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Convolution Polynomials

Donald E. Knuth

Computer Science Department

Stanford, California 94305–2140

Abstract. The polynomials that arise as coefficients when a power series is raised to the

power x include many important special cases, which have surprising properties that are

not widely known. This paper explains how to recognize and use such properties, and it

closes with a general result about approximating such polynomials asymptotically.

A family of polynomials F0(x), F1(x), F2(x), . . . forms a convolution family if Fn(x) has degree ≤ n

and if the convolution condition

Fn(x + y) = Fn(x)F0(y) + Fn−1(x)F1(y) + · · · + F1(x)Fn−1(y) + F0(x)Fn(y)

holds for all x and y and for all n ≥ 0. Many such families are known, and they appear frequently

in applications. For example, we can let Fn(x) = xn/n!; the condition

(x + y)n

n!
=

n∑

k=0

xk

k!

yn−k

(n − k)!

is equivalent to the binomial theorem for integer exponents. Or we can let Fn(x) be the binomial

coefficient
(

x
n

)
; the corresponding identity

(
x + y

n

)
=

n∑

k=0

(
x

k

)(
y

n − k

)

is commonly called Vandermonde’s convolution.

How special is the convolution condition? Mathematica will readily find all sequences of

polynomials that work for, say, 0 ≤ n ≤ 4:

F[n_,x_]:=Sum[f[n,j]x^j,{j,0,n}]/n!

conv[n_]:=LogicalExpand[Series[F[n,x+y],{x,0,n},{y,0,n}]

==Series[Sum[F[k,x]F[n-k,y],{k,0,n}],{x,0,n},{y,0,n}]]

Solve[Table[conv[n],{n,0,4}],

[Flatten[Table[f[i,j],{i,0,4},{j,0,4}]]]]

Mathematica replies that the F ’s are either identically zero or the coefficients of Fn(x) =
(
fn0 +

fn1x + fn2x
2 + · · · + fnnxn

)
/n! satisfy

f00 = 1 , f10 = f20 = f30 = f40 = 0 ,

f22 = f2
11 , f32 = 3f11f21 , f33 = f3

11 ,

f42 = 4f11f31 + 3f2
21 , f43 = 6f2

11f21 , f44 = f4
11 .
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This allows us to choose f11, f21, f31, and f41 freely.

Suppose we weaken the requirements by asking only that the convolution condition hold when

x = y. The definition of conv then becomes simply

conv[n_]:=LogicalExpand[Series[F[n,2x],{x,0,n}]

==Series[Sum[F[k,x]F[n-k,x],{k,0,n}],{x,0,n}]]

and we discover that the same solutions occur. In other words, the weaker requirements imply that

the strong requirements are fulfilled as well.

In fact, it is not difficult to discover a simple rule that characterizes all “convolution families.”

Let

F (z) = 1 + F1z + F2z
2 + F3z

3 + · · ·

be any power series with F (0) = 1. Then the polynomials

Fn(x) = [zn]F (z)x

form a convolution family. Conversely, every convolution family arises in this way or is identically

zero. (Here the notation ‘[zn] expr’ stands for what Mathematica calls Coefficient[expr,z,n].)

Proof. Let f(z) = ln F (z) = f1z + f2z
2/2! + f3z

3/3! + · · · . It is easy to verify that the coefficient

of zn in F (z)x is indeed a polynomial in x of degree ≤ n, because F (z)x = exf(z) = exp(xf1z +

xf2z
2/2! + xf3z

3/3! + · · · ) expands to the power series

∑

k1,k2,k3,...≥0

xk1+k2+k3+··· fk1

1 fk2

2 fk3

3 . . .

1!k1 k1! 2!k2 k2! 3!k3 k3! . . .
zk1+2k2+3k3+··· ;

when k1 + 2k2 + 3k3 + · · · = n the coefficient of zn is a polynomial in x with terms of degree

k1 + k2 + k3 + · · · ≤ n. This construction produces a convolution family because of the rule for

forming coefficients of the product F (z)x+y = F (z)xF (z)y .

Conversely, suppose the polynomials Fn(x) form a convolution family. The condition F0(0) =

F0(0)
2 can hold only if F0(x) = 0 or F0(x) = 1. In the former case it is easy to prove by induction

that Fn(x) = 0 for all n. Otherwise, the condition Fn(0) = 2Fn(0) for n > 0 implies that Fn(0) = 0

for n > 0. If we equate coefficients of xk on both sides of

Fn(2x) = Fn(x)F0(x) + Fn−1(x)F1(x) + · · · + F1(x)Fn−1(x) + F0(x)Fn(x) ,

we now find that the coefficient fnk of xk in n!Fn(x) is forced to have certain values based on

the coefficients of F1(x), . . . , Fn−1(x), when k > 1, because 2kfnk occurs on the left and 2fnk

on the right. The coefficient fn1 can, however, be chosen freely. Any such choice must make

Fn(x) = [zn] exp(xf11z + xf21z
2/2! + xf31z

3/3! + · · · ), by induction on n.

Examples. The first example mentioned above, Fn(x) = xn/n!, comes from the power series

F (z) = ez; the second example, Fn(x) =
(

x
n

)
, comes from F (z) = 1 + z. Several other power series
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are also known to have simple coefficients when we raise them to the power x. If F (z) = 1/(1− z),

for instance, we find

[zn] (1 − z)−x =

(−x

n

)
(−1)n =

(
x + n − 1

n

)
.

It is convenient to use the notations

xn = x(x − 1) . . . (x − n + 1) = x!/(x − n)!

xn = x(x + 1) . . . (x + n − 1) = Γ(x + n)/Γ(x)

for falling factorial powers and rising factorial powers. Since
(

x
n

)
= xn/n! and

(
x+n−1

n

)
= xn/n!,

our last two examples have shown that the polynomials xn/n! and xn/n! form convolution families,

corresponding to F (z) = 1 + z and F (z) = 1/(1 − z). Similarly, the polynomials

Fn(x) =
x(x − s)(x − 2s) . . .

(
x − (n − 1) s)

n!

form a convolution family corresponding to (1 + sz)1/s when s 6= 0.

The cases F (z) = 1 + z and F (z) = 1/(1 − z) are in fact simply the cases t = 0 and t = 1 of a

general formula for the binomial power series Bt(z), which satisfies

Bt(z) = 1 + z Bt(z)t .

When t is any real or complex number, exponentiation of this series is known to yield

[zn]Bt(z)x =

(
x + tn

n

)
x

x + tn
=

x(x + tn − 1) . . . (x + tn − n + 1)

n!
;

see, for example, [Graham et al 1989, section 7.5, example 5], where a combinatorial proof is given.

The special cases t = 2 and t = −1,

B2(z) =
1 −

√
1 − 4z

2z
= 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + · · · ,

B−1(z) =
1 +

√
1 + 4z

2
= 1 + z − z2 + 2z3 − 5z4 + 14z5 − · · · ,

in which the coefficients are the Catalan numbers, arise in numerous applications. For example,

B2(z) is the generating function for binary trees, and B1(−z) is the reciprocal of B2(z). We can get

identities in trigonometry by noting that B2

(
(1
2

sin θ)2
)

= sec2(θ/2). Furthermore, if p and q are

probabilities with p + q = 1, it turns out that B2(pq) = 1/max(p, q). The case t = 1/2,

B1/2(z) =

(
z +

√
4 + z2

2

)2

= 1 + z +
z2

2
+

z3

23
− z5

27
+

2z7

211
− 5z9

215
+

14z11

219
− · · · ,

is another interesting series in which the Catalan numbers can be seen. The convolution polynomials

in this case are the “central factorials” x(x + n
2 − 1)n−1/n! [Riordan 1968, section 6.5], also called

Steffensen polynomials [Roman and Rota 1978, example 6].
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The convolution formula corresponding to Bt(z),

(
x + y + tn

n

)
x + y

x + y + tn
=

n∑

k=0

(
x + tk

k

)
x

x + tk

(
y + t(n − k)

n − k

)
y

y + t(n − k)

is a rather startling generalization of Vandemonde’s convolution; it is an identity for all x, y, t,

and n.

The limit of Bt(z/t)t as t → ∞ is another important function T (z)/z; here

T (z) =
∑

n≥1

nn−1

n!
zn = z + z2 +

3z3

2
+

8z4

3
+

125z5

24
+ · · ·

is called the tree function because nn−1 is the number of labeled, rooted trees. The tree function

satisfies

T (z) = zeT (z) ,

and we have the corresponding convolution family

[zn]

(
T (z)

z

)x

= [zn] exT (z) =
x(x + n)n−1

n!
.

The related power series

1 + zT ′(z) =
1

1 − T (z)
=
∑

n≥0

nnzn

n!
= 1 + z + 2z2 +

9z3

2
+

32z4

3
+

625z5

24
+ · · ·

defines yet another convolution family of importance: We have

[zn]
1(

1 − T (z)
)x =

tn(x)

n!
,

where tn(x) is called the tree polynomial of order n [Knuth and Pittel 1989]. The coefficients of

tn(x) = tn1x + tn2x
2 + · · · + tnnxn are integers with combinatorial significance; namely, tnk is the

number of mappings of an n-element set into itself having exactly k cycles.

A similar but simpler sequence arises from the coefficients of powers of ezez

:

n! [zn] exzez

=

n∑

k=0

(
n

k

)
kn−kxk .

The coefficient of xk is the number of idempotent mappings of an n-element set into itself, having

exactly k cycles [Harris and Schoenfeld 1967].

If the reader still isn’t convinced that convolution families are worthy of detailed study, well,

there’s not much hope, although another example or two might clinch the argument. Consider the

power series

eez−1 =
∑ bnzn

n!
= 1 +

z

1!
+

2z2

2!
+

5z3

3!
+

15z4

4!
+

52z5

5!
+ · · · ;
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these coefficients bn are the so-called Bell numbers, the number of ways to partition sets of size n

into subsets. For example, the five partitions that make b3 = 5 are

{1, 2, 3} , {1}{2, 3} , {1, 2}{3} , {1, 3}{2} , {1}{2}{3} .

The corresponding convolution family is

[zn] e(ez

−1)x =

{
n
0

}
+
{

n
1

}
x +

{
n
2

}
x2 + · · · +

{
n
n

}
xn

n!
,

where the Stirling number
{

n
k

}
is the number of partitions into exactly k subsets.

Need more examples? If the coefficients of F (z) are arbitrary nonnegative numbers with a finite

sum S, then F (z)/S defines a discrete probability distribution, and the convolution polynomial

Fn(x) is Sx times the probability of obtaining the value n as the sum of x independent random

variables having that distribution.

A derived convolution. Every convolution family {Fn(x)} satisfies another general convolution

formula in addition to the one we began with:

(x + y)
n∑

k=0

k Fk(x)Fn−k(y) = xn Fn(x + y) .

For example, if Fn(x) is the convolution family corresponding to powers of Bt(z), this formula says

that

(x + y)
n∑

k=0

k

(
x + tk

k

)
x

x + tk

(
y + t(n − k)

n − k

)
y

y + t(n − k)
= xn

(
x + y + tn

n

)
x + y

x + y + tn
;

it looks messy, but it simplifies to another amazing identity in four parameters,

n∑

k=0

(
x + t(n − k)

n − k

)(
y + tk

k

)
y

y + tk
=

(
x + y + tn

n

)

if we replace n by n + 1, k by n + 1− k, and x by x− t + 1. This identity has an interesting history

going back to Rothe in 1793 see [Gould and Kaucký 1966].

The alternative convolution formula is proved by differentiating the basic identity F (z)x =∑
n≥0 Fn(x)zn with respect to z and multiplying by z:

xzF ′(z)F (z)x−1 =
∑

n≥0

n Fn(x) zn .

Now
∑n

k=0 k Fk(x)Fn−k(y) is the coefficient of zn in xzF ′(z)F (z)x+y−1, while nFn(x + y) is the

coefficient of zn in (x + y)zF ′(z)F (z)x+y−1. Q.E.D.

Convolution and composition. Once upon a time I was trying to remember the form of a

general convolution family, so I gave Mathematica the following command:

Simplify[Series[(1+Sum[A[k]z^k,{k,4}])^x,{z,0,4}]]

5



The result was a surprise. Instead of presenting the coefficient of zn as a polynomial in x, Math-

ematica chose another form: The coefficient of z2, for example, was 1
2
A2

1x(x − 1) + A2x. In the

notation of falling factorial powers, Mathematica’s response took the form

1 + A1xz +
(

1
2
A2

1x
2 + A2x

)
z2 +

(
1
6
A3

1x
3 + A1A2x

2 + A3x
)
z3

+
(

1
24A4

1x
4 + 1

2A2
1A2x

3 +
(
A1A3 + 1

2A2
2

)
x2 + A4x

)
z4 + O(z)5 .

I wasn’t prepared to work with factorial powers, so I tried another tack:

Simplify[Series[Exp[Sum[a[k]z^k,{k,4}]x],{z,0,4}]]

This time I got ordinary polynomials in x, but—lo and behold—they were

1 + a1xz +
(

1
2a2

1x
2 + a2x

)
z2 +

(
1
6a3

1x
3 + a1a2x

2 + a3x) z3

+
(

1
24a4

1x
4 + 1

2a2
1a2x

3 +
(
a1a3 + 1

2a2
2

)
x2 + a4x

)
z4 + O(z)5 .

The result was exactly the same as before, but with a’s in place of A’s, and with normal powers in

place of the factorials!

So I learned a curious phenomenon: If we take any convolution family and replace each power

xk by xk, we get another convolution family. (By the way, the replacement can be done in Math-

ematica by saying

Expand[F[n,x]]/.Power[x,k_]->k!Binomial[x,k];

expansion is necessary in case Fn(x) has been factored.)

The proof was not difficult to find, once I psyched out how Mathematica might have come up

with its factorial-based formula: We have

exf(z) = 1 + f(z)x +
f(z)2

2!
x2 +

f(z)3

3!
x3 + · · · ,

and furthermore
(
1 + f(z)

)x
= 1 + f(z)x +

f(z)2

2!
x2 +

f(z)3

3!
x3 + · · · .

Therefore if we start with the convolution family Fn(x) corresponding to F (z) = ef(z), and replace

each xk by xk, we get the convolution family corresponding to 1 + f(z) = 1 + ln F (z).

A similar derivation shows that if we replace xk by the rising factorial power xk instead, we

get the convolution family corresponding to 1/
(
1 − f(z)

)
= 1/

(
1 − ln F (z)

)
. In particular, if we

begin with the family Fn(x) = x(x+n)n−1/n! corresponding to T (z)/z = eT (z), and if we replace xk

by xk to get

1

n!

n−1∑

k=0

(
n − 1

k

)
xk+1 nn−1−k ,

this must be [zn]
(
1 − T (z)

)−x
= tn(x)/n!, the tree polynomial.

6



Indeed, we can replace each xk by k!Gk(x), where {Gk(x)} is any convolution family whatever!

The previous examples, xk and xk, are merely the special cases k!
(
x
k

)
and k!

(
x+k−1

k

)
corresponding

to two of the simplest and most basic families we have considered. In general we get

1 + f(z)G1(x) +
f(z)2

2!
2!G2(x) +

f(z)3

3!
3!G3(x) + · · · ,

which is none other than G
(
f(z)

)x
= G

(
ln F (z)

)x
.

For example, Gk(x) =
(
x+2k

k

)
x

x+2k = x(x+2k−1)k−1/k! is the family corresponding to B2(z).

If we know the family Fn(x) corresponding to ef(z) we can replace xk by x(x+ 2k− 1)k−1, thereby

obtaining the family that corresponds to B2

(
f(z)

)
=
(
1 +

√
1 − 4f(z)

)
/2f(z).

Convolution matrices. I knew that such remarkable facts must have been discovered before,

although they were new to me at the time. And indeed, it was not difficult to find them in books,

once I knew what to look for. (Special cases of general theorems are not always easy to recognize,

because any particular formula is a special case of infinitely many generalizations, almost all of

which are false.)

In the special case that each polynomial Fn(x) has degree exactly n, i.e., when f1 6= 0, the

polynomials n!Fn(x) are said to be of binomial type [Mullin and Rota 1970]. An extensive theory

of such polynomial sequences has been developed [Rota et al 1973] [Garsia 1973] [Roman and Rota

1978], based on the theory of linear operators, and the reader will find it quite interesting to compare

the instructive treatment in those papers to the related but rather different directions explored in

the present work. A comprehensive exposition of the operator approach appears in [Roman 1984].

Actually, Steffensen had defined a concept called poweroids, many years earlier [Steffensen 1941],

and poweroids are almost exactly the same as sequences of binomial type; but Steffensen apparently

did not realize that his poweroids satisfy the convolution property, which we can readily deduce

(with hindsight) from equations (6) and (7) of his paper.

Eri Jabotinsky introduced a nice way to understand the phenomena of convolution polynomials,

by considering the infinite matrix of coefficients fnk [Jabotinsky 1947]. Let us recapitulate the

notation that was introduced informally above:

exf(z) = F (z)x = 1 + F1(x) z + F2(x) z2 + · · · ;

Fn(x) = (fn1x + fn2x
2 + · · · + fnnxn)/n! ;

f(z) = f1z + f2z
2/2! + f3z

3/3! + · · · .

Then Jabotinsky’s matrix F = (fnk) is a lower triangular matrix containing the coefficients of

n!Fn(x) in the nth row. The first few rows are

f1

f2 f2
1

f3 3f1f2 f3
1

f4 4f1f3 + 3f2
2 6f2

1 f2 f4
1 ,

7



as we saw earlier. In general,

fnk =
∑ n!

1!k1 k1! 2!k2 k2! 3!k3 k3! . . .
fk1

1 fk2

2 fk3

3 . . . ,

summed over all k1, k2, k3, . . . ≥ 0 with

k1 + k2 + k3 + · · · = k , k1 + 2k2 + 3k3 + · · · = n .

(The summation is over all partitions of the integer n into k parts, where kj of the parts are equal

to j.) We will call such an array a convolution matrix.

If each original coefficient fj is an integer, all entries of the corresponding convolution matrix

will be integers, because the complicated quotient of factorials in the sum is an integer—it is the

number of ways to partition a set of n elements into k subsets with exactly kj of the subsets having

size j. Given the first column we can compute the other columns from left to right and from top

to bottom by using the recurrence

fnk =
n−k+1∑

j=1

(
n − 1

j − 1

)
fj f(n−j)(k−1) .

This recurrence is based on set partitions on which the element n occurs in a subset of size j:

There are
(
n−1
j−1

)
ways to choose the other j − 1 elements of the subset, and the factor f(n−j)(k−1)

corresponds to partitioning the remaining n − j elements into k − 1 parts.

For example, if each fj = 1, the convolution matrix begins

1

1 1

1 3 1

1 7 6 1 .

1 15 25 10 1

These are the numbers
{

n
k

}
that Mathematica calls StirlingS2[n,k]; they arose in our example

of Bell numbers when f(z) = ez − 1. Similarly, if each fj = (j − 1)!, the first five rows are

1

1 1

2 3 1

6 11 6 1 ;

24 50 35 10 1

Mathematica calls these numbers (-1)^(n-k)StirlingS1[n,k]. In this case f(z) = ln
(
1/(1− z)

)
,

and Fn(z) =
(
x+n−1

n

)
. The signed numbers StirlingS1[nk],

1

−1 1

2 −3 1

−6 11 −6 1

24 −50 35 −10 1

8



correspond to f(z) = ln(1 + z) and Fn(z) =
(

x
n

)
. In general if we replace z by αz and x by βx,

the effect is to multiply row n of the matrix by αn and to multiply column k by βk. Thus when

β = α−1, the net effect is to multiply fnk by αn−k. Transforming the signs by a factor (−1)n−k

corresponds to changing F (z) to 1/F (−z) and f(z) to −f(−z). Therefore the matrix that begins

1

−1 1

1 −3 1

−1 7 −6 1

1 −15 25 −10 1

corresponds to f(z) = 1 − e−z.

Let’s look briefly at some of our other examples in matrix form. When F (z) = Bt(z), we have

fj = (tj − 1)j−1, which is an integer when t is an integer. In particular, the Catalan case t = 2

produces a matrix that begins
1

3 1

20 9 1

210 107 18 1

3024 1650 335 30 1 .
When t = 1/2, we can remain in an all-integer realm by replacing z by 2z and x by x/2. Then

fj = 0 when j is even, while f2j+1 = (−1)j(2j − 1)!!2:

1

0 1

−1 0 1

0 −4 0 1 ;

9 0 −10 0 1

If we now replace z by iz and x by x/i to eliminate the minus signs, we find that f(z) = arcsin z,

because ln
(
iz+

√
1 − z2

)
= iθ when z = sin θ. Thus we can deduce a closed form for the coefficients

of ex arcsin z = B1/2(2iz)x/(2i):

n! [zn] ex arcsin z = (2i)n−1x
( x

2i
+

n

2
− 1
)

. . .
( x

2i
− n

2
+ 1
)

=

{
x2(x2 + 22) . . .

(
x2 + (n − 2)2

)
, n even;

x(x2 + 12)(x2 + 32) . . .
(
x2 +

(
(n − 2)2

))
, n odd.

This remarkable formula is equivalent to the theorem of [Gomes Teixeira 1896].

If fj = 21−j when j is odd but fj = 0 when j is even, we get the convolution matrix corre-

sponding to e2x sinh(z/2):
1

0 1
1
4 0 1

0 1 0 1
1
16 0 5

2 0 1

0 1 0 5 0 1
1
64 0 91

16 0 35
4 0 1

0 1 0 21 0 14 0 1 .
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Again we could stay in an all-integer realm if we replaced z by 2z and x by x/2; but the surprising

thing in this case is that the entries in even-numbered rows and columns are all integers before we

make any such replacement. The reason is that the entries satisfy fnk = k2f(n−2)k/4+ f(n−2)(k−2).

(See [Riordan 1968, pages 213–217], where the notation T (n, k) is used for these “central factorial

numbers” fnk.)

We can complete our listing of noteworthy examples by setting fj =
∑n

k=1 nn−k−1nk; then

we get the coefficients of the tree polynomials:

1

3 1

17 9 1

142 95 18 1

1569 1220 305 30 1 .

The sum of the entries in row n is nn.

Composition and iteration. Jabotinski’s main reason for defining things as he did was his

observation that the product of convolution matrices is a convolution matrix. Indeed, if F and G are

the convolution matrices corresponding to the functions exf(z) and exg(z) we have the vector/matrix

identities
exf(z) − 1 = (z, z2/2!, z3/3!, . . . )F (x, x2, x3, . . . )T

exg(z) − 1 = (z, z2/2!, z3/3!, . . . )G (x, x2, x3, . . . )T

If we now replace xk in exf(z) by k!Gk(x), as in our earlier discussion, we get

(z, z2/2!, z3/3!, . . . )F
(
G1(x), 2!G(x), 3!G3(x), . . .

)T

=(z, z2/2!, z3/3!, . . . )FG (x, x2, x3, . . . )T

=
(
f(z), f(z)2/2!, f(z)3/3!, . . .

)
G (x, x2, x3, . . . )T

=exg(f(z)) − 1 .

Multiplication of convolution matrices corresponds to composition of the functions in the exponent.

Why did the function corresponding to FG turn out to be g
(
f(z)

)
instead of f

(
g(z)

)
? Jabotin-

sky, in fact, defined his matrices as the transposes of those given here. The rows of his (up-

per triangular) matrices were the power series f(z)k, while the columns were the polynomials

Fn(x) = [zn] exf(z); with those conventions the product of his matrices FTGT corresponded to

f
(
g(z)

)
. (In fact, he defined a considerably more general representation, in which the matrix F

could be U−1FU for any nonsingular matrix U .) However, when our interest is focussed on the

polynomials n!Fn(x), as when we study Stirling numbers or tree polynomials or the Stirling poly-

nomials to be discussed below, it is more natural to work with lower triangular matrices and to

insert factorial coefficients, as Comtet did [Comtet 1970, section 3.7]. The two conventions are iso-

morphic. Without the factorials, convolution matrices are sometimes called renewal arrays [Rogers

1978]. We would get a non-reversed order if we had been accustomed to using postfix notation
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(z)f for functions, as we do for operations such as squaring or taking transposes or factorials; then

g
(
f(z)

)
would be

(
(z)f

)
g.

Recall that the Stirling numbers
{

n
k

}
correspond to f(z) = ez − 1, and the Stirling numbers[

n
k

]
correspond to g(z) = ln

(
1/(1 − z)

)
. Therefore if we multiply Stirling’s triangles we get the

convolution matrix
1

2 1

FG = 6 6 1 ,

26 36 12 1

150 250 120 20 1

which corresponds to g
(
f(z)

)
= ln

(
1/(2 − ez)

)
. Voila! These convolution polynomials represent

the coefficients of (2 − ez)−x. [Cayley 1859] showed that (2 − ez)−1 is the exponential generating

function for the sequence 1, 3, 13, 75, 541, . . . , which counts preferential arrangements of n objects,

i.e., different outcomes of sorting when equality is possible as well as inequality. The coefficient

(fg)nk is the number of preferential arrangements in which the “current minimum” changes k times

when we examine the elements one by one in some fixed order. (See [Graham et al 1989, exercise

7.44].)

Similarly, the reverse matrix product yields the so-called Lah numbers [Lah 1955],

1

2 1

GF = 6 6 1 ;

24 36 12 1

120 240 120 20 1

here fj = j! and the rows represent the coefficients of exp
(
xf
(
g(z)

))
= exp(xz+xz2+xz3+· · · ). In-

deed, the convolution polynomials in this case are the generalized Laguerre polynomials L
(−1)
n (−x),

which Mathematica calls LaguerreL[n,-1,-x]. These polynomials can also be expressed as

Ln(−x) − Ln−1(−x); or as LaguerreL[n,-x]-LaguerreL[n-1,-x] if we say

Unprotect[LaguerreL]; LaguerreL[-1,x_]:=0; Protect[LaguerreL]

first. The row sums 1, 3, 13, 73, 501, . . . of GF enumerate “sets of lists” [Motzkin 1971]; the coeffi-

cients are (GF )nk = n! [zn] f
(
g(z)

)k
/k! =

(
n
k

)(
n−1
k−1

)
(n − k)! [Riordan 1968, exercise 5.7].

Since convolution matrices are closed under multiplication, they are also closed under exponen-

tiation, i.e., under taking of powers. The qth power F q of a convolution matrix then corresponds

to q-fold iteration of the function lnF = f . Let us denote f
(
f(z)

)
by f [2](z); in general, the qth

iterate f [q](z) is defined to be f
(
f [q−1](z)

)
, where f [0](z) = z. This is Mathematica’s Nest[f,z,q].

The qth iterate can be obtained by doing O(log q) matrix multiplications, but in the interesting

case f ′(0) = f1 = 1 we can also compute the coefficients of f [q](z) by using formulas in which q

is simply a numerical parameter. Namely, as suggested by [Jabotinsky 1947], we can express the

matrix power F q as

(
I + (F − I)

)q
= I +

(
q

1

)
(F − I) +

(
q

2

)
(F − I)2 +

(
q

3

)
(F − I)3 + · · · .

11



This infinite series converges, because the entry in row n and column k of (F − I)j is zero for all

j > n − k. When q is any positive integer, the result defined in this way is a convolution matrix.

Furthermore, the matrix entries are all polynomials in q. Therefore the matrix obtained by this

infinite series is a convolution matrix for all values of q.

Another formula for the entries of F q was presented in [Jabotinsky 1963]. Let f
(q)
nk be the

element in row n and column k; then

f
(q)
nk =

m∑

l=0

(
q

l

)
(F − I)l

nk

=

m∑

j=0

f
(j)
nk

m∑

l=j

(
q

l

)(
l

j

)
(−1)l−j

=

m∑

j=0

f
(j)
nk

(
q

j

) m∑

l=j

(
q − j

l − j

)
(−1)l−j

=

m∑

j=0

f
(j)
nk

(
q

j

)(
q − j − 1

m − j

)
(−1)m−j ,

for any m ≥ n−k. Indeed, we have p(q) =
∑m

j=0 p(j)
(

q
j

)(
q−j−1
m−j

)
(−1)m−j whenever p is a polynomial

of degree ≤ m; this is a special case of Lagrange interpolation.

It is interesting to set q = 1/2 and compute convolution square roots of the Stirling number

matrices. We have




1
1/2 1
1/8 3/2 1
0 5/4 3 1

1/32 5/8 5 5 1




2

=




1
1 1
1 3 1
1 7 6 1
1 15 25 10 1


 ;




1
1/2 1
5/8 3/2 1
5/4 13/4 3 1

109/32 75/8 10 5 1




2

=




1
1 1
2 3 1
6 11 6 1
24 50 35 10 1


 .

The function z+z2/4+z3/48+z5/3840−7z6/92160+· · · therefore lies “halfway” beween z and ez−1 =

z + z2/2!+ z3/3!+ · · · , and the function z + z2/4+5z3/48+5z4/96+109z5/3840+497z6/30720+ · · ·
lies halfway between z and ln 1/(1 − z) = z + z2/2 + z3/3 + · · · . These half-iterates are unfamiliar

functions; but it is not difficult to prove that z/(1 − z/2) = z + z2/2 + z3/4 + · · · is halfway

between z and z/(1 − z) = z + z2 + z3 + · · · . In general when f(z) = z/(1 − czk)1/k we have

f [q](z) = z/(1 − qczk)1/k.

It seems natural to conjecture that the coefficients of f [q](z) are positive for q > 0 when

f(z) = ln 1/(1 − z); but this conjecture turns out to be false, because Mathematica reports that
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[z8] f [q](z) = −11q/241920 + O(q2). Is there a simple necessary and sufficient condition on f that

characterizes when all coefficients of f [q] are nonnegative for nonnegative q? This will happen if

and only if the entries in the first column of

ln F = (F − I) − 1
2
(F − I)2 + 1

3
(F − I)3 − · · ·

are nonnegative. (See [Kuczma 1968] for iteration theory and an extensive bibliography.)

Reversion. The case q = −1 of iteration is often called reversion of series, although Mathematica

uses the more proper name InverseSeries. Given f(z) = f1z + f2z
2/2! + · · · , we seek g(z) =

f [−1](z) such that g
(
f(z)

)
= z. This is clearly equivalent to finding the first column of the inverse

of the convolution matrix.

The inverse does not exist when f1 = 0, because the diagonal of F is zero in that case.

Otherwise we can assume that f1 = 1, because f1g
(
f(z/f1)

)
= z when g reverts the power series

f(z/f1).

When f1 = 1 we can obtain the inverse by setting q = −1 in our general formula for iteration.

But Lagrange’s celebrated inversion theorem for power series tells us that there is another, more

informative, way to compute the function g = f [−1]. Let us set F̂ (z) = f(z)/z = 1 + f2z/2! +

f3z
2/3! + · · · . Then Lagrange’s theorem states that the elements of the matrix G = F−1 are

gnk =
(n − 1)!

(k − 1)!
F̂n−k(−n) ,

where F̂n(x) denotes the convolution family corresponding to F̂ (z).

There is a surprisingly simple way to prove Lagrange’s theorem, using our knowledge of con-

volution families. Note first that

fnk = n! [znxk] exf(z) =
n!

k!
[zn] f(z)k =

n!

k!
[zn−k] F̂ (z)k ;

therefore

fnk =
n!

k!
F̂n−k(k) .

Now we need only verify that the matrix product GF is the identity, by computing its element in

row n and column m:
n∑

k=m

gnkfkm =

n∑

k=m

(n − 1)!

(k − 1)!
F̂n−k (−n)

k!

m!
F̂k−m(m) .

When m = n the sum is obviously 1. When m = n − p for p > 0 it is (n − 1)!/(n − p)! times

n∑

k=n−p

k F̂n−k(−n) F̂k−n+p(n − p) =

p∑

k=0

(n − k) F̂k(−n) F̂p−k(n − p)

= n

p∑

k=0

F̂k(−n) F̂p−k(n − p) −
p∑

k=0

k F̂k(−n) F̂p−k(n − p)

= n F̂p(−p) − n F̂p(−p) = 0

13



by the original convolution formula and the one we derived from it. The proof is complete.

Extending the matrix. The simple formula for fnk that we used to prove Lagrange’s theorem

when f1 = 1 can be written in another suggestive form, if we replace k by n − k:

fn(n−k) = nk F̂k(n − k) .

For every fixed k, this is a polynomial in n, of degree ≤ 2k. Therefore we can define the quantity

fy(y−k) for all real or complex y to be yk F̂k(y − k); and in particular we can define fnk in this

manner for all integers n and k, letting fnk = 0 when k > n. For example, in the case of Stirling

numbers this analysis establishes the well-known fact that
{

y
y−k

}
and

[
y

y−k

]
are polynomials in y

of degree 2k, and that these polynomials are multiples of yk+1 = y(y − 1) . . . (y − k) when k > 0.

The two flavors of Stirling numbers are related in two important ways. First, their matrices

are inverse to each other if we attach the signs (−1)n−k to the elements in one matrix:

n∑

k=0

{
n

k

}[
k

m

]
(−1)n−k =

m∑

k=0

[
n

k

]{
k

m

}
(−1)n−k = δmn .

This follows since the numbers
{

n
k

}
correspond to f(z) = ez − 1 and the numbers

[
n
k

]
(−1)n−k

correspond to g(z) = ln(1 + z), as mentioned earlier, and we have g
(
f(z)

)
= z.

The other important relationship beween
{

n
k

}
and

[
n
k

]
is the striking identity

{
n

k

}
=

[−k

−n

]
,

which holds for all integers n and k when we use the polynomial extension method. We can prove

in fact, that the analogous relation

fnk = (−1)k−ng(−k)(−n)

holds in the extended matrices F and G that correspond to any pair of inverse functions g
(
f(z)

)
= z,

when f ′(0) = 1. For we have

(−1)n−kg(−k)(−n) = (−1)n−k(−k − 1)(−k − 2) . . . (−n) F̂n−k(k) =
n!

k!
F̂n−k(k) = fnk

in the formulas above. (The interesting history of the identity
{

n
k

}
=
[
−k
−n

]
is traced in [Knuth

1992]. The fact that the analogous formula holds in any convolution matrix was pointed out by Ira

Gessel after he had read a draft of that paper. See also [Jabotinski 1953]; [Carlitz 1978]; [Roman

and Rota 1978, section 10].)

Suppose we denote the Lah numbers
(
n
k

)(
n−1
k−1

)
(n − k)! by

∣∣n
k

∣∣. The extended matrix in that

case has a pleasantly symmetrical property

∣∣∣
n

k

∣∣∣ =

∣∣∣∣
−k

−n

∣∣∣∣ ,
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because the corresponding function f(z) = z/(1 − z) satisfies f
(
−f(−z)

)
= z. (Compare [Mullin

and Rota 1969, section 9].) Near the origin n = k = 0, the nonzero entries look like this:

. . . 1

. . . 12 1

. . . 36 6 1

. . . 24 6 2 1

1

1

2 1

6 6 1

24 36 12 1
...

...
...

Still more convolutions. Our proof of Lagrange’s theorem yields yet another corollary. Suppose

g
(
f(z)

)
= z and f ′(0) = 1, and let F̂ (z) = f(z)/z, Ĝ(z) = g(z)/z. Then the equation

gnk =
n!

k!
Ĝn−k(k) =

(n − 1)!

(k − 1)!
F̂n−k(−n)

tell us, after replacing n by n + k, that the identity

n + k

k
Ĝn(k) = F̂n(−n − k)

holds for all positive integers k. Thus the polynomials Ĝn(x) and F̂n(x) must be related by the

formula

(x + n) Ĝn(x) = xF̂n(−x − n) .

Now F̂n(x) is an arbitrary convolution family, and F̂n(−x) is another. We can conclude that if

{Fn(x)} is any convolution family, then so is the set of polynomials {xFn(x + n)/(x + n)}. Indeed,

if Fn(x) corresponds to the coefficients of F (z)x, our argument proves that the coefficients of G(z)x

are xFn(x + n)/(x + n), where zG(z) is the inverse of the power series z/F (z):

G(z) = F
(
zG(z)

)
, G

(
z/F (z)

)
= F (z) .

The case F (z) = 1 + z and G(z) = 1/(1 − z) provides a simple example, where we know that

Fn(x) =
(

x
n

)
and Gn(x) =

(
x+n−1

n

)
= xFn(x + n)/(x + n).

A more interesting example arises when F (z) = zez/(ez − 1) = z + z/(ez − 1) = 1 + z/2 +

B2z
2/2!+B4z

4/4!+· · · ; then F (−z) is the exponential generating function for the Bernoulli numbers.

The convolution family for F (z)x is Fn(x) = xσn(x), where σn(x) is called a Stirling polynomial.

(Actually σ0(x) = 1/x, but σn(x) is a genuine polynomial when n ≥ 1.) The function G such

that G
(
z/F (z)

)
= F (z) is G(z) = z−1 ln

(
1/(1 − z)

)
; therefore the convolution family for G(z)x is

Gn(x) = xFn(x + n)/(x + n) = xσn(x + n).
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In this example the convolution family for exzG(z) = (1 − z)−x is

(
x + n − 1

n

)
=

1

n!

([
n

0

]
+

[
n

1

]
x + · · · +

[
n

n

]
xn

)
;

therefore

[
n

n − k

]
=

n!

(n − k)!
Gk(n − k) =

n!

(n − k)!
(n − k)σk(n) = n(n − 1) . . . (n − k)σk(n) .

We also have {
n

n − k

}
=

[
k − n

−n

]
= (k − n)(k − 1 − n) . . . (−n)σk(k − n) .

These formulas, which are polynomials in n of degree 2k for every fixed k, explain why the σ func-

tions are called Stirling polynomials. Notice that σn(1) = (−1)nBn/n!; it can also be shown that

σn(0) = −Bn/(n · n!).

The process of going from Fn(x) to xFn(x + n)/(x + n) can be iterated: Another replacement

gives xFn(x+2n)/(x+2n), and after t iterations we discover that the polynomials xFn(x+tn)/(x+

tn) also form a convolution family. This holds for all positive integers t, and the convolution

condition is expressible as a set of polynomial relations in t; therefore xFn(x + tn)/(x + tn) is a

convolution family for all complex numbers t. If Fn(x) = [zn]F (z)x, then xFn(x + tn)/(x + tn) =

[zn]Ft(z)x, where Ft(z) is defined implicitly by the equation

Ft(z) = F
(
zFt(z)t

)
.

In particular, we could have deduced the convolution properties of the coefficients of Bt(z)x in this

way.

Let us restate what we have just proved, combining it with the “derived convolution formula”

obtained earlier:

Theorem. Let Fn(x) be any family of polynomials in x such that Fn(x) has degree ≤ n. If

Fn(2x) =

n∑

k=0

Fk(x)Fn−k(x)

holds for all n and x, then the following identities hold for all n, x, y, and t:

(x + y)Fn(x + y + tn)

x + y + tn
=

n∑

k=0

xFk(x + tk)

x + tk

y Fn−k

(
y + t(n − k)

)

y + t(n − k)
;

n Fn(x + y + tn)

x + y + tn
=

n∑

k=1

k Fk(x + tk)

x + tk

y Fn−k

(
y + t(n − k)

)

y + t(n − k)
.

Additional constructions. We have considered several ways to create new convolution families

from given ones, by multiplication or exponentiation of the associated convolution matrices, or by
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replacing Fn(x) by xFn(x + tn)/(x + tn). It is also clear that the polynomials αnFn(βx) form a

convolution family whenever the polynomials Fn(x) do.

One further operation deserves to be mentioned: If Fn(x) and Gn(x) are convolution families,

then so is the family Hn(x) defined by

Hn(x) =
n∑

k=0

Fk(x)Gn−k(x) .

This is obvious, since Hn(x) = [zn]F (z)xG(z)x. The corresponding operation on matrices F =

(fnk), G = (gnk), H = (hnk) is

hnk =
∑

i,j

(
n

j

)
fji g(n−j)(k−i) .

If we denote this binary operation by H = F ◦ G, it is interesting to observe that the associative

law holds: (E ◦ F ) ◦ G = E ◦ (F ◦ G) is true for all matrices E, F , G, not just for convolution

matrices. A convolution matrix is characterized by the special property F ◦F = F diag(2, 4, 8, . . . ).

The construction just mentioned is merely a special case of the one-parameter family

H(t)
n (x) =

n∑

k=0

Fk(x)Gn−k(x + tk) .

Again, {H(t)
n (x)} turns out to be a convolution family, for arbitrary t: We have

n∑

k=0

H(t)
n (x)zn =

∑

n≥k≥0

Fk(x)Gn−k(x + tk)zn =
∑

n,k≥0

Fk(x)Gn(x + tk)zn+k

=
∑

k≥0

Fk(x)zkG(z)x+tk = G(z)xF
(
zG(z)t

)x
,

so Hn(x) = [zn]
(
G(z)F

(
zG(z)t

))x
.

Applications. What’s the use of all this? Well, we have shown that many interesting convolution

families exist, and that we can deduce nonobvious facts with comparatively little effort once we

know that we’re dealing with a convolution family.

One moral to be drawn is therefore the following. Whenever you encounter a triangular pattern

of numbers that you haven’t seen before, check to see if the first three rows have the form

a

b a2

c 3ab a3

for some a, b, c. (You may have to multiply or divide the nth row by n! first, and/or reflect its

entries left to right.) If so, and if the problem you are investigating is mathematically “clean,”

chances are good that the fourth row will look like

d 4ac + 3b2 6a2b a4 .
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And if so, chances are excellent that you are dealing with a convolution family. And if so, you may

well be able to solve your problem.

In fact, exactly that scenario has helped the author on several occasions.

Asymptotics. Once you have identified a convolution family Fn(x), you may well want to know

the approximate value of Fn(x) when n and x are large. The remainder of this paper discusses

a remarkable general power series expansion, discovered with the help of Mathematica, which

accounts for the behavior of Fn(x) when n/x stays bounded and reasonably small as x → ∞,

although n may also vary as a function of x. We will assume that Fn(x) is the coefficient of zn in

F (z)x, where F (0) = F ′(0) = 1.

Our starting point is the classical “saddle point method,” which shows that in many cases the

coefficient of zn in a power series P (z) can be approximated by considering the value of P at a point

where the derivative of P (z)/zn is zero. (See [Good 1957].) In our case we have P (z) = exf(z),

where f(z) = lnF (z) = z + f2z
2/2! + · · · ; and the derivative is zero when x f ′(z) = n/z. Let this

saddle point occur at z = s; thus, we have

s f ′(s) = n/x .

Near s we have f(z) = f(s) + (z − s)f ′(s) + O
(
(z − s)2

)
; so we will base our approximation on the

assumption that the O
(
(z − s)2

)
contribution is zero. The approximation to Fn(x) will be F̃n(x),

where
F̃n(x) = [zn] exp

(
x f(s) + x (z − s) f ′(s)

)

=
ex(f(s)−sf ′(s))

n!
xnf ′(s)n =

F (s)x

n!

( n

es

)n

.

First let’s look at some examples; later we will show that the ratio Fn(x)/F̃n(x) is well behaved

as a formal power series. Throughout this discussion we will let

y = n/x ;

our goal, remember, is to find approximations that are valid when y is not too large, as x and

possibly n go to ∞.

The simplest example is, of course, F (z) = ez and f(z) = z; but we needn’t sneeze at it

because it will give us some useful calibration. In this case f ′′(z) = 0, so our approximation will

be exact. We have s = y, hence

F̃n(x) =
exy

n!

(
n

ey

)n

=
en

n!

(x

e

)n

=
xn

n!
= Fn(x) .

Next let’s consider the case F (z) = T (z)/z, f(z) = T (z), when we know that Fn(x) =

x(x + n)n−1/n!. In this case z T ′(z) = T (z)/
(
1 − T (z)

)
, so we have T (s)/

(
1 − T (s)

)
= y or

T (s) =
y

1 + y
, s =

y

1 + y
e−y/(1+y)
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because T (z) = zeT (z). Therefore

F̃n(x) =
exy/(1+y)

n!

(
n(1 + y)

ey e−y/(1+y)

)n

=
(x + n)n

n!
;

the ratio Fn(x)/F̃n(x) = x/(x + n) = 1/(1 + y) is indeed near 1 when y is small.

If F (z) = 1 + z we find, similarly, s = y/(1 − y) and

n! F̃n(x) =

(
1

1 − y

)x (
n(1 − y)

ey

)n

=
xxe−n

(x − n)x−n
;

by Stirling’s approximation we also have

n!Fn(x) =
x!

(x − n)!
=

xxe−n

(x − n)x−n
(1 − y)−1/2

(
1 + O(x−1)

)
.

Again the ratio Fn(x)/F̃n(x) is near 1. In general if F (z) = Bt(z) the saddle point s turns out to

be y
(
1 + (t − 1)y

)t−1
/(1 + ty)t, and

n! F̃n(x) =
(x + tn)x+tne−n

(
x + (t − 1)n

)x+(t−1)n
;

a similar analysis shows that this approximation is quite good, for any fixed t.

We know that

Fn(x) =
xn

n!

(
1 +

fn(n−1)

x
+

fn(n−2)

x2
+ · · ·

)

and that fn(n−k) is always a polynomial in n of degree ≤ 2k. Therefore if n2/x → 0 as x → ∞, we

can simply use the approximation Fn(x) = (xn/n!)
(
1 + O(n2/x)

)
. But there are many applications

where we need a good estimate of Fn(x) when n2/x → ∞ while n/x → 0; for example, x might be

n log n. In such cases F̃n(x) is close to Fn(x) but xn/n! is not.

We can express s/y as a power series in y by inverting the power series expression sf ′(s) = y:

s/y = 1 − f2y + (4f2
2 − f3)y

2/2 + (15f2f3 − 30f3
2 − f4)y

3/6 + · · · .

From this we can get a formal series for F̃n(x),

F̃n(x) =
xn

n!

exp
(
n(s/y)(1 + f2s/2! + f3s

2/3! + · · · ) − n
)

(s/y)n

=
xn

n!

(
1 +

nf2

2
y +

3n2f2
2 − 12nf2

2 + 4nf3

24
y2 + O(n3y3)

)
.

We can also use the formula

fn(n−k) =
∑ nk+k2+k3+···

2!k2 k2! 3!k3 k3! . . .
fk2

2 fk3

3 . . . ,
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where the sum is over all nonnegative k2, k3, . . . with k2 + 2k3 + · · · = k, to write

Fn(x) =
xn

n!

(
1 +

nf2 − f2 + O(x−1)

2
y

+
3n2f2

2 − 18nf2
2 + 4nf3 + 33f2

2 − 12f3 + O(x−1)

24
y2 + O(n3y3)

)
.

These series are not useful asymptotically unless ny = n2/x is small. But the approximation F̃n(x)

itself is excellent, because amazing cancellations occur when we compute the ratio:

Fn(x)

F̃n(x)
= 1 − f2

2
y +

11f2
2 − 4f3

8
y2 + O(y3) + O(x−1) .

Theorem. When F (z) = exp(z + f2z
2/2! + f3z

3/3! + · · · ) and the functions Fn(x) and F̃n(x) are

defined as above, the ratio Fn(x)/F̃n(x) can be written as a formal power series
∑

i,j≥0 cijy
ix−j ,

where y = n/x and the coefficients cij are polynomials in f2, f3, . . . .

The derivation just given shows that we can write Fn(x)/F̃n(x) as a formal power series of the

form
∑

i,j≥0 aijn
ix−j , where aij = 0 when i > 2j; the surprising thing is that we also have aij = 0

whenever i > j. Therefore we can let cij = ai(i+j).

To prove the theorem, we let R(z) = 1+R1z +R2z
2 + · · · stand for the terms neglected in our

approximation:

F (z)x = exf(s)−xsf ′(s)

(
1 +

n

s

z

1!
+

n2

s2

z2

2!
+

n3

s3

z3

3!
+ · · ·

)
R(z) .

The coefficient of zn is

Fn(x) = F̃n(x)

(
1 + R1s +

n − 1

n
R2s

2 +
(n − 1)(n − 2)

n2
R3s

3 + · · ·
)

;

so the ratio Fn(x)/F̃n(x) is equal to

∑

k≥0

nk

nk
Rksk =

∑

j,k≥0

(−n)−j

[
k

k − j

]
Rksk =

∑

j

(−n)−jPj ,

where Pj =
∑

k

[
k

k−j

]
Rksk is a certain power series in s and x. The coefficients Rk are themselves

power series in s and x, because we have

R(z) = exp

(
x(z − s)2

f ′′(s)

2!
+ x(z − s)3

f ′′′(s)

3!
+ · · ·

)
.

We know from the discussion above that

[
k

k − j

]
= k(k − 1) . . . (k − j)σj(k)
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is a polynomial in k. Therefore we can write

Pj =

[
ϑ

ϑ − j

]
R(z)

∣∣∣∣
z=s

,

where ϑ is the operator that takes zk 7→ k zk for all k; i.e., ϑG(z) = z G′(z) for all power series

G(z). The theorem will be proved if we can show that Pj/n
j is a formal power series in y and x−1,

and if the sum of these formal power series over all j is also such a series.

Consider, for example, the simplest case P0 = R(s); obviously P0 = 1. The next simplest case

is P1 =
[

ϑ
ϑ−1

]
R(z)

∣∣∣
z=s

= 1
2ϑ(ϑ − 1)R(z)

∣∣
z=s

. It is easy to see that

ϑj = zjDj ,

where D is the differentiation operator D G(z) = G′(z), because zjDj takes zk into kjzk. Therefore

P1 = 1
2s2R′′(s) = 1

2 xs2f ′′(s) .

It follows that P1/n = 1
2 (s/y)sf ′′(s) is a power series in y; it begins 1

2f2y + 1
2 (f3 − f2

2 )y2 + · · · .

Now let’s consider Pj in general. We will use the fact that the Stirling numbers
[

k
k−j

]
can be

represented in the form
[

k

k − j

]
= pj1

(
k

j + 1

)
+ pj2

(
k

j + 2

)
+ · · · + pjj

(
k

2j

)
,

where the coefficients pji are the positive integers in the following triangular array:

1

2 3

6 20 15

24 130 210 105

120 924 2380 2520 945 .
(
This array is clearly not a convolution matrix; but the theory developed above implies that the

numbers j! pji/(i + j)! , namely

1/2

2/3 1/4

3/2 1 1/8 ,

24/5 13/3 1 1/16

20 22 85/12 5/6 1/32

do form the convolution matrix for the powers of exp(z/2 + z2/3 + z3/4 + · · · ). The expression[
k

k−j

]
=
∑j

i=1 pji

(
k

j+i

)
was independently discovered by [Appell 1880], [Jordan 1933], and [Ward

1934]. The number of permutations of i + j elements having no fixed points and exactly i cycles

is pji, an “associated Stirling number of the first kind” [Riordan 1958, section 4.4] [Comtet 1970,

exercise 6.7].
)

It follows that

Pj = pj1s
j+1 R(j+1)(s)

(j + 1)!
+ pj2s

j+2 R(j+2)(s)

(j + 2)!
+ · · · + pjjs

2j R(2j)(s)

(2j)!
.
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Now R(z) is a sum of terms having the form

ailx
i(z − s)l ,

where l ≥ 2i and where ail is a power series in s. Such a term contributes ailx
islpj(l−j) to Pj ; so

it contributes ail(s/y)jsl−jxi−jpj(l−j) to Pj/n
j . This contribution is nonzero only if j < l ≤ 2j.

Since l ≥ 2i, we have i ≤ j; so Pj/n
j is a power series in y and x−1.

For a fixed value of j − i, the smallest power of y that can occur in Pj/n
j is y2i−j = yj−2(j−i).

Therefore only a finite number of terms of
∑

j Pj/(−n)j contribute to any given power of y and x−1.

This completes the proof.

A careful analysis of the proof, and a bit of Mathematica hacking, yields the more precise

result
Fn(x)

F̃n(x)
=

1

(1 + s2y−1d2)1/2
+

(s/y)3A

x(1 + s2y−1d2)7/2
+ O(x−2) ,

where A = 1
12s3y−1d3

2 − 3
4sd2

2 − 1
2s2d2d3 − 5

24s3d2
3 + 1

3yd3 + 1
8s3d2d4 + 1

8syd4 and dk = f (k)(s).
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