Algebraic topology 0000		Adic spaces 000000000000	The tame s

The tame site

Katharina Hübner

Einstein Institute of Mathematics Hebrew University Jerusalem

5/6/2021

Katharina Hübner

イロン イロン イヨン イヨン

3

Table of Contents

Algebraic topology

2 Transfer to the algebraic world

3 Tame ramification

4 Adic spaces

5 The tame site

Katharina Hübner The tame site

Algebraic topology		Adic spaces	The tame site
0000			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
0000			

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
0000			

• homotopy groups: $\pi_n(X, x) = {\Delta^n \to X, \partial \Delta^n \mapsto x}/_{\text{homotopy}}$,

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
0000			

• homotopy groups: $\pi_n(X, x) = \{\Delta^n \to X, \partial \Delta^n \mapsto x\}/_{homotopy}$,

n-simplices:

<ロ> <回> <回> <回> <三> <三</p>

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
0000			

• homotopy groups: $\pi_n(X, x) = {\Delta^n \to X, \partial \Delta^n \mapsto x}/_{\text{homotopy}}$,

Katharina Hübner

Algebraic topology 0●00		Adic spaces 000000000000	The tame site

- homotopy groups: $\pi_n(X, x) = {\Delta^n \to X, \partial \Delta^n \mapsto x}/_{homotopy}$,
- singular homology and cohomology: $H_n^{sing}(X, R)$, $H_{sing}^n(X, R)$,

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
0000			

homotopy groups: π_n(X, x) = {Δⁿ → X, ∂Δⁿ ↦ x}/_{homotopy},
 singular homology and cohomology: H^{sing}_n(X, R), Hⁿ_{sing}(X, R),

$$\ldots \to \bigoplus_{\sigma \in \mathsf{hom}(\Delta^2, X)} R[\sigma] \to \bigoplus_{\sigma \in \mathsf{hom}(\Delta^1, X)} R[\sigma] \to \bigoplus_{\sigma \in \mathsf{hom}(\Delta^0, X)} R[\sigma] \to 0$$

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
0000			

- homotopy groups: $\pi_n(X, x) = {\Delta^n \to X, \partial \Delta^n \mapsto x}/_{homotopy}$,
- singular homology and cohomology: $H_n^{sing}(X, R)$, $H_{sing}^n(X, R)$,
- sheaf cohomology: $H^n(X, \mathcal{F})$.

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
0000			

- homotopy groups: $\pi_n(X, x) = {\Delta^n \to X, \partial \Delta^n \mapsto x}/_{homotopy}$,
- singular homology and cohomology: $H_n^{sing}(X, R)$, $H_{sing}^n(X, R)$,
- sheaf cohomology: $H^n(X, \mathcal{F})$.

$$H^n_{sing}(X,R) \cong H^n(X,R_X)$$

• homotopy invariance: $\pi_n(X \times \Delta^1, x') \cong \pi_n(X, x)$,

Katharina Hübner

The tame site

-IU JI

イロト 不得 トイヨト イヨト 二日

Properties of the homotopy groups

- homotopy invariance: $\pi_n(X \times \Delta^1, x') \cong \pi_n(X, x)$,
- compatibility with products:
 - $\pi_n(X \times Y, (x, y)) \cong \pi_n(X, x) \times \pi_n(Y, y)$

Katharina Hübner

- homotopy invariance: $\pi_n(X \times \Delta^1, x') \cong \pi_n(X, x)$,
- compatibility with products: $\pi_n(X \times Y, (x, y)) \cong \pi_n(X, x) \times \pi_n(Y, y)$
- long exact fiber sequence: $f : X \to Y$ fibration with fiber F (at some point $y \in Y$),

 $\ldots \rightarrow \pi_1(F) \rightarrow \pi_1(X) \rightarrow \pi_1(Y) \rightarrow \pi_0(F) \rightarrow \pi_0(X) \rightarrow \pi_0(Y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

- homotopy invariance: $\pi_n(X \times \Delta^1, x') \cong \pi_n(X, x)$,
- compatibility with products: $\pi_n(X \times Y, (x, y)) \cong \pi_n(X, x) \times \pi_n(Y, y)$
- long exact fiber sequence: $f : X \to Y$ fibration with fiber F (at some point $y \in Y$),

 $\ldots \rightarrow \pi_1(F) \rightarrow \pi_1(X) \rightarrow \pi_1(Y) \rightarrow \pi_0(F) \rightarrow \pi_0(X) \rightarrow \pi_0(Y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

• homotopy invariance: $H^n(X \times \Delta^1, R) \cong H^n(X, R)$,

Katharina Hübner

The tame site

LITER.

- homotopy invariance: $H^n(X \times \Delta^1, R) \cong H^n(X, R)$,
- compatibility with products (Künneth formula) for a field F: $H^n(X \times Y, F) \cong \bigoplus_{i+j=n} H^i(X, F) \otimes_F H^i(Y, F),$

イロト 不得 トイヨト イヨト 二日

- homotopy invariance: $H^n(X \times \Delta^1, R) \cong H^n(X, R)$,
- compatibility with products (Künneth formula) for a field F: $H^n(X \times Y, F) \cong \bigoplus_{i+j=n} H^i(X, F) \otimes_F H^i(Y, F),$
- Leray Serre spectral sequence: for a fibration $f : X \to Y$ with fiber F there is a spectral sequence

3

イロト 不同 トイヨト イヨト

- homotopy invariance: $H^n(X \times \Delta^1, R) \cong H^n(X, R)$,
- compatibility with products (Künneth formula) for a field F: $H^n(X \times Y, F) \cong \bigoplus_{i+j=n} H^i(X, F) \otimes_F H^i(Y, F),$
- Leray Serre spectral sequence: for a fibration $f : X \to Y$ with fiber F there is a spectral sequence

$$E_2^{pq} = H^p(Y, H^q(F)) \Rightarrow H^{p+q}(X).$$

3

イロト 不同 トイヨト イヨト

- homotopy invariance: $H^n(X \times \Delta^1, R) \cong H^n(X, R)$,
- compatibility with products (Künneth formula) for a field F: $H^n(X \times Y, F) \cong \bigoplus_{i+j=n} H^i(X, F) \otimes_F H^i(Y, F),$
- Leray Serre spectral sequence: for a fibration $f : X \rightarrow Y$ with fiber F there is a spectral sequence

$$E_2^{pq} = H^p(Y, H^q(F)) \Rightarrow H^{p+q}(X).$$

 finiteness: if X is well behaved (e.g. a compact manifold) cohomology groups are finitely generated.

Table of Contents

1 Algebraic topology

2 Transfer to the algebraic world

3 Tame ramification

4 Adic spaces

5 The tame site

Katharina Hübner The tame site э

イロン イロン イヨン イヨン

The algebraic setting and its problems

・ロト・日本・日本・日本・日本・今日や

Katharina Hübner

イロト 不同 トイヨト イヨト

3

The algebraic setting and its problems

- k algebraically closed field
- X/k algebraic variety (scheme of finite type over k)

Katharina Hübner

イロト 不同 トイヨト イヨト

The algebraic setting and its problems

- k algebraically closed field
- X/k algebraic variety (scheme of finite type over k)
 Problems with classical homotopy and (co)homology groups (defined using Zariski topology):

Katharina Hübner

The tame site

IUJI

イロト 不同 トイヨト イヨト

The algebraic setting and its problems

- k algebraically closed field
- X/k algebraic variety (scheme of finite type over k)
- Problems with classical homotopy and (co)homology groups (defined using Zariski topology):
 - The Zariski topology is too coarse

イロト 不得 トイヨト イヨト 二日

The algebraic setting and its problems

- k algebraically closed field
- X/k algebraic variety (scheme of finite type over k)

Problems with classical homotopy and (co)homology groups (defined using Zariski topology):

- The Zariski topology is too coarse
- The standard simplices Δ^n are not algebraic

The algebraic setting and its problems

k algebraically closed field

• X/k algebraic variety (scheme of finite type over k)

Problems with classical homotopy and (co)homology groups (defined using Zariski topology):

- The Zariski topology is too coarse
- The standard simplices Δ^n are not algebraic

If $k = \mathbb{C}$, we can equip $X(\mathbb{C})$ with the analytic topology and thus define π_n , H^n and H_n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

イロト 不得 トイヨト イヨト 二日

The algebraic setting and its problems

k algebraically closed field

• X/k algebraic variety (scheme of finite type over k)

Problems with classical homotopy and (co)homology groups (defined using Zariski topology):

- The Zariski topology is too coarse
- The standard simplices Δ^n are not algebraic

If $k = \mathbb{C}$, we can equip $X(\mathbb{C})$ with the analytic topology and thus define π_n , H^n and H_n .

But what do we do in case the characteristic of k is p > 0?

The algebraic setting and its problems

k algebraically closed field

• X/k algebraic variety (scheme of finite type over k)

Problems with classical homotopy and (co)homology groups (defined using Zariski topology):

- The Zariski topology is too coarse → use étale topology
- The standard simplices Δ^n are not algebraic

If $k = \mathbb{C}$, we can equip $X(\mathbb{C})$ with the analytic topology and thus define π_n , H^n and H_n .

But what do we do in case the characteristic of k is p > 0?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

The algebraic setting and its problems

k algebraically closed field

X/k algebraic variety (scheme of finite type over k)
 Problems with classical homotopy and (co)homology groups (defined using Zariski topology):

- The Zariski topology is too coarse → use étale topology
- The standard simplices Δ^n are not algebraic \longrightarrow use \mathbb{A}^n

If $k = \mathbb{C}$, we can equip $X(\mathbb{C})$ with the analytic topology and thus define π_n , H^n and H_n .

But what do we do in case the characteristic of k is p > 0?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	000000		

It is possible to develop an algebraic homotopy theory using \mathbb{A}^n instead of Δ^n .

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	000000		

It is possible to develop an algebraic homotopy theory using \mathbb{A}^n instead of Δ^n .

 $\rightarrow \mathbb{A}^1\text{-}\mathsf{homotopy}$ theory, also known as motivic homotopy theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	000000		

\mathbb{A}^1 -homotopy theory

It is possible to develop an algebraic homotopy theory using \mathbb{A}^n instead of Δ^n .

 \rightarrow $\mathbb{A}^1\text{-}\mathsf{homotopy}$ theory, also known as motivic homotopy theory

In particular there is Suslin (co)homology which is the algebraic analog of singular (co)homology:

イロト 不得 トイヨト イヨト 二日

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	000000		

\mathbb{A}^1 -homotopy theory

It is possible to develop an algebraic homotopy theory using \mathbb{A}^n instead of Δ^n .

 $\rightarrow \mathbb{A}^1\text{-}\mathsf{homotopy}$ theory, also known as motivic homotopy theory

In particular there is Suslin (co)homology which is the algebraic analog of singular (co)homology:

Let X/k be a variety and M an abelian group.

イロト 不得 とくきとくきとうき

It is possible to develop an algebraic homotopy theory using \mathbb{A}^n instead of Δ^n .

 $\rightarrow \mathbb{A}^1\text{-}\mathsf{homotopy}$ theory, also known as motivic homotopy theory

In particular there is Suslin (co)homology which is the algebraic analog of singular (co)homology:

Let X/k be a variety and M an abelian group.

$$\begin{aligned} H_n^S(X,M) &= \operatorname{Tor}_n(\operatorname{Cor}(\Delta^\bullet,X),M), \\ H_S^n(X,M) &= \operatorname{Ext}^n(\operatorname{Cor}(\Delta^\bullet,X),M), \end{aligned}$$

where $\operatorname{Cor}(\Delta^i, X)$ is the group of correspondences: free abelian group over all integral subschemes of $\mathbb{A}^i \times_k X$ that are finite and surjective over \mathbb{A}^i .

Katharina Hübner
Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	000000		

・ロト・西ト・ヨト・ヨー うらぐ

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces 000000000000	The tame site 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The étale site

Idea: instead of open subsets of X consider étale morphisms $U \rightarrow X$ (étale = smooth of relative dimension 0)

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces 000000000000	The tame site 000000

Idea: instead of open subsets of X consider étale morphisms $U \rightarrow X$ (étale = smooth of relative dimension 0)

More formally: The étale site of X is the category of étale morphisms $U \to X$ together with the specification that coverings are surjective families $\{U_i \to U\}_{i \in I}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces 000000000000	The tame site 000000

Idea: instead of open subsets of X consider étale morphisms $U \rightarrow X$ (étale = smooth of relative dimension 0)

More formally: The étale site of X is the category of étale morphisms $U \to X$ together with the specification that coverings are surjective families $\{U_i \to U\}_{i \in I}$.

We obtain

Algebraic topology	Transfer to the algebraic world	Adic spaces 000000000000	The tame site 000000

- Idea: instead of open subsets of X consider étale morphisms $U \rightarrow X$ (étale = smooth of relative dimension 0)
- More formally: The étale site of X is the category of étale morphisms $U \to X$ together with the specification that coverings are surjective families $\{U_i \to U\}_{i \in I}$.

We obtain

■ sheaf cohomology on étale site: étale cohomology groups Hⁿ(X_{et}, F),

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site 000000

- Idea: instead of open subsets of X consider étale morphisms $U \rightarrow X$ (étale = smooth of relative dimension 0)
- More formally: The étale site of X is the category of étale morphisms $U \to X$ together with the specification that coverings are surjective families $\{U_i \to U\}_{i \in I}$.

We obtain

- sheaf cohomology on étale site: étale cohomology groups Hⁿ(X_{et}, F),
- homotopy groups on étale site: étale homotopy groups $\pi_n(X_{\text{et}}, x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Properties of étale cohomology

・ロト・日本・日本・日本・日本・今日の

Katharina Hübner

Properties of étale cohomology

if
$$k = \mathbb{C}$$
 and M is a finite abelian group:
 $H^n(X_{\text{et}}, M) \cong H^n(X(\mathbb{C}), M)$

Katharina Hübner

The tame site

HUJI

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Properties of étale cohomology

- if $k = \mathbb{C}$ and M is a finite abelian group: $H^n(X_{\text{et}}, M) \cong H^n(X(\mathbb{C}), M)$
- if char k = p > 0 and (#M, p) = 1, $H^n(X_{et}, M)$ behaves in the same way as in characteristic 0.

Katharina Hübner

Properties of étale cohomology

- if $k = \mathbb{C}$ and M is a finite abelian group: $H^n(X_{et}, M) \cong H^n(X(\mathbb{C}), M)$
- if char k = p > 0 and (#M, p) = 1, $H^n(X_{et}, M)$ behaves in the same way as in characteristic 0.

but:

Properties of étale cohomology

- if $k = \mathbb{C}$ and M is a finite abelian group: $H^n(X_{et}, M) \cong H^n(X(\mathbb{C}), M)$
- if char k = p > 0 and (#M, p) = 1, $H^n(X_{et}, M)$ behaves in the same way as in characteristic 0.
- but: if char k = p > 0 and p | # M, $H^n(X_{et}, M)$ is not well behaved.

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	00000		

(ロ) (回) (E) (E) (E) (O)

Katharina Hübner

Algebraic topology	Transfer to the algebraic world 00000●	Adic spaces 000000000000	The tame site 000000

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Example

Consider
$$k = \overline{\mathbb{F}}_p$$
 and $X = \mathbb{A}^1_{\overline{\mathbb{F}}_p}$.

Katharina Hübner

Algebraic topology	Transfer to the algebraic world 00000●	Adic spaces 000000000000	The tame site 000000

Consider
$$k = \overline{\mathbb{F}}_p$$
 and $X = \mathbb{A}^1_{\overline{\mathbb{F}}_p}$.

 $H^1(X, \mathbb{Z}/p\mathbb{Z})$ classifies finite étale coverings of X of degree p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	00000		

Consider
$$k = \overline{\mathbb{F}}_p$$
 and $X = \mathbb{A}^1_{\overline{\mathbb{F}}_p}$.

 $H^1(X, \mathbb{Z}/p\mathbb{Z})$ classifies finite étale coverings of X of degree p. They are all of the form

$$\{ (x, y) \in \mathbb{A}^2_{\mathbb{F}_p} \mid y^p - y = f(x) \} \longrightarrow \mathbb{A}^1_{\mathbb{F}_p}$$
$$(x, y) \mapsto x$$

イロン イヨン イヨン イヨン 三日

for some $f(x) \in \overline{\mathbb{F}}_p[x]$.

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	00000		

Consider
$$k = \overline{\mathbb{F}}_p$$
 and $X = \mathbb{A}^1_{\overline{\mathbb{F}}_p}$.

 $H^1(X, \mathbb{Z}/p\mathbb{Z})$ classifies finite étale coverings of X of degree p. They are all of the form

$$\{ (x,y) \in \mathbb{A}^2_{\mathbb{F}_p} \mid y^p - y = f(x) \} \longrightarrow \mathbb{A}^1_{\mathbb{F}_p}$$

$$(x,y) \mapsto x$$

for some $f(x) \in \overline{\mathbb{F}}_p[x]$.

$$\frac{\partial}{\partial y}(y^p - y - f(x)) = py^{p-1} - 1 = -1$$

<ロ> <四> <四> <三</p>

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	00000		

Consider
$$k = \overline{\mathbb{F}}_p$$
 and $X = \mathbb{A}^1_{\overline{\mathbb{F}}_p}$.

 $H^1(X, \mathbb{Z}/p\mathbb{Z})$ classifies finite étale coverings of X of degree p. They are all of the form

$$\{ (x, y) \in \mathbb{A}^2_{\overline{\mathbb{F}}_p} \mid y^p - y = f(x) \} \longrightarrow \mathbb{A}^1_{\overline{\mathbb{F}}_p}$$
$$(x, y) \mapsto x$$

イロン イヨン イヨン イヨン 三日

for some $f(x) \in \overline{\mathbb{F}}_p[x]$. $H^1(X, \mathbb{Z}/p\mathbb{Z})$ is infinite dimensional.

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
	00000		

Consider
$$k = \overline{\mathbb{F}}_p$$
 and $X = \mathbb{A}^1_{\overline{\mathbb{F}}_p}$.

 $H^1(X, \mathbb{Z}/p\mathbb{Z})$ classifies finite étale coverings of X of degree p. They are all of the form

$$\{ (x, y) \in \mathbb{A}^2_{\overline{\mathbb{F}}_p} \mid y^p - y = f(x) \} \longrightarrow \mathbb{A}^1_{\overline{\mathbb{F}}_p}$$
$$(x, y) \mapsto x$$

イロト 不得 とくきとくきとうき

for some $f(x) \in \overline{\mathbb{F}}_p[x]$. $H^1(X, \mathbb{Z}/p\mathbb{Z})$ is infinite dimensional. Problem: wild ramification at $\infty (\mathbb{P}^1 \setminus \mathbb{A}^1 = \{\infty\})$

Katharina Hübner

Table of Contents

1 Algebraic topology

2 Transfer to the algebraic world

3 Tame ramification

4 Adic spaces

5 The tame site

э.

イロン イロン イヨン イヨン

Algebraic topology	Transfer to the algebraic world	Tame ramification	Adic spaces	The tame site
		00000		

Ramification

・ロト・西ト・ヨト・ヨー うへぐ

Katharina Hübner

Algebraic topology	Tame ramification	Adic spaces	The tame site 000000

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Ramification

valued field: (k, k^+) , k field, $k^+ \subset k$ valuation ring of k

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Tame ramification	Adic spaces	The tame site
		00000		

Ramification

valued field: (k, k^+) , k field, $k^+ \subset k$ valuation ring of k (e.g. $k = \mathbb{Q}_p$, $k^+ = \mathbb{Z}_p$ or $k = \mathbb{C}(T)$, $k^+ = \mathbb{C}[T]_{(T)}$)

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Tame ramification	Adic spaces	The tame site
		00000		

Ramification

valued field: (k, k^+) , k field, $k^+ \subset k$ valuation ring of k (e.g. $k = \mathbb{Q}_p$, $k^+ = \mathbb{Z}_p$ or $k = \mathbb{C}(T)$, $k^+ = \mathbb{C}[T]_{(T)}$)

An extension $(K, K^+)|(k, k^+)$ of valued fields is

- unramified if $K^{sh} = k^{sh}$ (strict henselizations),
- tame(ly ramified) if [K^{sh} : k^{sh}] is prime to the residue characteristic p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

• wild(ly ramified) if $p|[K^{sh}:k^{sh}]$.

Heuristics of the tame site

Given a morphism of schemes $X \rightarrow S$ (S base scheme, e.g. Spec k),

Katharina Hübner

Heuristics of the tame site

Given a morphism of schemes $X \rightarrow S$ (S base scheme, e.g. Spec k), construct a compactification

イロト 不得 トイヨト イヨト 二日

We want to study étale morphisms $Y \to X$ that are tamely ramified at the boundary $\bar{X} \setminus X$ in an appropriate sense.

Katharina Hübner

Heuristics of the tame site

Given a morphism of schemes $X \rightarrow S$ (S base scheme, e.g. Spec k), construct a compactification

We want to study étale morphisms $Y \to X$ that are tamely ramified at the boundary $\bar{X} \setminus X$ in an appropriate sense.

Why should this work?

Katharina Hübner The tame site IUJI

イロト 不得 トイヨト イヨト 二日

Heuristics of the tame site

Given a morphism of schemes $X \rightarrow S$ (S base scheme, e.g. Spec k), construct a compactification

We want to study étale morphisms $Y \to X$ that are tamely ramified at the boundary $\overline{X} \setminus X$ in an appropriate sense.

Why should this work? The tame fundamental group $\pi_1^t(X/S, \bar{x})$ already exists and has good properties.

Algebraic topology		Tame ramification	Adic spaces	The tame site
0000	000000	000000	000000000000	000000

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Katharina Hübner

Algebraic topology 0000	Tame ramification 000●00	Adic spaces 000000000000	The tame site

k algebraically closed field of characteristic p > 0, X/k variety

イロト イヨト イヨト イヨト 二日

Katharina Hübner

Algebraic topology	Tame ramification 000●00	Adic spaces	The tame site

k algebraically closed field of characteristic p > 0, X/k variety

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $H^n_t(X, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,

Algebraic topology	Tame ramification	Adic spaces 000000000000	The tame site 000000

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
- the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x})$,

Algebraic topology	Transfer to the algebraic world	Tame ramification	Adic spaces	The tame site
		000000		

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
- the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x})$,
- compatibility of tame cohomology with products $X \times_k Y$,

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
- the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x})$,
- compatibility of tame cohomology with products $X \times_k Y$,
- $H_t^n(X, M)$ is finite for finite M,

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
- the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x})$,
- compatibility of tame cohomology with products $X \times_k Y$,
- $H_t^n(X, M)$ is finite for finite M,
- homotopy invariance: $H^n_t(X \times_k \mathbb{A}^1, M) = H^n_t(X, M)$,

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
- the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x})$,
- compatibility of tame cohomology with products $X \times_k Y$,
- $H_t^n(X, M)$ is finite for finite M,
- homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M)$,
- base change theorems (proper and smooth)

Algebraic topology	Transfer to the algebraic world	Tame ramification	Adic spaces	The tame site
		000000		

k algebraically closed field of characteristic p > 0, X/k variety

イロト イヨト イヨト イヨト 二日

Katharina Hübner
Algebraic topology	Tame ramification 0000●0	Adic spaces	The tame site 000000

Expected properties

k algebraically closed field of characteristic p > 0, X/k variety

Poincaré duality: If X/k is smooth of dimension d and pM = 0, there is a perfect pairing

 $H^n_{t,c}(X,M) imes \operatorname{Ext}_X^{d-n}(M,\nu(d)) \to \mathbb{Z}/p\mathbb{Z},$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Katharina Hübner

Algebraic topology	Tame ramification	Adic spaces 00000000000	The tame site

Expected properties

k algebraically closed field of characteristic p > 0, X/k variety
Poincaré duality: If X/k is smooth of dimension d and pM = 0, there is a perfect pairing

 $H^n_{t,c}(X,M) imes \operatorname{Ext}_X^{d-n}(M,\nu(d)) \to \mathbb{Z}/p\mathbb{Z},$

■ Cohomological purity: If X/k is smooth and Z → X is a smooth closed subvariety of codimension c,

$$H^n_{t,Z}(X,\nu(r))\cong H^{n-c}_t(Z,\nu(r-c)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Algebraic topology	Tame ramification	Adic spaces	The tame site 000000

Expected properties

k algebraically closed field of characteristic p > 0, X/k variety
■ Poincaré duality: If X/k is smooth of dimension d and pM = 0, there is a perfect pairing

 $H^n_{t,c}(X,M) imes \operatorname{Ext}_X^{d-n}(M,\nu(d)) \to \mathbb{Z}/p\mathbb{Z},$

■ Cohomological purity: If X/k is smooth and Z → X is a smooth closed subvariety of codimension c,

$$H^n_{t,Z}(X,\nu(r))\cong H^{n-c}_t(Z,\nu(r-c)),$$

Connection to Suslin cohomology:

$$H^n_t(X,M) \cong H^n_S(X,M).$$

Katharina Hübner

For a tame site associated with $X \rightarrow S$ two complementary approaches seem promising:

Katharina Hübner

For a tame site associated with $X \rightarrow S$ two complementary approaches seem promising:

イロト 不得 トイヨト イヨト

э

```
algebraic tame site
étale morphisms Y \rightarrow X,
tameness condition on cov-
erings (Y_i \rightarrow Y)_{i \in I}
```

joint work with Alexander Schmidt

For a tame site associated with $X \rightarrow S$ two complementary approaches seem promising:

algebraic tame site étale morphisms $Y \to X$, tameness condition on coverings $(Y_i \to Y)_{i \in I}$

joint work with Alexander Schmidt

adic tame site

over adic space Spa(X, S): étale morphisms of adic spaces s.t. residue field extensions are tame

my own project

イロト イポト イヨト イヨト

Katharina Hübner

For a tame site associated with $X \rightarrow S$ two complementary approaches seem promising:

adic tame site

over adic space Spa(X, S): étale morphisms of adic spaces s.t. residue field extensions are tame

my own project

イロト 不同 トイヨト イヨト

э

Katharina Hübner

For a tame site associated with $X \rightarrow S$ two complementary approaches seem promising:

Katharina Hübner

Table of Contents

1 Algebraic topology

2 Transfer to the algebraic world

3 Tame ramification

4 Adic spaces

5 The tame site

э

イロン イロン イヨン イヨン

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
		00000000000	

Here: Only discretely ringed adic spaces, i.e., all rings are equipped with the discrete topology.

ヘロト ヘロト ヘビト ヘビト

э

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
		00000000000	

Valuations

Valuations of a ring A:

$$v:A\to \Gamma\cup\{0\}$$

- **Γ**: totally ordered group, multiplicative notation,
- v is multiplicative,

•
$$v(1) = 1$$
,

• v satisfies the strong triangle inequality:

$$v(a+b) \leq \max\{v(a), v(b)\}.$$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Connection to valuations of fields

For a ring A there is a bijection

$$\begin{aligned} \{ \text{valuations } v : A \to \Gamma \cup \{0\} \} /_{\sim} &\longleftrightarrow \left\{ (x, \mathcal{O}) \mid \substack{x \in \operatorname{Spec} A \\ \mathcal{O} \subseteq k(x) \text{ val. ring}} \right\} \\ v &\mapsto (\operatorname{supp} v, \mathcal{O}_v) \\ (A \to k(x) \xrightarrow{v_{\mathcal{O}}} \Gamma \cup \{0\}) &\longleftrightarrow (x, \mathcal{O}). \end{aligned}$$

Katharina Hübner

Connection to valuations of fields

For a ring A there is a bijection

$$\begin{aligned} \{ \text{valuations } v : A \to \Gamma \cup \{0\} \} /_{\sim} &\longleftrightarrow \left\{ (x, \mathcal{O}) \mid \begin{array}{c} x \in \operatorname{Spec} A \\ \mathcal{O} \subseteq k(x) \text{ val. ring} \end{array} \right\} \\ v &\mapsto (\operatorname{supp} v, \mathcal{O}_v) \\ (A \to k(x) \xrightarrow{v_{\mathcal{O}}} \Gamma \cup \{0\}) & \leftarrow (x, \mathcal{O}). \end{aligned}$$

• supp $v = \{a \in A \mid v(a) = 0\}$ is a prime ideal of A

Katharina Hübner

Connection to valuations of fields

For a ring A there is a bijection

$$\begin{aligned} \{ \text{valuations } v : A \to \Gamma \cup \{0\} \} /_{\sim} &\longleftrightarrow \left\{ (x, \mathcal{O}) \mid \begin{array}{c} x \in \operatorname{Spec} A \\ \mathcal{O} \subseteq k(x) \text{ val. ring} \end{array} \right\} \\ v &\mapsto (\operatorname{supp} v, \mathcal{O}_v) \\ (A \to k(x) \xrightarrow{v_{\mathcal{O}}} \Gamma \cup \{0\}) & \leftarrow (x, \mathcal{O}). \end{aligned}$$

• supp $v = \{a \in A \mid v(a) = 0\}$ is a prime ideal of A

• $\mathcal{O}_v = \{a \in k(\text{supp } v) \mid v(a) \le 1\}$ is the corresponding valuation ring

Katharina Hübner The tame site ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Algebraic topology		Adic spaces	The tame site

Adic spectrum

Huber pair: (A, A^+) , where

- A is a ring
- A^+ is a subring of A that is integrally closed in A.

Algebraic topology		Adic spaces	The tame site

Adic spectrum

Huber pair: (A, A^+) , where

- A is a ring
- A^+ is a subring of A that is integrally closed in A.

Adic spectrum of a Huber pair:

$$\operatorname{Spa}(A, A^+) = \{ v : A \to \Gamma_x \cup \{0\} \mid v(a) \leq 1 \ \forall a \in A^+ \} /_{\sim}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Katharina Hübner

Algebraic topology		Adic spaces	The tame site

Adic spectrum

Huber pair: (A, A^+) , where

- A is a ring
- A^+ is a subring of A that is integrally closed in A.

Adic spectrum of a Huber pair:

$$\begin{aligned} \operatorname{Spa}(A, A^+) &= \{ v : A \to \Gamma_x \cup \{ 0 \} \mid v(a) \leq 1 \ \forall a \in A^+ \} /_{\sim} \\ &= \{ (x, \mathcal{O}) \mid x \in \operatorname{Spec} A, \ \underbrace{\bar{\mathcal{A}}^+}_{\text{image of } A^+} \subseteq \mathcal{O} \} \\ & \text{image of } A^+ \text{ in } k(x) \end{aligned}$$

Katharina Hübner

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Algebraic topology		Adic spaces	The tame site 000000

$$k \text{ field, } (A, A^+) = (k, k).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Katharina Hübner

Algebraic topology 0000	Transfer to the algebraic world	Tame ramification	Adic spaces 00000●000000	The tame site
Example				

イロト イロト イモト イモト 一日

k field, $(A, A^+) = (k, k)$. Then $\text{Spa}(A, A^+)$ only has one point, corresponding to the trivial valuation of k.

Katharina Hübner

Algebraic topology		Adic spaces 00000●000000	The tame site 000000

k field, $(A, A^+) = (k, k)$. Then $\text{Spa}(A, A^+)$ only has one point, corresponding to the trivial valuation of k.

イロト 不得 トイヨト イヨト 二日

k algebraically closed, $(A, A^+) = (k(T), k[T])$.

Katharina Hübner

Algebraic topology		Adic spaces	The tame site 000000

k field, $(A, A^+) = (k, k)$. Then $\text{Spa}(A, A^+)$ only has one point, corresponding to the trivial valuation of k.

k algebraically closed, $(A, A^+) = (k(T), k[T])$. There are two types of points:

- The trivial valuation of k(T) and
- for each a ∈ k the valuation v_a: Every element of k(T) can be written in the form (T − a)ⁿg/h mit n ∈ Z, g, h ∈ k[T] mit (T − a) ∤ g, h. Then

$$v_a((T-a)^ng/h)=e^{-n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Algebraic topology		Adic spaces	The tame site 000000

k field, $(A, A^+) = (k, k)$. Then $\text{Spa}(A, A^+)$ only has one point, corresponding to the trivial valuation of k.

k algebraically closed, $(A, A^+) = (k(T), k[T])$. There are two types of points:

- The trivial valuation of k(T) and
- for each a ∈ k the valuation v_a: Every element of k(T) can be written in the form (T − a)ⁿg/h mit n ∈ Z, g, h ∈ k[T] mit (T − a) ∤ g, h. Then

$$v_a((T-a)^ng/h)=e^{-n}$$

corresponding valuation ring: $k[T]_{(T-a)}$

Katharina Hübner

The tame site

・ロ・・白・・ヨ・・ヨ・ うぐう

Algebraic topology 0000		Adic spaces 000000●00000	The tame site 000000

Example

k algebraically closed, $(A, A^+) = (k[T], k[T])$.

Katharina Hübner

Algebraic topology 0000		Adic spaces	The tame site 000000

k algebraically closed, $(A, A^+) = (k[T], k[T])$. There are two types of prime ideals of k[T]:

- (0) corresponding to the generic point and
- for each $a \in k$ the maximal ideal (T a).

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Algebraic topology		Adic spaces	The tame site 000000

k algebraically closed, $(A, A^+) = (k[T], k[T])$. There are two types of prime ideals of k[T]:

- (0) corresponding to the generic point and
- for each $a \in k$ the maximal ideal (T a).

There are three types of points in $\text{Spa}(A, A^+)$:

- The trivial valuation of k(T),
- The valuations v_a of k(T) from the previous example, and
- The trivial valuation on on $k[T]/(T-a) \cong k$ for each $a \in k$.

			Adic spaces	The tame site
0000	000000	000000	000000000000	000000

Visualization

$(A, A^+) = (k(T), k(T))$

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
		000000000000	

Visualization

$$(A, A^+) = (k(T), k(T))$$

$(A,A^+)=(k(T),k[T])$

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
		000000000000	

$$(A, A^+) = (k(T), k(T))$$

$(A,A^+)=(k(T),k[T])$

 $(A, A^+) = (k[T], k[T])$

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
		000000000000	

Generalization

S separated scheme, $X \rightarrow S$ morphism of schemes.

$$\operatorname{Spa}(X, S) = \left\{ (x, \mathcal{O}) \mid \begin{array}{c} x \in X \\ \mathcal{O} \subseteq k(x) \text{ valuation ring s.t.} \\ \exists \operatorname{Spec} \mathcal{O} \to S \text{ comp. with } \operatorname{Spec} k(x) \to X \end{array} \right\}$$

Katharina Hübner

Algebraic topology	Transfer to the algebraic world	Adic spaces	The tame site
		000000000000	

Generalization

S separated scheme, $X \rightarrow S$ morphism of schemes.

$$\operatorname{Spa}(X, S) = \left\{ (x, \mathcal{O}) \mid \begin{array}{c} x \in X \\ \mathcal{O} \subseteq k(x) \text{ valuation ring s.t.} \\ \exists \operatorname{Spec} \mathcal{O} \to S \text{ comp. with } \operatorname{Spec} k(x) \to X \end{array} \right\}$$

・ロト (日) (日) (日) (日) (日) (日)

Algebraic topology		Adic spaces 0000000000000	The tame site 000000

Assume $X \to S$ is an open immersion. Then we can visualize $\operatorname{Spa}(X, S)$ as:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Algebraic topology		Adic spaces 0000000000000	The tame site 000000

Assume $X \to S$ is an open immersion. Then we can visualize $\operatorname{Spa}(X, S)$ as:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Algebraic topology		Adic spaces 0000000000000	The tame site 000000

Assume $X \to S$ is an open immersion. Then we can visualize $\operatorname{Spa}(X, S)$ as:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Algebraic topology		Adic spaces 00000000000000	The tame site 000000

Assume $X \to S$ is an open immersion. Then we can visualize $\operatorname{Spa}(X, S)$ as:

Algebraic topology		Adic spaces 00000000000000	The tame site 000000

Assume $X \to S$ is an open immersion. Then we can visualize $\operatorname{Spa}(X, S)$ as:

Algebraic topology		Adic spaces 00000000●00	The tame site 000000

Assume $X \to S$ is an open immersion. Then we can visualize $\operatorname{Spa}(X, S)$ as:

Katharina Hübner
Algebraic topology 0000		Adic spaces 00000000000000	The tame site 000000

Morphisms

A commutative diagram of schemes

induces a morphism of adic spaces

$$\begin{split} \operatorname{Spa}(f,g) &: \operatorname{Spa}(X',S') \longrightarrow \operatorname{Spa}(X,S), \\ & (x',\mathcal{O}') \ \mapsto \ (x=f(x'),\mathcal{O}=\mathcal{O}'\cap k(x')) \end{split}$$

Katharina Hübner

Algebraic topology		Adic spaces	The tame site

Topology

 $X \rightarrow S$ morphism of schemes.

Katharina Hübner

Algebraic topology 0000		Adic spaces	The tame site

Topology

 $X \rightarrow S$ morphism of schemes.

The topology of Spa(X, S) is generated by all Spa(U, T) coming from diagrams

with

- $U \rightarrow X$ an open immersion,
- $T \rightarrow S$ of finite type.

Katharina Hübner The tame site

HUJ

<ロ> <四> <四> <四> <三</p>

Algebraic topology		Adic spaces	The tame site

Topology

 $X \rightarrow S$ morphism of schemes.

The topology of Spa(X, S) is generated by all Spa(U, T) coming from diagrams

 $U \longleftrightarrow X$ $\downarrow \qquad \qquad \downarrow$ $T \xrightarrow{f.t.} S$

with

• $U \rightarrow X$ an open immersion,

• $T \rightarrow S$ of finite type.

If $X \to S$ is an open immersion and $U \to T$ is dominant (hence an open immersion), then $T \to S$ is birational.

Katharina Hübner

Table of Contents

1 Algebraic topology

2 Transfer to the algebraic world

3 Tame ramification

4 Adic spaces

5 The tame site

Katharina Hübner The tame site

・ロト・西ト・ヨト・ヨー うへぐ

Katharina Hübner

Katharina Hübner

The tame site

IUJI

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

The tame site

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

 $\operatorname{Spa}(f,g) : \operatorname{Spa}(X',S') \to \operatorname{Spa}(X,S)$ is étale if and only if f is étale

g is the composition of an integral with a f.t. morphism

Katharina Hübner

 $\operatorname{Spa}(f,g): \operatorname{Spa}(X',S') \to \operatorname{Spa}(X,S)$ is étale if and only if f is étale

g is the composition of an integral with a f.t. morphism (f,g) is tame if it is étale and $\forall (x', \mathcal{O}') \in \operatorname{Spa}(X', S')$ mapping to $(x, \mathcal{O}) \in \operatorname{Spa}(X, S), k(x')|k(x)$ is tamely ramified w.r.t. \mathcal{O}' .

Tame ramification

The adic tame site

・ロ・・日・・ヨ・・ヨ・ りゃぐ

Katharina Hübner

・ロト ・回 ト ・ヨト ・ヨト

= 990

The adic tame site

Let \mathcal{X} be an adic space.

Katharina Hübner

イロン イロン イヨン イヨン

э.

The adic tame site

Let \mathcal{X} be an adic space.

The tame site \mathcal{X}_t consists of:

Katharina Hübner

イロト イヨト イヨト イヨト

3

The adic tame site

Let \mathcal{X} be an adic space.

- The tame site \mathcal{X}_t consists of:
 - \blacksquare objects: tame morphism of adic spaces $\mathcal{Y} \to \mathcal{X},$

Katharina Hübner

The adic tame site

Let \mathcal{X} be an adic space.

The tame site \mathcal{X}_t consists of:

- \blacksquare objects: tame morphism of adic spaces $\mathcal{Y} \to \mathcal{X}$,
- morphisms: $\mathcal{Y}' \to \mathcal{Y}$ over \mathcal{X} (they are automatically tame),

The adic tame site

Let \mathcal{X} be an adic space.

The tame site \mathcal{X}_t consists of:

- \blacksquare objects: tame morphism of adic spaces $\mathcal{Y} \to \mathcal{X}$,
- morphisms: $\mathcal{Y}' \to \mathcal{Y}$ over \mathcal{X} (they are automatically tame),
- coverings: surjective families $(\mathcal{Y}_i \to \mathcal{Y})_{i \in I}$.

The adic tame site

Let \mathcal{X} be an adic space.

The tame site \mathcal{X}_t consists of:

- \blacksquare objects: tame morphism of adic spaces $\mathcal{Y} \to \mathcal{X}$,
- morphisms: $\mathcal{Y}' \to \mathcal{Y}$ over \mathcal{X} (they are automatically tame),
- coverings: surjective families $(\mathcal{Y}_i \to \mathcal{Y})_{i \in I}$.

For a morphism of schemes $X \to S$: adic tame site $\operatorname{Spa}(X, S)_t$.

・ロト・西ト・ヨト・ヨー うへぐ

Katharina Hübner

The algebraic tame site

Let $X \to S$ be a morphism of schemes.

Katharina Hübner

イロン イロン イヨン イヨン

3

The algebraic tame site

Let $X \to S$ be a morphism of schemes.

The algebraic tame site $(X/S)_t$ consists of:

Katharina Hübner

イロト 不得 トイヨト イヨト

3

The algebraic tame site

Let $X \to S$ be a morphism of schemes.

The algebraic tame site $(X/S)_t$ consists of:

• objects: étale morphisms $Y \rightarrow X$,

Katharina Hübner

Let $X \to S$ be a morphism of schemes.

The algebraic tame site $(X/S)_t$ consists of:

- objects: étale morphisms $Y \to X$,
- morphisms: $Y' \rightarrow Y$ over X (they are automatically étale)

Let $X \to S$ be a morphism of schemes.

The algebraic tame site $(X/S)_t$ consists of:

- objects: étale morphisms $Y \to X$,
- morphisms: $Y' \rightarrow Y$ over X (they are automatically étale)
- coverings: families $(Y_i \to Y)_{i \in I}$ such that for every $(y, \mathcal{O}) \in \operatorname{Spa}(Y, S)$, there is $i \in I$ and $(y_i, \mathcal{O}_i) \in \operatorname{Spa}(Y_i, S)$ mapping to (y, \mathcal{O}) .

Let $X \to S$ be a morphism of schemes.

The algebraic tame site $(X/S)_t$ consists of:

- objects: étale morphisms $Y \to X$,
- morphisms: $Y' \rightarrow Y$ over X (they are automatically étale)
- coverings: families $(Y_i \to Y)_{i \in I}$ such that for every $(y, \mathcal{O}) \in \operatorname{Spa}(Y, S)$, there is $i \in I$ and $(y_i, \mathcal{O}_i) \in \operatorname{Spa}(Y_i, S)$ mapping to (y, \mathcal{O}) .

Comparison theorem [H., Schmidt]:

Let $X \to S$ be a morphism of schemes.

The algebraic tame site $(X/S)_t$ consists of:

- objects: étale morphisms $Y \to X$,
- morphisms: $Y' \rightarrow Y$ over X (they are automatically étale)
- coverings: families $(Y_i \to Y)_{i \in I}$ such that for every $(y, \mathcal{O}) \in \operatorname{Spa}(Y, S)$, there is $i \in I$ and $(y_i, \mathcal{O}_i) \in \operatorname{Spa}(Y_i, S)$ mapping to (y, \mathcal{O}) .

Comparison theorem [H., Schmidt]: Suppose S is affine and of characteristic p > 0. Let \mathcal{F} be a sheaf on $(X/S)_t$.

Let $X \to S$ be a morphism of schemes.

The algebraic tame site $(X/S)_t$ consists of:

- objects: étale morphisms $Y \to X$,
- morphisms: $Y' \rightarrow Y$ over X (they are automatically étale)
- coverings: families $(Y_i \to Y)_{i \in I}$ such that for every $(y, \mathcal{O}) \in \operatorname{Spa}(Y, S)$, there is $i \in I$ and $(y_i, \mathcal{O}_i) \in \operatorname{Spa}(Y_i, S)$ mapping to (y, \mathcal{O}) .

Comparison theorem [H., Schmidt]:

Suppose S is affine and of characteristic p > 0. Let \mathcal{F} be a sheaf on $(X/S)_t$.

Then there is a sheaf \mathcal{F}' on $\operatorname{Spa}(X, S)_t$ such that

$$H^{i}((X/S)_{t},\mathcal{F})\cong H^{i}(\operatorname{Spa}(X,S)_{t},\mathcal{F}').$$

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X/k, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
- the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x})$,
- compatibility of tame cohomology with products $X \times_k Y$,
- $H_t^n(X/k, M)$ is finite for finite M,
- homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M)$,
- base change theorems (proper and smooth),

- k algebraically closed field of characteristic p > 0, X/k variety
 - $H^n_t(X/k, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper, \checkmark
 - the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x})$,
 - compatibility of tame cohomology with products $X \times_k Y$,
 - $H_t^n(X/k, M)$ is finite for finite M,
 - homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M)$,
 - base change theorems (proper and smooth),

- k algebraically closed field of characteristic p > 0, X/k variety
 - $H^n_t(X/k, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
 - the fundamental group of the tame site is the existent $\pi_1^t(X/t, \bar{x}), \checkmark$
 - compatibility of tame cohomology with products $X \times_k Y$,
 - $H_t^n(X/k, M)$ is finite for finite M,
 - homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M)$,
 - base change theorems (proper and smooth),

- k algebraically closed field of characteristic p > 0, X/k variety
 - $H^n_t(X/k, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
 - the fundamental group of the tame site is the existent $\pi_1^t(X/t,\bar{x}), \checkmark$
 - compatibility of tame cohomology with products X ×_k Y, not yet
 - $H_t^n(X/k, M)$ is finite for finite M,
 - homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M)$,
 - base change theorems (proper and smooth),

- k algebraically closed field of characteristic p > 0, X/k variety
 - $H^n_t(X/k, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper,
 - the fundamental group of the tame site is the existent $\pi_1^t(X/t,\bar{x}), \checkmark$
 - compatibility of tame cohomology with products $X \times_k Y$, not yet
 - $H_t^n(X/k, M)$ is finite for finite M, for curves
 - homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M)$,
 - base change theorems (proper and smooth),

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X/k, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper, \checkmark
- the fundamental group of the tame site is the existent $\pi_1^t(X/t,\bar{x}),$
- compatibility of tame cohomology with products $X \times_k Y$, not yet
- $H_t^n(X/k, M)$ is finite for finite M, for curves
- homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M), \checkmark$
- base change theorems (proper and smooth),

k algebraically closed field of characteristic p > 0, X/k variety

- $H^n_t(X/k, M) = H^n_{\text{et}}(X, M)$ if $p \nmid \#M$ or if X/k is proper, \checkmark
- the fundamental group of the tame site is the existent $\pi_1^t(X/t,\bar{x}),$
- compatibility of tame cohomology with products $X \times_k Y$, not yet
- $H_t^n(X/k, M)$ is finite for finite M, for curves
- homotopy invariance: $H_t^n(X \times_k \mathbb{A}^1, M) = H_t^n(X, M), \checkmark$
- base change theorems (proper and smooth), work in progess

Algebraic topology 0000		Adic spaces	The tame site 00000●

k algebraically closed field of characteristic p > 0, X/k variety

Poincaré duality: If X/k is smooth of dimension d and pM = 0, there is a perfect pairing

$$H^n_{t,c}(X,M) imes \operatorname{Ext}_X^{d-n}(M,\nu(d)) \to \mathbb{Z}/p\mathbb{Z},$$

■ Cohomological purity: If X/k is smooth and Z → X is a smooth closed subvariety of codimension c,

$$H^n_{t,Z}(X,\nu(r))\cong H^{n-c}(Z,\nu(r-c)),$$

Connection with Suslin cohomology:

$$H^n_t(X,M)\cong H^n_S(X,M).$$

Algebraic topology 0000		Adic spaces	The tame site 00000●

k algebraically closed field of characteristic p > 0, X/k variety

Poincaré duality: If X/k is smooth of dimension d and pM = 0, there is a perfect pairing

$$H^n_{t,c}(X,M) imes\operatorname{Ext}^{d-n}_X(M,
u(d)) o \mathbb{Z}/p\mathbb{Z},\qquad ext{for curves}$$

■ Cohomological purity: If X/k is smooth and Z → X is a smooth closed subvariety of codimension c,

$$H^n_{t,Z}(X,\nu(r))\cong H^{n-c}(Z,\nu(r-c)),$$

Connection with Suslin cohomology:

$$H^n_t(X,M)\cong H^n_S(X,M).$$

Algebraic topology 0000		Adic spaces	The tame site 00000●

k algebraically closed field of characteristic p > 0, X/k variety

Poincaré duality: If X/k is smooth of dimension d and pM = 0, there is a perfect pairing

$$H^n_{t,c}(X,M) imes\operatorname{Ext}^{d-n}_X(M,
u(d)) o \mathbb{Z}/p\mathbb{Z},$$
 for curves

■ Cohomological purity: If X/k is smooth and Z → X is a smooth closed subvariety of codimension c,

$$H^n_{t,Z}(X,\nu(r)) \cong H^{n-c}(Z,\nu(r-c)),$$
 for curves or if $r = 0$

Connection with Suslin cohomology:

$$H^n_t(X, M) \cong H^n_S(X, M).$$

Algebraic topology 0000		Adic spaces	The tame site 00000●

k algebraically closed field of characteristic p > 0, X/k variety

• Poincaré duality: If X/k is smooth of dimension d and pM = 0, there is a perfect pairing

$$H^n_{t,c}(X,M) imes\operatorname{Ext}^{d-n}_X(M,
u(d)) o \mathbb{Z}/p\mathbb{Z},$$
 for curves

■ Cohomological purity: If X/k is smooth and Z → X is a smooth closed subvariety of codimension c,

$$H^n_{t,Z}(X,\nu(r)) \cong H^{n-c}(Z,\nu(r-c)),$$
 for curves or if $r = 0$

Connection with Suslin cohomology:

 $H_t^n(X, M) \cong H_S^n(X, M).$ work in progress (with A. Schmidt)