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Consider a nice topological space X :

homotopy groups: πn(X , x) = {∆n → X , ∂∆n 7→ x}/homotopy,

singular homology and cohomology: Hsing
n (X ,R), Hn

sing(X ,R),

sheaf cohomology: Hn(X ,F).

Hn
sing(X ,R) ∼= Hn(X ,RX )
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

Properties of the homotopy groups

homotopy invariance: πn(X ×∆1, x ′) ∼= πn(X , x),

compatibility with products:
πn(X × Y , (x , y)) ∼= πn(X , x)× πn(Y , y)

long exact fiber sequence: f : X → Y fibration with fiber F
(at some point y ∈ Y ),

. . .→ π1(F )→ π1(X )→ π1(Y )→ π0(F )→ π0(X )→ π0(Y )
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Properties of the cohomology groups

homotopy invariance: Hn(X ×∆1,R) ∼= Hn(X ,R),

compatibility with products (Künneth formula) for a field F :
Hn(X × Y ,F ) ∼=

⊕
i+j=n H

i (X ,F )⊗F H i (Y ,F ),

Leray Serre spectral sequence: for a fibration f : X → Y with
fiber F there is a spectral sequence

Epq
2 = Hp(Y ,Hq(F ))⇒ Hp+q(X ).

finiteness: if X is well behaved (e.g. a compact manifold)
cohomology groups are finitely generated.
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The algebraic setting and its problems

k algebraically closed field

X/k algebraic variety (scheme of finite type over k)

Problems with classical homotopy and (co)homology groups
(defined using Zariski topology):

The Zariski topology is too coarse

The standard simplices ∆n are not algebraic

If k = C, we can equip X (C) with the analytic topology and thus
define πn, Hn and Hn.

But what do we do in case the characteristic of k is p > 0?
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

The algebraic setting and its problems

k algebraically closed field

X/k algebraic variety (scheme of finite type over k)

Problems with classical homotopy and (co)homology groups
(defined using Zariski topology):

The Zariski topology is too coarse −→ use étale topology

The standard simplices ∆n are not algebraic −→ use An

If k = C, we can equip X (C) with the analytic topology and thus
define πn, Hn and Hn.

But what do we do in case the characteristic of k is p > 0?

Katharina Hübner HUJI
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A1-homotopy theory

It is possible to develop an algebraic homotopy theory using An

instead of ∆n.
→ A1-homotopy theory, also known as motivic homotopy theory

In particular there is Suslin (co)homology which is the algebraic
analog of singular (co)homology:
Let X/k be a variety and M an abelian group.

HS
n (X ,M) = Torn(Cor(∆•,X ),M),

Hn
S(X ,M) = Extn(Cor(∆•,X ),M),

where Cor(∆i ,X ) is the group of correspondences: free abelian
group over all integral subschemes of Ai ×k X that are finite and
surjective over Ai .
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The étale site

Idea: instead of open subsets of X consider étale morphisms
U → X (étale = smooth of relative dimension 0)

More formally: The étale site of X is the category of étale
morphisms U → X together with the specification that coverings
are surjective families {Ui → U}i∈I .

We obtain

sheaf cohomology on étale site: étale cohomology groups
Hn(Xet,F),

homotopy groups on étale site: étale homotopy groups
πn(Xet, x)
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Properties of étale cohomology

if k = C and M is a finite abelian group:
Hn(Xet,M) ∼= Hn(X (C),M)

if char k = p > 0 and (#M, p) = 1, Hn(Xet,M) behaves in
the same way as in characteristic 0.

but: if char k = p > 0 and p|#M, Hn(Xet,M) is not well
behaved.
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Example

Consider k = F̄p and X = A1
F̄p

.

H1(X ,Z/pZ) classifies finite étale coverings of X of degree p.
They are all of the form

{(x , y) ∈ A2
F̄p
| yp − y = f (x)} −→ A1

F̄p

(x , y) 7→ x

for some f (x) ∈ F̄p[x ].

H1(X ,Z/pZ) is infinite dimensional.
Problem: wild ramification at ∞ (P1 \ A1 = {∞})
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

Example

Consider k = F̄p and X = A1
F̄p

.

H1(X ,Z/pZ) classifies finite étale coverings of X of degree p.

They are all of the form

{(x , y) ∈ A2
F̄p
| yp − y = f (x)} −→ A1

F̄p

(x , y) 7→ x

for some f (x) ∈ F̄p[x ].

H1(X ,Z/pZ) is infinite dimensional.
Problem: wild ramification at ∞ (P1 \ A1 = {∞})

Katharina Hübner HUJI
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Ramification

valued field: (k , k+), k field, k+ ⊂ k valuation ring of k
(e.g. k = Qp, k+ = Zp or k = C(T ), k+ = C[T ](T ))

An extension (K ,K+)|(k , k+) of valued fields is

unramified if K sh = ksh (strict henselizations),

tame(ly ramified) if [K sh : ksh] is prime to the residue
characteristic p.

wild(ly ramified) if p|[K sh : ksh].
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Heuristics of the tame site

Given a morphism of schemes X → S (S base scheme, e.g.
Spec k),

construct a compactification

X X̄

S .

proper

We want to study étale morphisms Y → X that are tamely
ramified at the boundary X̄ \ X in an appropriate sense.

Why should this work? The tame fundamental group πt1(X/S , x̄)
already exists and has good properties.
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

Heuristics of the tame site

Given a morphism of schemes X → S (S base scheme, e.g.
Spec k), construct a compactification

X X̄

S .

proper

We want to study étale morphisms Y → X that are tamely
ramified at the boundary X̄ \ X in an appropriate sense.

Why should this work? The tame fundamental group πt1(X/S , x̄)
already exists and has good properties.

Katharina Hübner HUJI
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Expected properties

k algebraically closed field of characteristic p > 0, X/k variety

Hn
t (X ,M) = Hn

et(X ,M) if p - #M or if X/k is proper,

the fundamental group of the tame site is the existent
πt1(X/t, x̄),

compatibility of tame cohomology with products X ×k Y ,

Hn
t (X ,M) is finite for finite M,

homotopy invariance: Hn
t (X ×k A1,M) = Hn

t (X ,M),

base change theorems (proper and smooth)
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Expected properties

k algebraically closed field of characteristic p > 0, X/k variety

Poincaré duality: If X/k is smooth of dimension d and
pM = 0, there is a perfect pairing

Hn
t,c(X ,M)× Extd−nX (M, ν(d))→ Z/pZ,

Cohomological purity: If X/k is smooth and Z ↪→ X is a
smooth closed subvariety of codimension c ,

Hn
t,Z (X , ν(r)) ∼= Hn−c

t (Z , ν(r − c)),

Connection to Suslin cohomology:

Hn
t (X ,M) ∼= Hn

S(X ,M).
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

Expected properties

k algebraically closed field of characteristic p > 0, X/k variety
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Construction of the tame site

For a tame site associated with X → S two complementary
approaches seem promising:
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Construction of the tame site

For a tame site associated with X → S two complementary
approaches seem promising:

algebraic tame site
étale morphisms Y → X ,
tameness condition on cov-
erings (Yi → Y )i∈I

joint work with Alexander Schmidt
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algebraic tame site
étale morphisms Y → X ,
tameness condition on cov-
erings (Yi → Y )i∈I

joint work with Alexander Schmidt

adic tame site
over adic space Spa(X ,S):
étale morphisms of adic
spaces s.t. residue field ex-
tensions are tame

my own project
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Here: Only discretely ringed adic spaces, i.e., all rings are equipped
with the discrete topology.
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Valuations

Valuations of a ring A:

v : A→ Γ ∪ {0}

Γ: totally ordered group, multiplicative notation,

v is multiplicative,

v(1) = 1,

v satisfies the strong triangle inequality:

v(a + b) ≤ max{v(a), v(b)}.
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

Connection to valuations of fields

For a ring A there is a bijection

{valuations v : A→ Γ ∪ {0}}/∼ ←→
{

(x ,O) | x ∈ SpecA
O ⊆ k(x) val. ring

}
v 7→ (supp v ,Ov )

(A→ k(x)
vO−→ Γ ∪ {0}) ←[ (x ,O).

supp v = {a ∈ A | v(a) = 0} is a prime ideal of A

Ov = {a ∈ k(supp v) | v(a) ≤ 1} is the corresponding
valuation ring
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Adic spectrum

Huber pair: (A,A+), where

A is a ring

A+ is a subring of A that is integrally closed in A.

Adic spectrum of a Huber pair:

Spa(A,A+) = {v : A→ Γx ∪ {0} | v(a) ≤ 1 ∀a ∈ A+}/∼
= {(x ,O) | x ∈ SpecA, Ā+︸︷︷︸

image of A+ in k(x)

⊆ O}
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Example

k field, (A,A+) = (k , k).

Then Spa(A,A+) only has one point,
corresponding to the trivial valuation of k .

k algebraically closed, (A,A+) = (k(T ), k[T ]). There are two
types of points:

The trivial valuation of k(T ) and

for each a ∈ k the valuation va: Every element of k(T ) can
be written in the form (T − a)ng/h mit n ∈ Z, g , h ∈ k[T ]
mit (T − a) - g , h. Then

va((T − a)ng/h) = e−n

corresponding valuation ring: k[T ](T−a)
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Visualization

(A,A+) = (k(T ), k(T ))

(A,A+) = (k(T ), k[T ]) (A,A+) = (k[T ], k[T ])
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Generalization

S separated scheme, X → S morphism of schemes.

Spa(X , S) =

(x ,O) |
x ∈ X

O ⊆ k(x) valuation ring s.t.
∃SpecO → S comp. with Spec k(x)→ X



compatible means that

Spec k(x) X

SpecO S

commutes.
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Visualization

Assume X → S is an open immersion. Then we can visualize
Spa(X , S) as:

X

S
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Morphisms

A commutative diagram of schemes

X ′ X

S ′ S

f

g

induces a morphism of adic spaces

Spa(f , g) : Spa(X ′, S ′) −→ Spa(X ,S),

(x ′,O′) 7→ (x = f (x ′),O = O′ ∩ k(x ′))
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Topology

X → S morphism of schemes.

The topology of Spa(X ,S) is generated by all Spa(U,T ) coming
from diagrams

U X

T Sf .t.

with

U → X an open immersion,

T → S of finite type.

If X → S is an open immersion and U → T is dominant (hence an
open immersion), then T → S is birational.
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

Table of Contents

1 Algebraic topology

2 Transfer to the algebraic world

3 Tame ramification

4 Adic spaces

5 The tame site

Katharina Hübner HUJI
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Tame morphisms of adic spaces

X ′ X

S ′ S

f

dominant dominant

g

Spa(f , g) : Spa(X ′,S ′)→ Spa(X ,S) is étale if and only if

f is étale

g is the composition of an integral with a f. t. morphism

(f , g) is tame if it is étale and ∀(x ′,O′) ∈ Spa(X ′,S ′) mapping to
(x ,O) ∈ Spa(X ,S), k(x ′)|k(x) is tamely ramified w.r.t. O′.
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The tame site



Algebraic topology Transfer to the algebraic world Tame ramification Adic spaces The tame site

Tame morphisms of adic spaces

X ′ X

S ′ S

f

dominant dominant

g

Spa(f , g) : Spa(X ′,S ′)→ Spa(X ,S) is étale if and only if

f is étale

g is the composition of an integral with a f. t. morphism

(f , g) is tame if it is étale and ∀(x ′,O′) ∈ Spa(X ′,S ′) mapping to
(x ,O) ∈ Spa(X ,S), k(x ′)|k(x) is tamely ramified w.r.t. O′.

Katharina Hübner HUJI
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The adic tame site

Let X be an adic space.

The tame site Xt consists of:

objects: tame morphism of adic spaces Y → X ,

morphisms: Y ′ → Y over X (they are automatically tame),

coverings: surjective families (Yi → Y)i∈I .

For a morphism of schemes X → S : adic tame site Spa(X ,S)t .
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The algebraic tame site

Let X → S be a morphism of schemes.

The algebraic tame site (X/S)t consists of:

objects: étale morphisms Y → X ,

morphisms: Y ′ → Y over X (they are automatically étale)

coverings: families (Yi → Y )i∈I such that for every
(y ,O) ∈ Spa(Y ,S), there is i ∈ I and (yi ,Oi ) ∈ Spa(Yi ,S)
mapping to (y ,O).

Comparison theorem [H., Schmidt]:
Suppose S is affine and of characteristic p > 0. Let F be a sheaf
on (X/S)t .
Then there is a sheaf F ′ on Spa(X , S)t such that

H i ((X/S)t ,F) ∼= H i (Spa(X ,S)t ,F ′).
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Expected properties

k algebraically closed field of characteristic p > 0, X/k variety

Hn
t (X/k ,M) = Hn

et(X ,M) if p - #M or if X/k is proper,

the fundamental group of the tame site is the existent
πt1(X/t, x̄),

compatibility of tame cohomology with products X ×k Y ,

Hn
t (X/k ,M) is finite for finite M,

homotopy invariance: Hn
t (X ×k A1,M) = Hn

t (X ,M),

base change theorems (proper and smooth),
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compatibility of tame cohomology with products X ×k Y , not
yet

Hn
t (X/k ,M) is finite for finite M, for curves

homotopy invariance: Hn
t (X ×k A1,M) = Hn

t (X ,M), X
base change theorems (proper and smooth), work in progess
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Expected properties

k algebraically closed field of characteristic p > 0, X/k variety

Poincaré duality: If X/k is smooth of dimension d and
pM = 0, there is a perfect pairing

Hn
t,c(X ,M)× Extd−nX (M, ν(d))→ Z/pZ,

Cohomological purity: If X/k is smooth and Z ↪→ X is a
smooth closed subvariety of codimension c ,

Hn
t,Z (X , ν(r)) ∼= Hn−c(Z , ν(r − c)),

Connection with Suslin cohomology:

Hn
t (X ,M) ∼= Hn

S(X ,M).
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Poincaré duality: If X/k is smooth of dimension d and
pM = 0, there is a perfect pairing

Hn
t,c(X ,M)× Extd−nX (M, ν(d))→ Z/pZ, for curves

Cohomological purity: If X/k is smooth and Z ↪→ X is a
smooth closed subvariety of codimension c ,

Hn
t,Z (X , ν(r)) ∼= Hn−c(Z , ν(r − c)), for curves or if r = 0

Connection with Suslin cohomology:

Hn
t (X ,M) ∼= Hn
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Expected properties

k algebraically closed field of characteristic p > 0, X/k variety

Poincaré duality: If X/k is smooth of dimension d and
pM = 0, there is a perfect pairing

Hn
t,c(X ,M)× Extd−nX (M, ν(d))→ Z/pZ, for curves

Cohomological purity: If X/k is smooth and Z ↪→ X is a
smooth closed subvariety of codimension c ,

Hn
t,Z (X , ν(r)) ∼= Hn−c(Z , ν(r − c)), for curves or if r = 0

Connection with Suslin cohomology:

Hn
t (X ,M) ∼= Hn

S(X ,M). work in progress (with A. Schmidt)
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