On the motivic t-structure on $\operatorname{DM}(k, \mathbb{Q})$

 Mikhail Bondarko, St. Petersburg State UniversityAn observation: there "should exist" a weight structure on $\operatorname{DM}(k, \mathbb{Q})$ with "nice properties".

These properties would yield some interesting statements on the (conjectural) motivic t-structures on $\mathrm{DM}^{g m}(k, \mathbb{Q}) \subset \mathrm{DM}(k, \mathbb{Q})$.
A problem: I currently do not know how to construct (a candidate for) this weight structure unconditionally. Yet recent abstract nonsense easily gives a candidate for the "big motivic t-structure".

Simple definitions and conventions

\underline{C} : a triangulated category; retracts $=$ summands; For $S \subset \operatorname{Obj} \underline{C}, \operatorname{Kar}_{\underline{C}}(S)=\{$ retracts of $M \in S\}$;
$S^{\perp}=\{N \in \operatorname{Obj} \underline{C}, \underline{C}(M, N)=\{0\} \forall M \in S\} ;$
${ }^{\perp} S=S_{\underline{C^{o p}}}^{\perp} ;$
S Hom-generates \underline{C} if $\left(\cup_{i \in \mathbb{Z}} S[i]\right)^{\perp}=\{0\}$;
S is (anti)connective if $S \perp S[i] \forall i>0(<0)$;
S is (co) smashing if \underline{C}, S are $\coprod_{C}\left(\prod_{C}\right)$-closed;
\underline{C} is smashing $\Longrightarrow M \in \operatorname{Obj} \underline{C}$ is compact
if $\underline{C}(M,-): \underline{C} \rightarrow \underline{\mathrm{Ab}}$ respects coproducts;
$\underline{C}^{c} \subset \underline{C}=$ (the triangulated) subcategory of
compact objects.
Weight and t-structures
Definition 1. [t-structures (homological convention).]
$\left(\underline{C}_{t \leq 0}, \underline{C}_{t \geq 0}\right) \subset \operatorname{Obj} \underline{C}:$ strict;
(i) $\underline{C}_{t \leq 0} \subset \underline{C}_{t \leq 0}[1]$ and $\underline{C}_{t \geq 0}[1] \subset \underline{C}_{t \geq 0}$.
(ii) $\underline{C}_{t \geq 0}[1] \perp \underline{C}_{t \leq 0}$.
(iii) $\forall M \in \operatorname{Obj} \underline{C} \exists$ distinguished triangle

$$
\begin{equation*}
L_{t} M \rightarrow M \rightarrow R_{t} M \rightarrow L_{t} M[1]: \tag{1}
\end{equation*}
$$

such that $L_{t} M \in \underline{C}_{t \geq 0}, R_{t} M \in \underline{C}_{t \leq 0}[-1]$.
Definition 2. $[(\underline{C}, w)$ is a weight structure if $]$
(i) $\underline{C}_{w \leq 0}, \underline{C}_{w \geq 0} \subset \operatorname{Obj} \underline{C}$ are retraction-closed.
(ii) $\underline{C}_{w \leq 0} \subset \underline{\bar{C}}_{w \leq 0}[1] ; \underline{C}_{w \geq 0}[1] \subset \underline{C}_{w \geq 0}$.
(iii) Orthogonality. $\underline{C}_{w \leq 0} \perp \underline{C}_{w>0}[1]$.
(iv) Weight decompositions. $\forall M \in \operatorname{Obj} \underline{C}$

$$
\exists L_{w} M \rightarrow M \rightarrow R_{w} M \rightarrow L_{w} M[1]:
$$

$L_{w} M \in \underline{C}_{w \leq 0}$ and $R_{w} M \in \underline{C}_{w \geq 0}[1]$.
Definition 3.1. $\underline{H t} \subset \underline{C} ; \operatorname{Obj} \underline{H t}=\underline{C}_{t=0}=$ $\underline{C}_{t \leq 0} \cap \underline{C}_{t \geq 0}$; similarly for w.
2. $\forall i \in \mathbb{Z}: \underline{C}_{t, w \leq, \geq i}:=\underline{C}_{t, w \leq, \geq 0}[i]$.
t is left (resp. right) non-degenerate if $\cap_{i \in \mathbb{Z}} \underline{C}_{t \geq i}=\{0\}$ (resp. $\cap_{i \in \mathbb{Z}} \underline{C}_{t \leq i}=\{0\}$); similarly for w.
3. w if (co)smashing if $\underline{C}, \underline{C}_{w \leq 0}$ and $\underline{C}_{w \geq 0}$ are; similarly for t.
Remark 4. $\underline{H w}$ is connective; $\underline{H t}$ is anti-connective.

Some abstract nonsense

Proposition 5 ([|KeN13]). $\underline{B} \subset \underline{C}^{c}$ is small, anticonnective, abelian semi-simple, \& Hom-generates \underline{C} $\Longrightarrow\left(\underline{C}, w_{\underline{B}}=\left(\left(\cup_{i>0} \underline{B}[i]\right)^{\perp},\left(\cup_{i<0} \underline{B}[i]\right)^{\perp}\right)\right)$ is a smashing and cosmashing non-degenerate weight structure.

Theorem 6 ([Bon19 $]+[$ BoS19 $]+$ in progress). Assume \underline{C} is compactly generated (or satisfies BRD); (\underline{C}, w) is smashing and cosmashing.

1. $t=\left(\underline{C}_{w \leq 0},{ }^{\perp} \underline{C}_{w \leq-1}={ }^{\perp}\left(\cup_{i<0} \underline{C}_{w=i}\right)\right)$ is a smashing t-structure. t restricts to t^{c} on \underline{C}^{c}.
2. t is right (resp. t^{c} is left) non-degenerate if w is so.
3. If w is left (resp. right) non-degenerate then $\underline{C}_{w \geq 0}$ $\left(\underline{C}_{w \leq 0}\right)=$ the smallest (co) smashing extension-closed class \subset Obj \underline{C} that contains $\underline{C}_{w=i}$ for $i \geq 0(\leq 0)$.
4. If $w=w_{\underline{B}}$ (see Proposition 5) then t is compactly generated and t^{c} is bounded.
5. $\underline{H w}$ is \underline{C}-smashing and co-smashing.
$\underline{H t}\left(\supset \underline{H t^{c}}\right) \subset \operatorname{AddFun}(\underline{H w}, \underline{\mathrm{Ab}})=$ $\{$ functors that respect products (and coproducts)\}.

Now take $\underline{C}=\mathrm{DM}(k, \mathbb{Q}), H^{c}: D M_{g m}(k, \mathbb{Q}) \rightarrow \underline{\mathrm{Ab}}$ be a "classical Weil cohomology theory" (de Rham or singular in characteristic 0;
$H^{e t}: M \mapsto \mathcal{H}_{\mathbb{Q}_{\ell}}^{e t}\left(M \otimes_{\text {Spec } k}\right.$ Spec $\left.\left.k^{a l g}\right)\right)$.
Theorem 7. 1. H^{c} extends to $H \cong \underline{C}\left(-, R_{H}\right)$.
2. R_{H} is pure injective, that is, $\underline{C}(M, f)=0$
$\forall M \in \operatorname{Obj} \underline{C}^{c} \Longrightarrow \underline{C}\left(f, R_{H}\right)=0([\operatorname{Kra00}])$.
3. Any $\coprod_{I} R_{H}$ is a retract of $\prod_{J} R_{H}$ and vice versa.
4. $\exists t_{H}$ on $\underline{C}, \underline{C}_{t \geq 0}={ }^{\perp}\left\{R_{H}[i]: i<0\right\}([\operatorname{LaV} 20$, Theorem 5.2]; since \underline{C} is algebraic).
5. Standard conjectures \Longrightarrow one can take semisimple mixed ($=$ sums of pure) motives for \underline{B} in Proposition5(see [Bon15]), $t_{H}=t, R_{H}$ bigenerates w (cf. Theorem 6(3)), and $\underline{C}_{w=0}=\operatorname{Kar}_{\underline{C}}\left(\left\{\coprod_{I} R_{H}\right\}\right)$.
Question 8.1. Can one construct an unconditional candidate for w ?
2. When does an object R "purely bigenerate" w ("strong connectivity"??)?
3. Is "algebraic" (and compactly generated?) necessary for [LaV20, Theorem 5.2]?

A weight splitting of R_{H}

Proposition 9.1. $\exists t_{\text {Chow }}: \underline{H} t_{\text {Chow }} \cong \operatorname{AddFun}\left(\mathrm{Chow}^{o p}, \underline{\mathrm{Ab}}\right)$. 2. $R_{H} \cong \bigoplus_{i \in \mathbb{Z}} t_{\mathrm{Chow}=i} R_{H}[i]$

Proof. 1. Apply the \underline{C}-connectivity of $\operatorname{Chow}(=\operatorname{Chow}(k, \mathbb{Q}))$.
2. Weight spectral sequences for H^{c} degenerate at E_{2}. It remains to apply [Bon12, §3] and pure injectivity of H and all $t_{\text {Chow } \geq i} H$.

Question 10. Can this isomorphism be chosen to be compatible with $m_{H}: R_{H} \otimes R_{H} \rightarrow R_{H}$ (cf. [Ayo14])?
Remark 11. $R_{H} \otimes R_{H}$: difficult! Take $\underline{C} \otimes \underline{C}$; $R H o m(X \boxtimes Y, Z \boxtimes T) \cong R H o m(X, Z) \otimes R H o m(Y, T)$. $\Longrightarrow \operatorname{Chow}(k, \mathbb{Q}) \boxtimes \operatorname{Chow}(k, \mathbb{Q})$ gives w_{\boxtimes} on $\underline{C} \otimes \underline{C}$, $\left\{\otimes^{*}\left(t_{\text {Chow }=i} R_{H}\right)\right\} \cup \underline{C}_{t_{\text {Chow }}=0} \boxtimes \underline{C}_{t_{\text {Chow }}=0} \subset t_{\boxtimes} \underline{C} \otimes \underline{C}$ ($\otimes^{*}=$ right adjoint to $\otimes: \underline{C} \otimes \underline{C} \rightarrow \underline{C}$).
Modify $m_{H}^{\prime}: R_{H} \boxtimes R_{H} \rightarrow \otimes^{*} R_{H}$ to make it "compatible with the unit" and prove "that there are no bad components" by the induction on " t-defect".

An "explicit" R_{H}

Assume k is algebraically closed, char $k \neq \ell$.
Take $\underline{D}=$ subcategory of $\operatorname{DM}\left(k, \mathbb{Z}_{(\ell)}\right)$ generated by Chow $^{e f f}(k, \mathbb{Q}) ; \mathbf{1}=M^{\mathrm{gm}}(p t) . \mathbf{1} / \ell^{n}$ represents $\mathbb{Z} / \ell^{n} \mathbb{Z}$ étale cohomology ([SuV96] + duality) \Longrightarrow
$R^{\prime}:=\hat{\mathbf{1}}_{\ell}=$ holim $\mathbf{1} / \ell^{n}$ gives \mathbb{Z}_{ℓ}-étale cohomologyon \underline{D}^{c}; thus $R_{H} \cong R^{\prime} \otimes \mathbb{Q}$ in $\underline{C}=\underline{D}_{\mathbb{Q}}$ ("coherent with" Theorem 7(5)).
Next, $C:=\operatorname{Cone}\left(1 \rightarrow R^{\prime}\right)$ is \mathbb{Q}-linear \Longrightarrow
$\mathbb{Q} \otimes \mathbf{1} \rightarrow R \rightarrow C \rightarrow \mathbb{Q} \otimes \mathbf{1}[1]$ is distinguished.
Question 12. RHom $\left(\operatorname{Cone}\left(1 \rightarrow R^{\prime}\right), \mathbb{Q} \otimes 1\right)=$?
$R \operatorname{Hom}\left(R^{\prime}, R^{\prime}\right) \cong \mathbb{Z}_{\ell}[0]$ (an adjunction).

References

[Ayo14] Ayoub J., L'algébre de Hopf et le groupe de Galois motiviques d'un corps de caractéristique nulle, I// J. reine angew. Math. 693 (2014), 1-149. [Bon12] Bondarko M.V., Weight structures and 'weights' on the hearts of t-structures// Homology, Homotopy and Applications, vol. 14, 2012, No.

1, pp. 239-261; see also http://arxiv.org/abs/ 1011.3507
[Bon15] Bondarko M.V., Mixed motivic sheaves (and weights for them) exist if 'ordinary' mixed motives do// Comp. Math. 151(5), 2015, 917-956.
[Bon19] Bondarko M.V., From weight structures to (orthogonal) t-structures and back, preprint, 2019, https://arxiv.org/abs/1907.03686
[BoS19] Bondarko M.V., Sosnilo V.A., On purely generated α-smashing weight structures and weightexact localizations / / J. of Algebra 535 (2019), 407455.
[KeN13] Keller B., Nicolas P., Weight structures and simple dg modules for positive dg algebras // Int. Math. Res. Not. vol. 2013(5), 2013, 1028-1078.
[Kra00] Krause H., Smashing subcategories and the telescope conjecture - an algebraic approach / / Invent. math. 139 (2000), 99-133.
[LaV20] Laking R., Vitória J., Definability and approximations in triangulated categories// Pacific

Journal of Math., vol 306(2), 2020, 557-586.
[SuV96] Suslin Andrei, Voevodsky V., Singular homology of abstract algebraic varieties// Invent. Math. 123(1), 1996, 61-94.

