if it never happens
that % and » are not married but u prefers v to his partner (if he has one at
all} and v prefers « to her mate (if she has one at all), which would clearly
be an unstahle situation.

Before proving our second result let us take a Iook at the following example:

{A>C} a A Hex>dz>a}
{C>D>B8B} b B {b}
{A>D} ¢ ¢  {a>b}
(A} d D {e>b)

Notice that in this example there is a unique largest matching A with four
edges, M = {a(,bB.cD,dA}, but M is not stable (consider ¢A).

Lemma 2. A stable matching always exists.

B Proof. Consider the [ollowing algorithm. In the first stage all men
u & X propose to their top choice. If a girl receives more than one pro-
posal she picks the one she likes best and keeps him on a string, and if she
receives just one proposal she keeps that one on a string. The remaining
men are rejected and form the reservoir K. In the second stage all men in R
propose to their next choice. The women compare the proposals (together
with the one on the string, if there is one), pick their favorite and put him
on the string. The rest is rejected and forms the new set Ji. Now the men
in I propose to their next choice, and so on. A man who has proposed to
his last choice and is again rejected drops out from further consideration
(as well as from the reservoir). Clearly, after some time the reservoir I? is
empty, and at this point the algorithm stops.
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Claim. When the algorithm stops, then the men on the strings
together with the corresponding girls form a stable matching.

Notice first that the men on the string of a particular girl move there in
increasing preference (of the girl) since at each stage the girl compares
the new proposals with the present mate and then picks the new favorite.
Hence if uv € FE but uv ¢ M, then either u never proposed to v in
which case he found a better mate before he even got around to v, im-
plying uy € M with y > v in N(u), or u proposed to v but was rejected,
implying zv € M with £ > w in N(v). But this is exactly the condition of
a stable matching. 0

Putting Lemmas 1 and 2 together, we now get Galvin’s solution of the
Dinitz problem.

Theorem. We have x,(Sn) =n forall n.

H Proof. As before we denote the vertices of S, by (7,7), 1 < 4,5 < n.
Thus (7, j) and (r, s) are adjacent if and only if i = r or j = s. Take
any Latin square L with letters from {1,2,...,n} and denote by L(¢, 7)
the entry in cell (7, j). Next make S, into a directed graph S, by orienting
the horizontal edges (i, j) — (¢,4') if L(4,j) < L(i, ;') and the vertical
edges (i,7) — (¢, ) if L(z,7) > L(¢’, 7). Thus, horizontally we orient
from the smaller to the larger element, and vertically the other way around.
(In the margin we have an example for n = 3.)

Notice that we obtain d*(¢,j) = n ~ 1 for all (4, j). In fact, if L(3, j) = k,
then n — k cells in row 7 contain an entry larger than k, and k — 1 cells in
column j have an entry smaller than k.

By Lemma 1 it remains to show that every induced subgraph of S, pos-
sesses a kernel. Consider a subset A C V, and let X be the set of rows
of L, and Y the set of its columns. Associate to A the bipartite graph
G = (X UY, A), where every (i, j) € A s represented by the edge 7j with
i € X,j €Y. In the example in the margin the cells of A are shaded.

The orientation on S, naturally induces a ranking on the neighborhoods in
G = (X UY, A) by setting j/ > j in N(i) if (i, j) — (4,5) in S, respec-
tively i’ > 7in N(j) if (i,5) — (¢/,j). By Lemma 2, G = (X UY, A)
possesses a stable matching M. This M, viewed as a subset of A, is our
desired kernel! To see why, note first that M is independent in A since as
edgesin G = (X UY, A) they do not share an endvertex i or j. Secondly,
if (i,7) € A\M, then by the definition of a stable matching there either
exists (4,7') € M with 7 > jor (i',j) € M with ¢’ > 4, which for S,
means (i,7) — (2,7') € M or (i,7) — (¢,7) € M, and the proof
is complete. d

To end the story let us go a little beyond. The reader may have noticed that
the graph S,, arises from a bipartite graph by a simple construction. Take
the complete bipartite graph, denoted by K, ,,, with | X| = |Y| = n, and
all edges between X and Y. If we consider the edges of K, ,, as vertices

Y

Y

A

Y

A

B W N

Y

=W N
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C

Construction of a line graph

of a new graph, joining two such vertices if and only it as edges in K, ,,
they have a common endvertex, then we clearly obtain the square graph S,,.
Let us say that S, is the line graph of K, . Now this same construction
can be performed on any graph (7 with the resulting graph called the Jine
graph L(G) of GG

In general, call H a line graph if H = L{G} for some graph G. Of course,
not every graph is a line graph, an example being the graph K, 4 that we
considered earlier, and for this graph we have seen x{K24) < x,(K24).
But what if I1 is a line graph? By adapting the proof of our theorem it can
easily be shown that x(#/) = x,(#) holds whenever H is the line graph of
a bipartite graph, and the method may well go some way in verifying the
supreme conjecture in this field:

Does x(H) = x,(H) hold for every line graph H ?

Very little is known about this conjecture, and things look hard — but after
all, so did the Dinitz problem twenly years ago.
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Identities versus bijections

Consider the infinite product (1 + z)(1 + 22)(1 + z*)(1 + z*)--- and
expand it in the usual way into a series Y, ., a,z" by grouping together
those products that yield the same power ™. By inspection we find for the
first terms

[[a+2%) =1+2+2%+22° + 22" + 32" + 42° + 52" + ... . (1)
k>1

So we have e. g. ag = 4, ar = 5, and we (rightfully) suspect that a,, goes
to infinity with n — oc.

Looking at the equally simple product (1 — z)(1 —x2)(1 —23)(1 —2%) - .-
something unexpected happens. Expanding this product we obtain

H(]—:ck) =l-z—r*42 2" -2 2P 42212 ()
E>1

1t seems that all coefficients are equal to 1, —1 or 0. But is this true? And
if so, what is the pattern?

Infinite sums and products and their convergence have played a central role
in analysis since the invention of the calculus, and contributions to the
subject have been made by some of the greatest names in the field, from
Leonhard Euler to Srinivasa Ramanujan.

In explaining identities such as (1) and (2), however, we disregard conver-
gence questions — we simply manipulate the coefficients. In the language
of the trade we deal with “formal” power series and products. In this frame-
work we are going to show how combinatorial arguments lead to elegant
proofs of seemingly difficult identities.

Our basic notion is that of a partition of a natural number. We call any sum

A n=/\1+/\2++/\t with /\12/\222/\t21

a partition of n. P(n) shall be the set of all partitions of n, with p(n) :=
|P(n)|, where we set p(0) = 1.

What have partitions got to do with our problem? Well, consider the
following product of infinitely many series:

(I4z+2? 423+ Y1+ 4z 4254 ) (1423 +2842%4.. ) - 3)

where the k-th factor is (1 +x* + x2* + z%% 4 .. ). What is the coefficient
of ™ when we expand this product into a series > ., a,2" ? A moment’s

Chapter 29

5=5
5=4+1
5=3+2
5=3+1+1
5=2+4+2+1

d=2+4141+1
5=1+141+1+1

The partitions counted by p(5) = 7
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6=5+1

6=3+3

6=3+1+1+1
G—-1+1+1+1+1+1

Partitions of 6 into odd parts: p.(6) = 4

7 =

T=5+1+1

T=3+34+1
3+14+1+1+1
T=1+1+1+1+1+4+1+1

T=7
T=6+1
T=5+2
T=44+3
T=44+2+ 1

The partitions of 7 into odd resp. distinct
parts: po(7) = pa(7) = 5.

thought should convince you that this is just the number of ways to write »
as a sum

1*1+70-24n3-34+...

H

Tl

+1+24+...+24+3+...+3+ ...,

= 14...

K na 3

So the coefficient is nothing else hul the numher p(n) of partitions of n.
Since the geometric series 1 + 2% + 2% + ., equals ——, we have proved

our first identity:
> _p(n)a”. “)
n>0

k>1

What's more, we see from our analysis that the factor —1,,- accoums for
the contribution of % to a partition of 7. Thus, if we leave out {— from
the product cn the left side of (4), then & does not appear in any partltlon
on the right side. As an example we immediately obtain

M = Yo ©)

1 =0

where p,(n) is the number of partitions of » all of whose summands are
odd, and the analogous statement holds when all summands are even.

By now it should be clear what the n-th coefficient in the infinite product
[Ti>1(1 + %) will be. Since we take from any factor in (3) either 1 or z*,
this means that we consider only those partitions where any summand &
appears at most once. [n other words, our original product (1) is expanded

into
I+ =)

k21

Y paln)z”, (6)

=)

where py(n) is the number of partitions of n into distinct summands.

Now the method of formal series displays its full power. Since 1 — 1% =
(1 —x)(1 + ) we may write

[Mo+s = ]

k21 k1

| — TZk

1
- Hl—;r,-?"'—l

ok
11—z i1
since all factors 1 — 2% with even exponent cancel out. So, the infinite
products in (5) and (6) are the same, and hence also the series, and we
obtain the beautiful result
pa(n) = pu(n) foralln > 0. (7)
Such a striking equality demands a simple proof by bijection — at least that
is the point of view of any comhinatorialist.
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Problem. Ler P.{n) and Py(n) be the partitions of n into odd and into
distinct summands, respectively: Find a bijection from P,(n) onto Py(n)!

Several bijections are known, but the following one due to J. W. L. Glaisher
{1907) is perhaps the neatest. Let A be a partition of n into odd parts. We
colleet equal sumnmands and have

At F A F A oA+ NN
o e S e’
T Tio 1

= 7’11'A1+712'/\2+...+TH")\;,.

Now we write n; = 2™ 4+ 2™2 + . 4+ 2™ in its binary representation
and similarly for the other n;. The new partition A’ of n is then

Nooon =27 42725 4.+ 2™ 12 4

We have to check that A is in P4(n), and that ¢ : A — A is indeed a
bijection. Both claims are easy to verify: If 2%x; = 2"/\1- then 2¢ = 2°
since A; and A; are odd, and so A; = A;. Hence A is in Py(n). Conversely,
when n = jy + pg + ... + s, 18 2 partition into distinct summands, then
we reverse the bijection by collecting all g; with the same highest power
of 2, and write down the odd paris with the proper multiplicity. The margin
displays an example.

Manipulating formal products has thus led to the equality p,(n} = pg(n)
tor partitions which we then verified via a hijection. Now we turn this
around, give a bijection proof for partitions and deduce an identity. This
time our goal is to identify the pattern in the expansion (2).

Look at

l—z -+ 42" — 2% — 2P 2?2 4 226 P 0y

The exponents (apart from 0) seem to come in pairs, and taking the expo-
nents of the first power in each pair gives the sequence

1 5 12 22 35 51 70

well-known to Euler. These arc the pentagonal numbers [ (7}, whose name
is suggested by the figure in the margin.

We easily compute f(j) = 3%-‘- and f(j) = 9-'22—+-'- for the other num-
ber of each pair. In summary, we conjecture, as Euler has donc, that the
following formula should hold.

Theorem.
. S2 . 2.
[Ta-2 = 1+ (™ +a™7). @
E>1 PES!

For example,

A 25 =05454+5+3-34+14+1+1+1

is mapped by ¢ to

A 25= (2415 + (2)34 (4)1
=104+H+64+4
=104+6+58+41.

We write

AN 30=1246+5+4+3

as  30=4(3+1)+ 2(3) + 1(6+3)
=15+ 442+ 03+ (4)1

and obtain as ¢! (\’) the partition

A:3=54+34+3+34+3+34+34

d+14+1+4+1+41

into odd summands.

Pentagonal numbers
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As an cxample consider n = 13, j = 2,
soi(2) = 7. The partition 3+ 2+ 241
in P15 — 6(2)) = ’(8) is mapped to
9424141, whichisin P(15—-5(1)) =
P{13).

Euler proved this remarkable theorem by calculations with formal series,
but we give a bijection proof from The Book. First of all, we notice by (4)
that the product [, .., (1 —x*} is precisely the inverse of our partition series

3, >0 p(n)a™. Hence setting [, (1 — a*) = 3, . e(n}z™, we find
(Zc(n)a&”) . (Zp(n)ﬂ') = 1.
n20 n>0

Comparing coefficients this means that ¢(n) is the unigue sequence with
a(0y = Land

i

> elkpn—k) = 0 foralln =1, e
k=0
o -
Writing the right-hand of (8) as Y~ (—l)if:z_rﬁe_'l, we have to show that
j=—e
1 fork = E-if;—'h'“i-,when_j € Zis even,
olk) = ¢ =1 fork = #l,whcnj € Z is odd,

0 otherwise

a2 . R . R
gives this unique sequence. Setting b{y) = gz—ﬂ for § 7 and substituting
these values into (9), our conjecture Lakes on the simple form

Z pin— b)) = E pln —b{7)) for all n,
§ even i odd

where of course we only consider 7 with b(j) < n. So the stage is set: We
have to find a bijection

o: U Pu-bG) — U Pln—2G)).

F even 7 odd

Again several bijections have been suggested, but the following construc-
tion by David Bressoud and Doron Zeilberger is astonishingly simple. We
just give the definition of ¢ (which is, in facl, an involution), and invite the
reader to verify the easy details.

Ford: AL +...+ A € Pln—bi{j)) set

(E+37 - 1)+ (A — 131 oot (A — 1) iFE4 37 = Ay,

A =
o+ +. o+ (At L) +1+4+.00 11 437 < Ay,
[ ——

Ay —t- )1

where we leave out possible 0's. One finds that in the first case ¢{A) is in
P(n—b(3 — 1)), and in the second case in P{r — b{j + 1)}.

This was beautiful, and we can get even more out of il. We already know

that
H(1+rrk} = Zp,,v_(n)a:“'.

k=1 n>0
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As experienced formal series manipulators we notice that the introduction
of the new variable y yields

where py m(n) counts the partitions of n into precisely  distinct sum-
mands. With y = —1 this yields

where E,(n) is the number of partitions of n into an even number of distinct
parts, and (34(n) is the number of partitions into an odd number. And here
is the punchline, Comparing (10) to Euler’s expansion in (8) we infer the
beautiful result
1 forn= —‘JZT*i when 7 > 0 is even,
Ea(n) — O4(n) = § -1 forn =355 whenj > 1is odd,

0 otherwise.

This is, of course, just the beginning of a longer and still ongoing story. The
theory of infinite products is replete with unexpected indentities, and with
their bijective counterparts. The most famous examples are the so-called
Rogers-Ramanujan identities, named after Leonard Rogers and Srinivasa
Ramanujan, in which the number 5 plays a mysterious role:

1 mn‘
,El (I = D)1 - z%-1) ; Q—2)1—z8)--- (1 2z’

$n2+rz

1
H (1 — z56—3)(1 — 25%—2) B Z (1-2){1—22) (1 -2}’

E>1 n>0

The reader is invited to translate them into the following partition identities
first noted by Percy MacMahon:

e Let f(n) be the number of partitions of 7 all of whose summands are
of the form 5k + 1 or 5k + 4, and g(n) the number of partitions whose
summands differ by at least 2. Then f(n) = g(n).

e Let r(n) be the number of partitions of n all of whose summands are
of the form 5k + 2 or 5k + 3, and s(n) the number of partitions whose
parts differ by at least 2 and which do not contain 1. Then r(n} = s(n).

All known formal series proofs of the Rogers-Ramanujan identities are
quite involved, and for a long time bijection proofs of f(n) = g(n) and
of r(n) = s(n) seemed elusive. Such proofs were eventually given 1981
by Adriano Garsia and Stephen Milne. Their bijections are, however, very
complicated — Book proofs are not yet in sight.

An example for n = 10:

10=86+4
10=44+34+2+1
and

10 =10

10=74+241
W0=6+3+1
10=5+4+1
10=54+34+2,

so Bg(10) = 04(10) = 5.

Srinivasa Ramanujan
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Five-coloring plane graphs Chapter 30

Plane graphs and their colorings have been the subject of Intensive research
since the beginnings of graph theory because of their connection to the four-
color problem. As stated originally the four-color problem asked whether it
is always possible to color the regions of a plane map with four colors such
that regions which share a commaon boundary {and not just a point) receive
different colors. The figure on the right shows that coloring the regions of a
map is really the same task as coloring the vertices of a planc graph. As in
Chapter 11 (page 65) place a vertex in the interior of each region (including
the outer region) and connect two such vertices belonging to neighboring
regions by an edge through the common boundary.

The resulting graph (5, the dual graph of the map M, is then a plane graph,

and coloring the vertices of (5 in the usual sense is the same as coloring

the regions of M. So we may as well concentrate an vertex-coloring planc

graphs and will do so from now on. Note that we may assume that (G has  The dual graph of a map
no loops or multiple edges, since these are irrelevant for coloring.

In the long and arduous history of attacks to prove the four-color theorem
many attempts came closc, but what finally succeeded in the Appel-Haken
proof of 1976 and also in the recent proof of Robertson, Sanders, Seymour
and Thomas 1997 was a combination of very old ideas (dating back to the
19th century) and the very new calculating powers of modern-day comput-
ers. Twenty-five years after the original proof, the situation is still basically
the same, no proof from The Book is in sight.

So let us be more modest and ask whether there is a neat proof that every
plane graph can be 5-colored. A proof of this five-color theorem had al-
ready been given by Heawood at the turn of the century. The basic tool [or
his proof (and indeed also for the four-color theorem) was Euler’s formula
isee Chapter 11). Clearly, when coloring a graph ¢ we may assumc that G
is connected since we may color the connccted pieces scparately. A planc
graph divides the plane into a set I of regions (including the exterior re-
gion). Euler's formula states that for plane connected graphs G = (V, E)
we always have

V|- |E

VIR = 2.

As a warm-up, let us see how Euler’s formula may be applied to prove

that every plane graph & is 6-colorable. We proceed by induction on the  Thig planc graph has 8 vertices,
number n of vertices, For small values of n (in particular, for n. < 6) this 13 edges and 7 regions.

is ohvious.
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A ncar-triangulated plane graph

From part (A) of the proposition on page 67 we know that ¢ has a vertex »
ol degree at most 5. Delete v and all edges incident with v. The resulting
graph G/ = (\wis a plane graph on n. — 1 vertices. By induction, it can he
fi-colored. Since v has at most 5 neighbors in &, at most 5 colors are used
for these neighbors in the coloring of G’. So we can extend any 6-coloring
of &' to a 6-coloring of G by assigning a color to v which is not used for
any of its neighhors in the coloring of 7. Thus  is indeed G-colorable.

Now let us look at the list chromatic number of plane graphs, as discussed in
the previous chapter on the Dinitz problem. Clearly, our 6-coloring methed
works for lists of colors as well (again we never run out of colors), so
x,(G) = 6 holds for any plane graph ;. Erd&s, Rubin and Taylor conjec-
tured in 1979 that every plane graph has list chromatic number at most 5,
and further that there are plane graphs & with x,(G) > 4. They were
right on hoth counts. Margit Voigt was the first o construct an example
of a plane graph G with x,{G) = 5 (her example had 238 vertices) and
around the same time Carsten Thomassen gave a iruly stunning proof of
the 5-list coloring conjecture. His proof is a telling example of what you
can do when you find the right induction hypothesis. It does not use Euler’s
formula at all?

Theorem. All planar graphs G can be 5-list colored:

X, (G) <5

#l Proof. First note that adding edges can only increase the chromatic num-
her. In other words, when H is a subgraph of &, then x,(H) < x,(G)
ceriainly holds. Hence we may assume that &7 is connected and that all
the bounded laces of an embedding have triangles as boundaries. Let us
call such a graph near-rriangulared. The validity of the theorem for near-
triangulated graphs will establish the statement for all plane graphs.

The trick ol the prool is to show the following stronger statement (which
allows us to use induction):

Ler G = (V| IY) be a near-triungulated graph, and let B be the
cycle bounding the auter region. We make the following assump-
tions on the color sets C(v), v € V:

(1) Two adjucent vertices x,y of I3 are already colored with
(different) colors & and (3.
(2) 1[C(w)

(3) |C(0)} = 5 for all vertices v in the interior.

> 3 for all other vertices v of B,

Then the coloring of x, y can be extended to a proper coloring of G
by choosing colors from the lists. In particular, x ,(G7) < 5.
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For [V/| —= 3 this is obvious, since for the only uncolored vertex v we have
|C(2)] = 3, so there is a color available. Now we proceed by induction,

Case I: Suppose B has a chord, that is, an edge not in [ that joins two
vertices w.v € DB. The subgraph 1 which is bounded by By U {uv}
and contains z,y, w and v is near-triangulated and therefore has a 5-list
colering by induction. Suppose in this coloring the vertices « and v receive
the colors v and 4. Now we look at the bottom part ¢z bounded by B5 and
wv. Regarding u, v as pre-colored, we see that the induction hypotheses
are also satisfied for 5. Hence (G4 can be 5-list colored with the available
colors, and thus the same is true for (7.

Case 2: Suppose B has no chord. Let vy be the vertex on the other side of
the cv-colored vertex z on 7, and let ¢, vy, . . ., v, w be the neighbors of vy,
Since G is near-triangulated we have the situation shown in the figure,

Construct the near-triangulated graph ¢’ = M\ by deleting from  the
vertex vq and all edges emanating from . This G’ has as outer boundary
B = {B\v)U {v1,.... ). Since |C(vg)| > 3 by assumption (2) there
exist two colors 7, 4 in C{wg) different from o, Now we replace every
eolorset C(w; ) by C(v: }\{7. 4}, keeping the original color sets for all other
vertices in ', Then (&' clearly satisfics all assumptions and is thus 5-list
colorable by induction. Choosing ~ or § for g, difterent from the color
of w, we can extend the list coloring of (' to all of (7, O

So, the 5-list color theorem is proved, but the story is not quite over, A
stronger conjecture claimed that the list-chromatic number of a planc graph
(7 is at most 1 more than the ordinary chromatic number:

Is x, (C) < x{(G}+ 1 for every plane graph G; ?
Since x{(7) < 4 by the four-color theorem, we have three cases:

Case I x(CG)=2 = x,(G) =
Case I x(C)=3 = x,(G) <4
<

Case I x{(7) =4 = x,(G) <5. o
Thomassen's result settles Case II1, and Case I was proved by an ingenious
(and much more sophisticated) argument by Alon and Tarsi. Furthermore,
there are plane graphs G with x(G) = 2 and x,(G) = 3, for example
the graph K 4 that we considered in the preceding chapter on the Dinitz
problem. {o, 8,1, ) .3.1,2}
But what about Case 1I? Here the conjecture fails: this was first shown —
by Margit Voigt for a graph that was earlier constructed by Shai Gutner.
His graph on 130 vertices can be obtained as follows. First we look at
the “double octahedron” (sce the figure), which is clearly 3-colorable, Let
a € {5.6,7,8}and 3 € {9,10, 11, 12}, and consider the lists that are given {3, 2, 3,4}
in the figure. You are invited to check that with these lists a coloring is not
possible. Now take 16 copics of this graph, and identify all top vertices and
all bottom vertices. This yields a graph on 16 - 8 + 2 = 130 vertices which o}

{a,1,3,4} {0,2,3,4}
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is still planc and 3-colorable. We assign {5, 6, 7.8} Lo the top vertex and
{9.10,11, 12} to the bottom vertex, with the inner lists corresponding to
the 16 pairs (&, 3). o« € {5,6,7.8}, 4 € {9,10,11, 12}, For every chaice
of o and & we thus obtain a subgraph as in the figure, and so a list coloring
of the big graph is not possible,

By modilying another one of Gutner’s examples, Voigt and Wirth came up
with an even smaller plane graph with 75 vertices and x = 3, x, = 5, which
in addition uses only the minimal number of 5 colors in the cornbined lists.
The current record is 63 vertices.
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How to guard a museum Chapter 31

Here is an appealing problem which was raised by Victor Klee in 1973.
Suppose the manager of a museum wants to make sure that at all times
every point of the museum is watched by a guard. The guards are stationed
at fixed posts, but they are able to tum around. How many guards are
neceded?

We picture the walls of the museum as a polygon consisting of # sides.
Of course, if the polygon is canvex, then one guard is enough. In fact, the
guard may be stationed at any point of the museum. But, in general, the
walls of the museum may have the shape of any closed polygon, A convex exhibition hall
Consider a comb-shaped muscum with » = 3m walls, as depicted on the
right. it is easy to see that this requires at least m = % guards. In fact,
there are n walls. Now notice that the point 1 can only be observed by a
guard stationed in the shaded triangle containing 1, and similarly lor the

other points 2,3, ....m. Since all these triangles are disjoint we conclude
that at Jeast m guards are needed. But m guards are also enough, since they
can be placed at the top lines of the triangles. By cutting off one or two
walls at the end, we conclude that for any 7 there is an ni-walled museum
which requires | 7 | guards.
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R

A muscum with n = 12 walls

e

A triangulation of the museum

Schonhardt’s polyhedron: The interior
dihedral angles at the edges AR, BC'
and C A’ are greater than 180°.

The following result states that this is the worst case.

Theorem. For any museum with n walls, | %] guards suffice.

This “art gallery theorem™ was first proved by Vasek Chvidtal by a clever
argument, but here is a proof due to Steve Fisk that is truly beautiful,

M Proof. First of all, let us draw n — 3 non-crossing diagonals betwecn
corners of the walls until the interior is triangulated. For example, we can
draw 9 diagonals in the museum depicted in the margin to produce a trian-
gulation. It does not matter which triangulation we choose, any one will do.
Now think of the new figure as a plane graph with the corners as vertices
and the walls and diagonals as edges.

Claim. This graph is 3-colorable.

For n = 3 there is nothing to prove. Now for n > 3 pick any two vertices
u and v which are connected by a diagonal. This diagonal will split the
graph into two smaller triangulated graphs both containing the edge wv. By
induction we may color each part with 3 colors where we may choose color
1 for u and color 2 for » in each coloring. Pasting the colorings together
yields a 3-coloring of the whole graph.

The rest is easy. Since there are n vertices, at least one of the color classes,
say the vertices colored 1, contains at most | % | vertices, and this is where
we place the guards. Since every triangle contains a vertex of color | we in-
fer that every triangle is guarded, and hence so is the whole museum. O

The astute reader may have noticed a subtle point in our reasoning. Does
a triangulation always exist? Probably everybody’s first reaction is: Obwvi-
ously, yes! Well, it does exist, but this is not completely obvious, and,
in fact, the natural generalization to three dimensions (partitioning into
tetrahedra) is false! This may be seen from Schénhardt’s polyhedron, de-
picted on the left. It is obtained from a triangular prism by rotating the
top triangle, so that each of the quadrilateral faces breaks into two triangles
with a non-convex edge. Try to triangulate this polyhedron! You will notice
that any tetrahedron that contains the bottom triangle must contain one of
the three top vertices: but the resulting tetrahedron will not be contained in
Schénhardt’s polyhedron. So there is no triangulation without an additional
vertex.,

To prove that a triangulation exists in the case of a planar non-convex
polygon, we proceed by induction on the number n of vertices. Forn = 3
the polygon is a triangle, and there is nothing to prove. Letn > 4. To
use induction, all we have to produce is one diagonal which will split the
polygon P into two smaller parts, such that a triangulation of the polygon
can be pasted together from triangulations of the parts.

Call a vertex A convex if the interior angle at the vertex is less than 180°,
Since the sum of the interior angles of I is (n — 2}180°, there must be a
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convex vertex 4. In fact, therc must be at least three of them: In essence
this is an application of the pigeonhole principle! Or you may consider the
convex hull of the polygon, and note that all its vertices are convex also for
the original polygon.

Now look al the two neighboring vertices B and (' of A. If the segment
D lies entirely in £, then this is our diagonal. If not, the triangle ABC
contains other vertices. Slide 3C towards A until it hits the last vertex Z
in ABC'. Now AZ is within P, and we have a diagonal.

There are many variants to the art gallery theorem. For example, we may
only want to guard the walls {which is, after all, where the paintings hang),
or the puards are all stationed at vertices. A particularly nice (unsolved)
variant goes as follows:

Suppose each guard may patrol one wall of the museum, so he
walks along his wall and sees anything that can be seen from any
point along this wall.

How many "wall guards” do we then need (o keep control?

(Godlried Toussaint constructed the example of a museumn displayed here
which shows thal | | guards may be necessary.

This polygon has 28 sides {and, in general, 4m sides), and the reader is in-
vited to check that 1 wall-guards are needed. It is conjectured that, except
for some small values of 7, this number is also sufficient, but a proof, let
alone a Book Proof, is still missing.
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“Museum guards"
(A 3-dimensional art-gallery problem}
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Turan’s graph theorem Chapter 32

One of the fundamental results in graph theory is the theorem of Turdn
from 1941, which initiated extremal graph theory. Turdn’s theorermn was
rediscovered many times with various different proofs, We will discuss five
of them and let the reader decide which one belongs in The Book.

Let us fix some notation. We consider simple graphs ¢ on the vertex set
V = {r....,v,} and edge set . Il v; and v; are ncighbors, then we
write v;1; € [5. A p-clique in (7 is a complete subgraph of (7 on p vertices,
denoted by K. Paul Turdn posed the following question:

Suppose G is a simple graph that does not contain a p-cligue.
What is the largest number of edges that G can have?

We readily obtain examples of such graphs by dividing V into p— 1 patrwisc
disjoint subsets V = ViU UV Vil =nan =m0 4+ 4 ngo1,
Joining two vertices if and only if they lie in distinct sets V5, V;. We denote
the resulting graph by K, ., ,:ithas ) jmin; edges. We obtain a
maximal number ol edges among such graphs with given i if we divide
the numbers n; as evenly as possible, that is, if {n; — n;| < 1 forall 4, 7.
Indeed, suppase . > ngp + 2. By shifting one vertex from V; to Vs, we
obtain K, 1,ny+1,....n,.,; Which contains (r; — 1){ng + 1) — niny =
n; —nz — 1 > 1 more edges than K, n, . n,_,. Let us call the graphs
Ko, with jn; — ny| << 1 the Turdn graphs. In particular, if p — 1
T

divides n, then we may choose n; = P for all i, obtaining The graph K35 a

caHpo1

edges. Turdn's theorem now states that this number is an upper bound for
the edge-number of ary graph on » vertices withoul a p-clique.

Theorem. Ifa graph G = (V. E) on n vertices has no p-cligue, p > 2,
then

Forp = 2 this is trivial. In the first interesting case p = 3 the theorem states
that a triangle-free graph on n vertices contains at most ”; edges. Proofs
of this special case were known prior to Turdn’s result. Two elegant proofs
using inequalities are contained in Chapter 17,
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Let us turn to the general case. The first two proofs use induction and are
due to Turdn and to Erd3s, respectively.

B First proof. We use induction on n. One easily computes that (1) is true
forn < p. Let(Zbeagraphon V = {v|, ..., v, } without p-cliques with
a maximal number of edges, where n > p. (7 certainly contains (p — 1)-
cliques, since otherwise we could add edges. Let A be a (p— 1)-clique, and
set B = V\A.

A contains (7'} edges, and we now estimate the edge-number ep in I3
and the edge-number e 4 g between A and B. By induction, we have ¢ 3 <
(1 <17 ){n —p+1)2. Since G has no p-clique, every v; € I is adjacent
to at most p — 2 vertices in A, and we obtainey g < (p — 2¥(n — p+ 1).
Altogether, this yields

21 (7)1t ) e G2,

which is precisely (1 — P—l,)% O

B Second proof. This proof makes use of the structure of the Turdn
graphs, Let v, € V be a vertex of maximal degree d,,, = max; < <, d;.
Denote by S the set of neighbors of v, |S| = dpm, and set T ;= V5, As
(7 contains no p-clique, and v,,, is adjacent to all vertices of S, we note that
S contains no (p — 1}-clique.

We now construct the following graph H on V' (see the figure). IT corre-
sponds to G on 5 and contains all edges between S and T', but no edges
within I". In other words, 7' is an independent set in A, and we con-
clude that H has again no p-cliques. Let d} be the degree of v, in H.
If v; € 5, then we certainly have d_’i > d,; by the construction of H, and
forv; € T, wesee dj = |S] = din = d; by the choice of v,,,. We in-
fer |F(H)| > ||, and find that among all graphs with a maximal number
of edges, there must be one of the form of H. By induction, the graph
induced by S has al most as many edges as a suitable graph K, », .
on §. So |E| < |E(H)| £ E(Kp,,. . n,_,) with ny,_y = |T|, which im-
plies (1). a

The next two proofs are of a totally different nature, using a maximizing
argument and ideas from probabilily theory. They are due to Motzkin and
Straus and Lo Alon and Spencer, respectively.,

B Third proof. Consider a probability distribution w = (un, ..., uy,)
on the vertices, that is, an assignment of values w; > {) to the vertices with
37wz = 1. Our goal is to maximize the function

j(w) = Z wnwy.
ity G I

Suppose w is any distribution, and let ; and v; be a pair of non-adjacent
vertices with positive weights w,, w;. Let s, be the sum of the weights of
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all vertices adjacent to v;, and define s; similarly for v;, where we may
assume that &; > &;. Now we move the weight from »; to vy, that is, the
new weight of v, is w; + w;, while the weight of v; drops to (0. For the new
new distribution w’ we find

flw') = flw)+ws; —wjs; > flw).

We repeat this (reducing the number of vertices with a positive weight by
one in each step) until there are no non-adjacent vertices of positive weight
anymore, Thus we conclude that there is an optimal distribution whose
nonzero weights are concentrated on a clique, say on a k-clique. Now if,
say, wy > wp > 0, then choose £ with 0 < £ < w; — wo and change wy
to wy — £ and s to we + . The new distribution =’ satisfies f(w') =
Fflw) + e{wy — we) — & > f(w), and we infer that the maximal value of
f{w) is attained for w; = | ona k-clique and w; = 0 otherwise. Since a

k-clique contains ﬂf%” edges, we obtain
k(k —1) 1 1 1
(wy = HEZD Ly
Jw) 5 K 2 ( x
Since this expression is increasing in k, the best we candoistoset b = p—1
{since ¢ has no p-cliques). So we conclude

Jaw) < (1 5{—1)

for any distribution w. In particular, this inequality holds for the uniform
distribution given by w; = 1 for all 7. Thus we find

E| 1) 1 1 )
= L B (.
n? f(wz nw/ 2( p-1/

which is precisely (1). Ol

W Fourth proof. This time we use some concepts from probahility theory.
Let GG be an arbitrary graph on the vertex set V = {vy,..., 2, }. Denote the
degree of v; by d;, and write w(C" for the number of vertices in a largest
clique, called the clique number of .

TL

Claim. We have () > Z

i—1

1
n—d;

We choose a random permutation ™ = wy1n.. . v, of the vertex set V,
where each permutation is supposed to appear with the same probability
L. and then consider the following set ;. We put v; into C'r it and only
it »; is adjacent to all v; (j < i) preceding w;. By definition, C; is a
cligue in &. Let X = || be the corresponding random variable. We have
X = Zf’__l X, where X, is the indicator random variable of the vertex v;,
thatis, X; = 1 or X; = 0 depending on whether v; ¢ Cr orv; & (. Note
that v; belongs to €', with respect to the permutation w192 . . . oy, if and only
if v, appears before all n — 1 — d; vertices which are not adjacent to v, or
in other words, if v; is the first among v; and its n — 1 — d; non-neighbors.

The probability that this happens is -, hence EX, = .

“Moving weights”
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Thus by linearity of expectation {see page 84) we chtain

n

B(iC:]) = BX = ZEX*‘ B Z'n*lde‘-'

=1 i==1

Consequently, there must be a clique of at least that size, and this was our
claim. To deduce Turin’s theorem from the claim we use the Cauchy-
Schwarz inequality from Chapter 17,

"

() = (540) (54).

i—1 =1

Seta; = vn—di, b; = Jlﬂ_ then a;b; = 1, and so

13

T

< (S d)(Y ) £ WY n—d). @
i1 i—1

n — d; —
i=

At this point we apply the hypothesis w(() < p — 1 of Turdn’s theorem,
Using also Y_" | d; = 2{F| from the chapter on double counting, inequal-
ity (2) leads to

n? < (p— L)in? - 2E),

and this is equivalent to Turdn’s inequality. O

Now we are ready for the last proof, which may be the most beautiful of
them all. Its origin is not clear; we got it from Stephan Brandt, who heard
it in Oberwolfach. It may be “folklore” graph theory. It yields in one stroke
that the Turan graph is in fact the unique example with a maximal numher
of edges. It may be noted that both proofs 1 and 2 also imply this stronger
result.

B Fifth proof. Lct (7 be a graph on » vertices without a p-clique and with
a maximal number of edges.

Claim. G does not contain three vertices ., v, w such that vin € E,
butuv ¢ B, vw & E.

Suppose otherwise, and consider the following cases.

Case 1: d(u) < d{v) or d{u) < d(w).
We may suppose thal d(w) < d{v). Then we duplicate », that is, we create
a new verlex ©* which has exactly the same neighbors as v (but v’ is not
an edge), delete w, and keep the rest unchanged.
The new graph ' has again no p-clique, and for the number of edges we
find

E(G)| = [E{C)] +dv) —d(u) > |E{G)],

a contradiction.
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Case 2: d{v) = d{v) and d{u) > d(w).

Duplicate u twice and delete v and w (as illustrated in the margin). Again,
the new graph 7 has no p-clique, and we compute (the —1 results from the
edge vy

[E(G)] = [E(C)] +2d(w) — (d(v) +d(w) 1) > [E(G)].

So we have a contradiction once more.

A moment’s thought shows that the claim we have proved is equivalent to
the statement that
u~v = uv & E(G)

defines an equivalence relation. Thus & is a complete multipartitc graph,
G = Kuy, ., ,»and we are finished. O
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Communicating without errors Chapter 33

In 1956, Claude Shannon, the founder of information theory, posed the
following very interesting question:

Suppose we want to transmit messages across a channel (where
some symbols may be distorted) to a receiver. What is the maximum
rate of transmission such that the receiver may recover the original
message without errors?

Let us see what Shannon meant by “channel” and “rate of transmission.”
We are given a set V of symbols, and a message is just a string of symbols
from V. We model the channel as a graph G = (V, E), where V is the set
of symbols, and E the set of edges between unreliable pairs of symbols,
that is, symbols which may be confused during transmission. For example,
communicating over a phone in everyday language, we connnect the sym-
bols B and P by an edge since the receiver may not be able to distinguish ~ Claude Shannon
them. Let us call G the confusion graph.

The 5-cycle C5 will play a prominent role in our discussion. In this exam-
ple, 1 and 2 may be confused, but not 1 and 3, etc. Ideally we would like
to use all 5 symbols for transmission, but since we want to communicate
error-free we can — if we only send single symbols — use only one let-
ter from each pair that might be confused. Thus for the 5-cycle we can use
only two different letters (any two that are not connected by an edge). In the
language of information theory, this means that for the 5-cycle we achieve
an information rate of log, 2 = 1 (instead of the maximal log, 5 ~ 2.32).
It is clear that in this model, for an arbitrary graph G = (V, E), the best
we can do is to transmit symbols from a largest independent set. Thus the
information rate, when sending single symbols, is log, a(G), where a(G)
is the independence number of G.

Let us see whether we can increase the information rate by using larger
strings in place of single symbols. Suppose we want to transmit strings of
length 2. The strings ujuz and vv, can only be confused if one of the
following three cases holds:

e u; = v and uy can be confused with v5,
e uy = vy and uq can be confused with vy, or
e w3 # vy can be confused and uz # vo can be confused.

In graph-theoretic terms this amounts to considering the product G1 x G4
of two graphs G1 = (V4, E1) and Go = (Va, E3). G x G2 has the vertex
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The graph Cs x Cs

set V1 x Vo = {(u1,22) t vy € Viiug € Vo), with (u1,u3) # (v, v2)
connected by an edge if and only if uw; = v; or w;v; € Efori = 1,2. The
confusion graph for strings ol length 2 is thus G% = G x G, the product of
the conflusion graph (7 [or single symbols with itself. The information rate
of strings of length 2 per symbol is then given by

log, a{G? .
2EalE) oy, vale?.

Now, of course, we may use strings of any length n. The n-th confusion
graph G” = G x (<. .. x G has vertexset V% == {{wy, ..., u,) tu, € V3
with (w1, ....un) # (1, .. vn) being connected by an edge if u; = v; or
wiv; € K for all ¢, The rate of information per symbol determined by
strings of length n is

222 tog, /07

H

What can we say about a(z")? Here is a first observation. Let 7 C V
be a largest independent set in G, |I/| = o. The o™ vertices in G™ of the
form (uy, ..., uy,), u; € U forall 4, clearly form an independent set in G,
Hence ‘

a(G™) = alGY"
and therefore
ValGh) 2o owll),

meaning that we never decrease the information rate by using longer sirings
instead of single symbols. This, by the way, is a basic idea of coding theory:
By encoding symbols into longer strings we can make error-free communi-
cation more elficient.

Disregarding the logarithm we thus arrive at Shannon’s fundamental
definition: The zerp-error capacity of a graph G is given by

() = sup Val(G"),

n>l
and Shannon’s problem was to compute &(G'), and in particular ©(Cs).

Let us look at 5. So far we know «(C5) = 2 < &(C5). Looking at
the B-cycle as depicted earlier, or at the product Cs x 5 as drawn on the
left, we see that the set {{1,1),(2,3).(3,5),{4,2),(5,1)} is independent
in C:2. Thus we have «{C;?) > 5. Since an independent set can contain
only two vertices from any two consecutive rows we see that @(C5?) = 5.
Hence, by using strings ol length 2 we have increased the lower bound for

the capacity to @(C5) > /5.

So far we have no upper bounds for the capacity. To obtain such bounds
we again follow Shannon’s original ideas. First we need the dual definition
of an independent set. We recall that a subset C C V is a clique if any
two vertices of C are joined by an edge. Thus the vertices form trivial
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cligues of size 1, the edges are the cliques of size 2, the triangles are cliques
of size 3, and so on. Let C be the set of cliques in G. Consider an arbitrary
probability distribution @ = (&, : v € V) on the set of vertices, that
is, 7, = Oand 3 -7, = 1. To every distrihution & we associate the
“maximal value of a clique”

and finally we set

MG) = m:gn/\(:c) = mmn_)axz;tv.

To be precise we should use inf instead of min, but the minimum exists
because A{x) is continuous on the compact set of all distributions,

Consider now an independent set ' € V' of maximal size «(G) = «.
Associated to U we define the distribution x;, = (r, : v € V} by setting
€y = é if v € U and @, = 0 otherwise. Since any clique contains at most
one vertex from U/, we infer A(z ;) = 1, and thus by the definition of A{(7)

1
MG) < — or oG < MG
)< G (@)
What Shannon observed is that A(G) ™! is, in fact, an upper bound for all
{G"), and hence also for O{(). In order to prove this it suffices to
show that for graphs G, H

MG x H) = AGYAH) (1
holds, since this will imply A(G"} = A(G)™ and hence
«G") < MGM) =G
VelGr) < AG)T

To prove (1} we make use of the duality theorem of linear programming
(see | 1]) and get
AlG) = minn}axz T = Ind){fntlnz Yers @)

e CeC
vel” o

where the right-hand side runs through all probahility distributions y =
(Yo :Cel)on’l.

Consider 7 x H, and let & and &' be distributions which achieve the
minima, Alxz) = A7), Alz’) = MIH). In the vertex set of G x H we
assign the value z;, ., = 2,2, to the vertex {,v). Since Y (um) Fluw) T
> . Tu 9y, &, = L, we obtain a distribution. Next we observe that the max-
imal cliques in G x II are of the form C x D = {{x,v) 1 u € C,v € D}
where (7 and D are cliques in G and /1, respectively. Hence we obtain

AMGx HY < Mz) = max Z Zia,w)

=D
() ex D

= max Z Ty Z AGYMH)

uel! we D}
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The Lovasz umbrella

by the definition of A{; x H). In the same way the converse inequulity
A(G »x HY = AGYA(H) is shown by using the dual expression for A((7)
in {2). In summary we can stule:

B(G) < NG,

for any graph G.

Let us apply our findings o the 5-cycle and, more generally, to the

m-cycle C,. By using the uniform distribution (=,..., L) on the

vertices, we obtain A{Cr,} < 2, since any clique contains at most two
vertices. Similarly, choosing # for the edges and () for the vertices, we have
A(C) = Z by the dual expression in (2). We conclude that A(Cr,) = 2

m
and therefore

m

9((}?“} S .

2
for all m. Now, if m is even, then clearly o(C,,) = % and (hus also
O(Cy) = 2. For odd m, however, we have a(Cy,) = ™5, Form = 3,

(’5 is a clique, and so is every product Cf, implying o (C3) = O(C3) = 1.
So, the first interesting case is the 5-cycle, where we know up (o now

VB < 6(Cs) < {3)

LN e

Using his linear programming approach (and some other ideas) Shannon
was able to compute the capacity of many graphs and, in particular, of all
graphs with five or fewer vertices — with the single exception of 5, where
he could not go beyond the bounds in (3). This is where things stood for
more than 20 years until Liszlé Lovasz showed by an astonishingly simple
argument that indeed @(C5) = /5. A seemingly very difficult combina-
torial problem was provided with an unexpected and elegant solution.
Lovdsz’ main new idea was to represent the vertices v of the graph by
real vectors of length 1 such that any two vectors which belong to non-
adjacent vertices in (' are orthogonal. Let us call such a set of vectors
an orthonorinal representation of . Clearly, such a representation always
exisls: just take the unit vectors (1,0,...,07, (0,1,0,...,00T, ...,
(0,0,..., )T of dimension m = |V,

For the graph C's we may oblain an orthonormal representation in R® by
considering an “umbrella” with five ribs v, ..., v5 of unit length. Now
open the umbrella (with tip at the origin} to the point where the angles
between alternate ribs are 90°.

Lovidsz then went on to show that the height A of the umbrella, that is, the
distance between 0 and 5, provides the bound

1
0(Cs) < R (4)
A simple caleulation yields A% = LE; sce lhe box on the next page. From

this ©(Cs) < /5 follows, and therefore O(C%) = /5.
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Let us see how Lovdsz proceeded to prove the inequality (4). (His results
were, in facl, much more general.) Consider the usual inner product

e,y =ax141 4+ -+ Talfs

of two vectors © = (21,....2:), ¥y = {11, - -, y.) in R*. Then |z]* =
{x,x) = &% + ...+ 22 is the square of the length |:c| of , and the angle
hetween @ and y is given by

Thus {x, y} = 0 if and only if 2 and ¥ are orthogonal.

Pentagons and the golden section

Tradition has it that a rectangle was considered aesthetically pleasing
if, after cutting off a square of length o, the remaining rectangle had
the same shape as the original one. The side lengths a, b of such a
rectangle must satisfy % = 5= Setting 7 := g for the ratio, we

obtain 7 = —i; or 72 — 7 — 1 = 0. Solving the quadratic equation

yields the golden section T = 1—+2“§ == 1.618().

Consider now a regular pentagon of side length @, and let d be the
length of its diagonals. It was already known to Euclid (Book XIIL8)
that g = -, and that the intersection point of two diagonals divides
the diagonals in the golden section.

Here is Euclid’s Book Proof. Since the total angle sum of the pen-
tagon is 3w, the angle at any vertex equals %’5 It follows that
qABE = %, since ABE is an isosceles triangle. This, in turn,
implies <AMB = 5 , and we conclude that the triangles ABC and
AM B are similar. The quadrilateral C'M E I} is a rhombhus since op-
posing sides are parallel (look at the angles), and so |MC| = 4 and
thus |AM| = d — a. By the similarity of ABC' and AM D we con-

clude
a |AC] _ |AB| a2 |MC|

o |[ABl |AM| d—a |MA

There is more to come. For the distance s of a vertex to the center of
the pentagon S, the reader is invited to prove the relation 52 = T"’—:z
{note that BS cuts the diagonal AC at a right angle and halves it).

To finish our excursion into geometry, consider now the umbrella
with the regular pentagon on top. Since alternate nibs {of length 1)

form a right angle, the theorem of Pythagoras gives us d = v/2, and

hence 5% = Tiz f+5 So, with Pythagoras again, we find for the
height k = |OS| our promised result
1 5 1
Koo 1ogr = LEVE

VE+5 VB

Q

b

i1y

h—ua
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Now we head for an upper bound “9{() < cr%l” for the Shannon capacity
ol any graph (7 that has an especially “nice” orthonormal representation.
For this let T = {v{V),..., 2™} be an orthonormal representation
of ¢ in R*, where v'? corresponds to the vertex v;. We assume in
addition that all the vectors v{¥) have the same angle (# 90°) with the
vector u 1= = (v 4 ... + 0™}, or equivalently that the inner product

CRRTS

has the same value 7. #£ 0 for all ¢. Let us call this value o the constant
of the representation T For the Lovdsz umbrella that represents Cy the
condition (v ) = o, certainly holds, for u = 0s.

Now we proceed in the following three steps.
(A) Consider a probability distribution & = (1, ...,z ) on V and set

plx) = |oot) + g™

b

and
p,(G) = inf p{z).

Let I7 be a largest independent set in G with |[[7| = «, and define z;; =
{T1,...,2m) with x; = !; if v; € UV and ; = 0 otherwise. Since all
vectors v have unit length and {(v'* v} = 0 for any two non-adjacent
vertices, we infer

1 {G) < pizy) ‘ Z T; v(‘)

Thus we have 11, (G} < o', and therefore

(B) Next we compute . (7). We need the Cauchy-Schwarz inequality
{a.b)? < |af® |b]*

for vectors a, b € R®. Applied o a = v + 4z, vt™ and b = u,
the inequality vields

(o' + b o™t < plx) ju)? (5)
By our assumption that (v¥) u} = ¢, for all i, we have
ot aget™u) = (@t b am)o, = o

for any distribution . Thus, in particular, this has to hold for the uniform
distribution (%, ..., &}, which implies [u|? = &,.. Hence (5) reduces to

2
ol < plx) o, or pe(G) = o
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On the other hand, forz = (., ..., ) we obtain

1
m?**

pp(G) < pl@) = | W+ 40P =l = g,

and so we have proved
pop (G) = ap. (6)

In summary, we have established the inequality

al@) < - 7
Ir

for any orthonormal respresentation T with constant a. .

{C) To extend this inequality to @((), we proceed as before. Consider
again the product ¢ x H of two graphs. Let (7 and H have orthonormal
representations /2 and S in R” and R, respectively, with constants a
and o Let v = {t,....v,) be avectorin B and w = (wy,...,w,) be
a vector in S. To the vertex in G x H corresponding to the pair (v, w) we
associate the vector

vw? = (U1, o VW, VAW, L B W, Up WL, G W) € R

It is immediately checked that R x § := {vw? : v € R,w € §}is an

orthonormal representation of (¢ » H with constant o ¢ ,. Hence by (6}
we obtdin

’“’RXS(G x H) = #R(G).”«S(H)-
For G" = G x ... x (& and the representation T' with constant o, this
mcdns

n (G) = 0y (G = o7

and by (7) we obtain

a(G™) < G’;ﬂ, ’{/a(T’”) < 0;1.

Taking all things together we have thus completed Lovész’ argument:

Theorem. Whenever T = {vi1), .. o™ s an orthonormal
representation of G with constant @, then

oG = —. )
9r

Looking at the Lovasz umbrella, we have u© = {0,0, h:—é—q)T and hence
a={v¥ u) = h? = %, which yields ©(C5} < /5. Thus Shannon’s
problem is solved.

“Umbrellas with five ribs™
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01 0 0 1
1 01 0 0
A=1 01 0 1 0
0 o0 1 0 1

The adjacency matrix for the 5-cycle Cy

Letus carry our discussion a little further. We see from (8) that the larger o,
is for u representation of (7, the better a bound for @(() we will get. Here
is u method that gives us an orthonormal representation for any graph G
To G = (V. E) we associate the adjacency matrix A — (ay;), which is

defined as follows: Let V' = {wvy, ..., vy, }, then we set
R L if vy € I
¥ 1 0 otherwise,

Ais a real symmetric matrix with 0’s in the main diagonal.

Now we need two facts from linear algebra, First, as a symmetric matrix,
A has m real cigenvalues Ay > Ay > ... > A, (some of which may
be equal), and the sum of the eigenvalues equals the sum of the diagonal
entries of A. that is, ). Hence the smallest eigenvalue must be negative
{except in the trivial case when (7 has no edges). Let p = |A,, | = — A be
the absolute value of the smallest eigenvalue, and consider the matrix

M =14 1A,
P

where [ denotes the (m x m)-identity matrix, This A has the eigenvalues
1+5p1 > l—)—%”2 R | +%’J’—‘ = (. Now we quote the second résult(the
principal axis theorem of linear algebra): If M = (rn,;) is a real symmelric
matrix with all eigenvalues > 0, then there are vectors vl , vl e RS
for s = rank( A4}, such that

mi; = (e ol (1 <45 <m).
In particular, for A — I + :—jA we obtain
(v[i},v(i}) = myu =1 forall ¢

and . . 1
(o' plly = Zg fori # j.
p -

Since a;; = () whenever v;v; ¢ E, we see that the vectors vl el
form indeed an orthonormal representation of &,

Let us, finally, apply this construction to the ri-cycles C,, for odd m > 5.
Here one easily computes p = |Amin| = 2cos = (see the box). Every
row of the adjacency matrix contains two 1’s, implying that every row of
the matrix M sumsto 1 + % For the representation {v(!), ..., v} this

means
1
m

€08 —
m

. 2
WP M+ ety =142 =1
r

and hence |
('vm,u} = —(1+{cos =)y = ¢
e

7

[or all 2. We can therefore apply our main result (8) and conclude

OCr) < m

T 1+ (cos Z)-1 (form > 5 odd). (9)
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Notice that because of cos - < 1 the bound (9) is better than the bound

6{Cr) < T we found before. Note further cos £ = §, where 7 = @

is the golden section. Hence for m = J we again ohtain

5 HVa F1 :
O(Cs) < _J(rd\ﬁ)_ﬁ_
\/E-{-l 0+ J

The orthonormal representaiion given by this consiruction is, of course,
precisely the “Lovdsz umbrella”

And what about C+, C'y, and the other odd cycles? By considering «(C2)),
«(C2,) and other small powers the lower bound 2! < ©(('y,) can cer-
Latnly be increased, but for no odd rn = 7 do the best known lower bounds
agree with the upper hound given in (8). So, twenty years after Lovidse’
marvelous proof of ©(C’s) = /5, these problems remain open and are
considered very difficult — but after all we had this situation before.

The eigenvalues of C,,

Look at the adjacency matrix 4 of the cycle (. To find the eigen-
values (and eigenvectors) we use the m-th roots of unity. These are
givenby 1,¢,¢2, ..., ¢" ! for { = e — see the box on page 25.
Let A = ¢* be any of these roots, then we claim that
(1, A 2%, .., 1)7 is an eigenvector of A to the eigenvaluc A +
A~1. In fact, by the set-up of 4 we find

1 Aoy amt 1
A Ao+ 1 A
2 3 2
Al A =[ A A (e A
)\rnfl 1 F )\7?172 /\7!1—1
Since the vectors (1, A, ..., A™ ') arc independent (they form a so-
called Vandermonde matrix) we conclude that for odd m

[{cos(2km/m) + isin(2kw /m)]
+ [cos(2kn /m) — {sin{2k7 /m]]
= 2cos{2kw/m) (0 <k <mly

K¢k

are all the eigenvaives of 4. Now the cosine is a decreasing function,
and 50

¥is
= —2cos—
T,

{m—~ 1)rr)

m

2c0s(

is the smallest eigenvalue of A,

For example. for m = 7 all we know is

5/ 7
V3dd <) —mro————
33 < O(C7) = 1 +(cos 5)71°

whichis 3.2141 < &{C;) < 3.3177.
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Of friends and politicians Chapter 34

It is not known who first raised the following problem or who gave it its
human touch. Here it is:

Suppose in a group of people we have the situation thar any pair of
persons have precisely one common friend. Then there is always a
person {the “politician™ )} who is everybody’s friend.

In the mathematical jargon this is called the friendship theorem.

Before tackling the proof let us rephrase the problem in graph-theoretic
terms. We interpret the people as the set of vertices V' and join two vertices
by an edge if the corresponding people are friends. We tacitly assume that  “4 politician’s smile”
friendship is always two-ways, that is, if « is a friend of », then v is also

a friend of u, and {urther that nobody is his or her own friend. Thus the

thcorem takes on the following form:

Theorem. Suppose that G is a finite graph in which any two vertices have
precisely one common neighbor. Then there is a veriex which is adjacent to
all other vertices.

Note that there are finite graphs with this property; see the figure, where u
is the politician. However, these “windmill graphs™ also turn out to be the
only graphs with the desired property. Indeed, it is not hard to verify that in
the presence of a politician only the windmill graphs are possible.
Surprisingly, the friendship theorem does not hold for infinite graphs!
Indeed, for an inductive construction of a counterexample one may start for
example with a b-cycie, and repeatedly add common neighbors for all pairs
of vertices in the graph that don’t have one, yet. This leads (o a (countably}
infinite friendship graph without a politician.

()

Several proofs of the friendship theorem exist, but the first proof, given by A windmill graph
Paul Erdds, Alfred Rényi and Vera Sds, is still the most accomplished.
B Proof. Suppose the assertion is false, and (7 is a counterexample, that is,
no verlex of (7 is adjacent to all other vertices. To derive a contradiction we
u

proceed in two steps. The first part is combinatorics, and the second part is
linear algebra.

{1} We claim that G is a regular graph, thatis, d(u) = d{v) lorany u,v € V.
Note first that the condition of the theorem implies that there are no cycles
of length 4 in (5. Let us call this the Cy-condition. v
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We first prove that any two non-adjacent vertices u and v have equal degree
d(u) = d(v). Suppose d(u) = k, where wy, . . . , wy. are the neighbors of u.
Exactly one of the w;, say w», is adjacent to v, and w; adjacent to exactly
one of the other w;’s, say wi, so that we have the situation of the figure to
the left. The vertex v has with w,; the common neighbor w5, and with w;
(i > 2) a common neighbor z; (i > 2). By the (4-condition, all these z;
must be distinct. We conclude d(v) > k = d(u), and thus d(u) = d(v) = k
by symmetry.

To finish the proof of (1), observe that any vertex different from w; is not
adjacent to either u or v, and hence has degree k, by what we already
proved. But since ws also has a non-neighbor, it has degree k as well,
and thus G is k-regular.

Summing over the degrees of the & neighbors of u we get k2. Since
every vertex (except u) has exactly one common neighbor with u, we have
counted every vertex once, except for u, which was counted k times. So
the total number of vertices of G is

n = k¥—k+1. (1

(2) The rest of the proof is a beautiful application of some standard results
of linear algebra. Note first that & must be greater than 2, since for k& < 2
only G = K, and G = K3 are possible by (1), both of which are trivial
windmill graphs. Consider the adjacency matrix A = (a;;), as defined on
page 220. By part (1), any row has exactly £ 1’s, and by the condition of
the theorem, for any two rows there is exactly one column where they both
have a 1. Note further that the main diagonal consists of 0’s. Hence we
have

E o1 1
1k 1

A% = _ o = (k-1)I1+J,
1 ... 1 k

where I is the identity matrix, and J the matrix of all 1’s. It is immediately
checked that J has the eigenvalues n (of multiplicity 1) and 0 (of multi-
plicity n — 1). It follows that A? has the eigenvalues k — 1 + n = k?
(of multiplicity 1) and £ — 1 (of multiplicity » — 1).

Since A is symmetric and hence diagonalizable, we conclude that A has
the eigenvalues k& (of multiplicity 1) and ++vk — 1. Suppose r of the
eigenvalues are equal to /& — 1 and s of them are equal to —v/k — 1, with
r+ s = n — 1. Now we are almost home. Since the sum of the eigenvalues
of A equals the trace (which is 0), we find

k+rvVk—-1-svk—1 = 0,

and, in particular, r # s, and

E—1 =

§—r
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Now if the square root /7t of a natural number #: is rational, then it is an
integer! An elegant proof for this was presented by Dedekind in 1858: Let
71g be the smallest natural number with ng/m € N, If /m & N, then there
exists £ € M with 0 < \/in — € < 1. Setting 7¢; := ng(y/rn — £), we find
1 € Nand nym = ng(v/m - £3/m = nym — £{ny/m} € N. With
11 < ny this yields a contradiction o the choice of ng.

Returning to our equation, let us set h = +/k — 1 € N, then
h(s—1m) = k = h*+41.

Since /i divides 2% + 1 and #*, we find that & must be equal to 1, and
thus & = 2, which we have already excluded. So we have arrived at a
contradiction. and the proof is complete. O

However, the story is not quite over. Let us rephrase our theorem in the
following way: Suppose (' is a graph with the property that between any
two vertices there is exactly one path of length 2. Clearly, this is an cquiv-
alent formulation of the friendship condition, Our theorem then says that
the only such graphs are the windmill graphs. But what if we consider
paths of length more than 2? A conjecture of Anton Kotzig asserts that the
analogous situation is impossihle.

Kotzig’s Conjecture. Ler € > 2. Then there are no finite graphs with the
property that between any two vertices there is precisely one path of
length £.

Kotzig himsclf verified his conjecture for £ < &. In [3] his conjecture
is proved up to # = 20, and A, Kostochka has told us recently that it is
now verified for all £ < 33. A general proof, however, seems 10 be out of
reach ...
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Probability makes counting
(sometimes) easy

Just us we started this book with the first papers ol Paul ErdSs in num-
ber theory, we close it by discussing what will possibly be considered his
most lasting legacy — the introduction, together with Alfred Rényi, of the
probabilistic method. Stated in the simplest way it says:

If, in a given set of objects, the probability that an object does not
have a certain property is less than 1, then there must exist an object
with this property.

Thus we have an existence result. It may be (and often is) very difficult to
find this object, but we know that it exists. We present here three examples
(of increasing sophistication} of this probabilistic method duc te Erdgs, and
end with a particularly clegant recent application.

As a warm-up, consider a family F of subsets A;, all of size d > 2, of a
finite ground-set X. We say that F is 2-colorable if there exists a coloring
of X with two colors such that in every set 4; both colors appear, It is
immediate that not every family can be colored in this way. As an example,
take all subscts of size d ol a (2d — 1)-set X. Then no matter how we
2-color X, there must be d elements which are colored alike. On the other
hand, it is equally clear that every sublamily of a 2-colorable family of
d-sets is itself 2-colorable. Hence we are interested in the smallest number
m —= m(d) for which a family with m sets exists which is not 2-colorable.
Phrased differently, m({d) is the largest number which guarantees that
every family with less than m({d) sets is 2-colorable.

Theorem 1. Every family of ar most 2471 d-sets is 2-colorable, that is,
mid) > 24-1,

B Proof. Suppose F is a family of d-sets with at most 297! sets. Color X
randomly with two colars, all colorings being equally likely. For cach set

A € F let E 4 be the event thai all elements of A are colored alike, Since
there are preciscly two such colorings, we have

Prob(E4) = (57

and hence with m = |F| < 2%=1 (note that the events E 4 are not disjoint}
d-1
Prob( | | Ea) < D Prob(Es) = m(}) < 1.
AEF AcF
We conclude that there exists some 2-coloring of X without a unicolored
d-set from JF, and this is just our condition of 2-colorability. a

Chapter 35
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An upper bound for rn(d), roughly equal to d%2%, was also established by
Erd&s, again using the prohabilistic method, this time taking random sets
and a fixed coloring, As for exact values, only the first two m(2} = 3,
m{3) = 7 arc known. Of course, (2} = 3 is rcalized by the graph K,
while the Fano configuration yields m(3) < 7. Here JF consists of the seven
3-sets of the figure (including the circle set {4, 5, 6}). The reader may find
it fun to show that 7 needs 3 colors. To prove that all families of six 3-sets
are 2-colorable, and hence m(3) = 7, requires a liitle more care,

Our pext example is the classic in the field ~— Ramsey numhers. Consider
the complete graph & » on V vertices. We say that Ky has property (., n)
if, no matter how we color the edges of K'» red and blue, there is always a
complete subgraph on . vertices with all edges colored red or a complete
subgraph on n vertices with all edges colored blue. Tt is clear that if Kn
has property (m, n), then so does every K, with s > N, So, as in the first
example, we ask for the smallest number N (if it exists) with this property
— and this is the Ramsey number R{m, n}.

As a start, we certainly have R(m, 2} = m because either all of the edges
of K, are red or there is a hlue edge, resulting in a hlue K'5. By symmetry,
we have R(2,n} = n. Now, suppose R{m — 1, n) and R{(m,n — 1} exist.
We then prove that R(m, n} exists and that

R(m,n} < Rlm-1,nr} + Rim,n-1) (1)

Suppose N = R(m — 1,n}+ R(m,n — 1), and consider an arbitrary red-
blue coloring of K . For a vertex v, let A be the set of vertices joined to v
by a red edge, and [ the vertices joined by a blue edge.

Since {A| + |B] = N — 1, we find that either |[A] > R(m — 1,n) or
|B| > R(m,n — 1). Suppose |A| > R{m — 1,n), the other case being
analogous. Then by the definition of A (m — 1, n), there either exists in A a
subset A, of size m — 1 all of whose edges are colored red which together
with v vields a red K, or there is a subset AB of size n with all edges
colored blue, We infer that Ky salisfies the (rn, n)-property and Claim (1)
follows.

Combining (1) with the starting values B(m, 2} = m and R(2,n) = n, we
obtain from the familiar recursion for binomial cocfficicnts

Rim.n) < (m +n— 2)

- e — 1

and, in particular

o 2% -2\ [2k-3 2% 3 _
re < (23 < (B0 (B e o

Now what we are really interested in is a lower bound for R(k, k). This
amounts to proving for an as-large-as-possible N < R{k, k) that there
exists a coloring of the edges such that no red or blue K results. And this
is wherc the probabilistic method comes into play.
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Theorem 2. Forall k > 2, the following lower bound holds for the Ramsey
numbers:

R{k.E) = 9%

B Prool. We have B(2,2) = 2. From (2) we know R(3,3) < 6, and the
pentagon colored as in the figure shows (3, 3) = 6.

Now let us assume £ > 4. Suppose N < 2%, and consider all red-blue

colorings, where we color each edge independently red or blue with proba-
N

bility % Thus all colorings are equally likely with probability 2=(%), Let 4

be a set of vertices of size k. The probability of the event 4 ;, that the edges

in A are all colored red is then 2 (). Hence it follows that the probability
p,, lor some k-set to be colored all red is bounded by

p, = Prob( U Ag) < Z Prob{A ) = (‘f:)‘z—(?)_

|Al=k |Al=k

Now with N < 2% and & > 4, using (‘:) < 5’,}% for k > 2 (scc page 12),
we have

/ 3
(1:)2(3) < Vom0 < 25 -G)si1 _ g-bri o

(S Ed

| S ]

Hence p, < %, and by symmetry p, < % for the probability of somc
k vertices with all edges between them colored hluc. We conclude that
Pptog < lfor N < 2% so there must be a coloring with no red or
blue K. which means that Ky does not have property (£, k). O

Of course, therc is quite a gap between the lower and the upper bound for
Bk, k). Still, as simple as this Book Proof is, no lower bound with a better
exponent has been found for general k£ in the more than 50 years since
ErdGs’ result. In fact, no one has been able to prove a lower bound of the
form R(k, k) > 2(2+<% por an upper bound of the form R{k, k) < 2(2 €)%
fora fixed s > 0.

Our third result is another beautiful illustration of the probabilistic method.
Consider a graph 7 on n vertices and its chromatic number x{G). If x{G)
is high, that is, if we nced many colors, then we might suspect that 7
contains a large complete subgraph. However, this is far from the truth.
Alrcuady in the fourties Blanche Descartes constructed graphs with arbitrar-
ily high chromatic number and no triangles, that is, with every cycle having
length at least 4, and so did several others (see the box on the next page).
However, in these examples there were many cycles of length 4. Can we do
even better? Can we stipulate that there are no cycles of small length and
still have arbitrarily high chromatic number? Yes we can! To make matters
precise, let us call the length of a shortest cycle in G the girth () of (5
then we have the following theorem, first proved by Paul Erdds.
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Triangle-free graphs with high chromatic number
Here is a sequence of triangle-free graphs Ga, (G4, . .. with

Gg:

Constructing the Myciclski graph

x{Gn) = n.

Start with (73 = Cs, the 5-cycle; thus x(G3) = 3. Suppose we have
already constructed (7, on the vertex set V. The new graph 7, ;.1 has
the vertex set V U V' U {z}, where the vertices " € 1/ cotrespond
bijectively to © € V, and z is a single other vertex. The edges of
(.41 fall into 3 classes: First, we take all edges of G,;; secondly
every vertex 1’ is joined to precisely the neighbors of ¢ in G, ; thirdly
2 is joined to all ©* € V', Hence from (3 = Cs we obtain as (74 the
so-called Mycielski graph.

Clearly, G'» 41 is again triangle-free. To prove x{Gne) =n+ 1 we
use induction on 7. Take any n-coloring of (&, and consider a color
class (7. There must exist a ventex ¥ € ' which is adjacent to at
least one vertex ol every other color class; otherwise we could dis-
tribute the vertices of ¢’ onto the n. — 1 other color classes, resulting
in ¥{G,} < n — 1. But now it is clear that ¢” (the vertex in V' cor-
responding to ©) must receive the same color as » in this n-coloring.
So, all n colors appear in V', and we need a new color for z.

Theorem 3. For every k = 2, there exisis a graph (O with chromatic
number {G) > k and girth +{(G) > k.

The strategy is similar to that of the previous proofs: We consider a cer-
tain probability space on graphs and go on to show that the probability for
x () < k is smaller than %, and similarly the probability for v{G} < &
is smaller than ‘3 Consequently, there must exist a graph with the desired
properties.

B Proof. Let V = {v;, vy, ..., s} be the vertex sct, and p a fixed num-
ber between () and 1, to be carelully chosen later. Our probability space
G(n, p) consists of all graphs on V where the individual edges appear with
probability p, independently ol each other. In other words, we are talking
about a Bernoulli experiment where we throw in each edge with proba-
bility . As an example. the probability Prob{ K',) for the complete graph
is Prob{K,,) = -p(g}. In general, we have Prob(H) = p™ {1l — p)(’i)*"" il
the graph H on V' has precisely nt edges.

Let us first look at the chromatic number x{(). By o = a((G) we denote
the independence number, thal is, the size of a largest independent set in .
Since in a coloring with % = x{(7) colors all color classes are independent
(and hence of size < «), we infer yoo > n. Therefore if « is small as
compared to n, then y must be large, which is what we want,

Suppose 2 < v < n. The probabilily that a fixed r-set in V is independent
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is (1 — p)() and we conclude by the same argument as in Theorem 2

r

bz ) < (1)-p®

=1

< n(1 *P)(;) = (n(l-p) r’“z"“)’" < (ne P "11/2)?"

since | — p < 7" for all p,

&
Given any fixed £ > 0 we now choose p := n™ %1, and proceed to show

that for n large enough,

™ 1

Prob(a = —) < - 3

= 2 (3)

Indeed, since n#it grows faster than logn, we have nFT > 6k log n

for large enough n, and thus p > leﬁﬁﬂ. For r := [g;] this gives
pr = 3logn, and thus

e - _pr e _3 1 11 L
ne P /2 e~ et < peTi'987e2 o otez = (£)2

which converges to 0 as n goes to infinity. Hence (3) holds for all nn > nj.

Now we look at the second parameter, v((&). For the given k we want to
show that there are not too many cycles of length < k. Let ¢ be between 3
and k£, and A C V a fixed i-set. The number of possible i-cycles on A is
clearly the number of cyclic permutations of A4 divided by 2 (since we may
traverse the cycle in either direction), and thus equal to bgll The total
number of possible i-cycles is therefore {7}) @ and every such cycle
appears with probability p*, Let X be the random variable which counts the
number of cycles of length < k. In order 10 estimate X we use two simple
but beautiful tools. The first is linearity of expectation, and the second is
Markov’s inequality for nonnegative random variables, which says
Prob(X > a) < %,
where £X is the expected value of X . See the appendix to Chapter 14 for
both tools.
Let X be the indicator random variable of the cycle ' of, say, length i.
That is. we set X = 1 or 0 depending on whether {7 appears in the graph
or not; hence £Xc = p'. Since X counts the number of all cycles of
length < k we have X = 3~ X, and hence by linearity

EX = 2": n (i_l)!pi < linipi < l(k—Q)n*pk
i 2 - 2{:3 ' -

1=3

ro

where the last inequality holds because of np = nFeT > L. Applying now
Markov's inequality with ¢ = 2, we obtain

n EX (np)® oL
i < — — = — LA
Prob{X > ) < /2 < {(k—-2) " (k— 2in»
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Since the right-hand side goes to 0 with n going to infinity, we infer that
pX = 35)< % forv = ria.

Now we are almost home. Our analysis tells us that for n > max(rn;, ng)
there exists a graph I/ on n vertices with o(H) < g and fewer than §
cycles of length << k. Delete one vertex from each of these cycles, and

let (5 be the resulting graph. Then +({7) > k holds at any rate. Since (7

contains more than 7 vertices and satisfies (') < a(H) < %, we find

n/2 n no
oG Z 2a(H) ~ ik k

x(G) =

and the proof is finished. |

Explicit constructions of graphs with high girth and chromatic number (of
huge size) are known. (In contrast, one does not know how to construct
red/blue colorings with no large monochromatic cligues, whose existence
is given by Theorem 2.} What remains striking about the Erdds proof is
that it proves the existence of relatively small graphs with high chromatic
number and girth.

To end our excursion into the probabilistic world let us discuss an important
result in geometric graph theory (which again goes back to Paul Erdds)
whose stunning Book Proof is of very recent vintage.

Consider a simple graph (¢ = G{V, E) with n vertices and m edges. We
want to embed & into the plane just as we did for planar graphs. Now, we
know from Chapter 11 — as a consequence of Euler’s formula — that a
simple planar graph ¢ has at most 3n — 6 edges. Hence if m is greater
than 3n — G, there must be crossings of edges. The crossirng number cr{(7)
is then naturally defined: It is the smallest number of crossings among all
drawings of (5, where crossings of more than two edges in one point are
not allowed. Thus cr{(7) = 0if and only if 7 is planar.

In such a minimal drawing the following three situations are ruled out:

e No edge can cross itself.
s Edges with a common endvertex cannot cross.

» No two edges cross twice.

This is because in either of these cases, we can construct a different drawing
of the same graph with fewer crossings, using the operations that are indi-
cated in our figurc. So, from now on wc assume that any drawing observes
these rules.

Suppose that G is drawn in the plane with cr(¢7) crossings. We can im-
mediately derive a lower bound on the number of crossings. Consider the
following graph H: The vertices of H are those of & together with all
crossing points, and the edges are all pieces of the onginal edges as we go
along from crossing point to crossing point.

The new graph H is now plane and simple (this follows Irom our three
assumptions!). The number of vertices in H is n + ¢r((7) and the number
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of edges 1s . + 2er((7), since every new vertex has degree 4. Invoking the
bound on the number of edges for plane graphs we thus find

m-+ 2er(G) < 3(n+ (7)) - 6,

that is,
er{fG) = m—3n+6. (4)

As an example, for the complete graph Kz we compute
cr{Kg) » 15~ 1846=3

and, in fact, there is an drawing with just 3 crossings.
The bound (4) is good enough when m is linear in n, but when m is larger
compared to n, then the picture changes, and this is our theorem.

Theorem 4. Ler (7 be a simple graph with n vertices and m edges, where
m > 4An. Then

m3

4ne

1
>
er{G) = "

The history of this result, called the crossing lemma, is quite interesling.
It was conjectured by Erd8s and Guy in 1973 (wnh 7 replaced by some
constant c) The first proofs were given by Leighton i 1n 1982 (with — mu
stead of 7 and independently by Ajtai, Chvital, Newborn and Szemeredl
The crossmg lemma was hardly known (in fact, many people thought ol it
as a conjecture long after the original proofs), until Lasz16 Székely demon-
strated its usefulness in a beautiful paper, applying it to a variety of hitherto
hard geometric extremal problems. The proofl which we now present arose
from e-mail conversations between Bernard Chazelle, Micha Sharir and
Emo Welzl, and it belongs without doubt in The Book,

8 Proof. Consider a minimai drawing of (7, and let p be a number between
) and 1 (to be chosen later). Now we generate a subgraph of (7, by selecting
the vertices of & to lie in the subgraph with probability p, independently
from each other. The induced subgraph that we obtain that way will be
called G.

Let 1, iy, X, be the random variables counting the number of vertices,
of edges, and of crossings in (7. Since ¢r{G') —m + 3n > 0 holds by (4)
for any graph, we certainly have

E(Xp —~m,+ 3n,) > 0.

Now we proceed to compute the individual expectations E(n,), E(m,,) and
E(X,). Clearly, E(n,) = pn and E(m,) = p%mn, since an edge appears
in (7, il and only if both its endvertices do. And finally, £(X,) = p*er(Q),
since a crossing is present in G, if and only if all four (distinct!) vertices
involved are there.

==

/'
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By linearity of expectation we thus find
0 < B(X,) — E(my) + 3E(n,) = pler(G) - p*m + 3pn,

which is )
p°m — 3pn m 3dn
criG} > ————— = — = —. (3
© = P2 L )
Here comes the punch line; Setp := %‘ (which is at most 1 by our assump-
tion), then (5) becomes

1 mﬁi

i
crlG) 2 gy (n/m)'z(n/m)ﬂ] = 64

and this is it. O

Paul Erdds would have loved to see this proof.
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