I. Floating bodies and affine surface area
I. I. Floating bodies Dupin, Blaschke $n=2,3$ K is a convex body in \mathbb{R}^{n} (a compact subject of \mathbb{R}^{n} s. te. $\operatorname{int}(k) \neq \varnothing)$
let $\delta \geqslant 0$.
Duping floating body $K_{[\delta]}$ is the set that has bo undry given by the centroids of a hyperplane H that cub off a set of volume δ of K

Note: name floatin body comes frem Archimedem priñciple

$\rightarrow K_{[\delta]}$ need not he convex!
\longrightarrow
Q: When is the Dupin floating body caner 2

Definition (Baranyi+Larman; Schütt+b)
Let K he a convex body in \mathbb{R}^{n}.
Let $\delta \geqslant 0$.
Then the (convex) floating body K_{δ}

$$
K_{r}=\cap H^{+}
$$

$$
\left|H^{-} \cap K\right| \leq \delta
$$

- Ks is convex
- $K_{0}=K, \quad K_{\delta} \leq K$

Examples

K_{r}
we see: there are poimb on the boundary of $K \sigma$ where a support hyp pe plane cubs off more then of

- Euclidean unit ball B_{2}^{n}

$$
\begin{aligned}
& \left(B_{2}^{n}\right)_{\sigma}=\left(1-c_{n} \delta^{\frac{2}{n+1}}\right) B_{2}^{n} \\
& \left(\begin{array}{c}
\cdots \\
\vdots \\
\cdots
\end{array} \quad c_{n}=\frac{1}{2}\left(\frac{n+1}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}}\right.
\end{aligned}
$$

- Square in \mathbb{R}^{2} with side lengte 2 or B_{∞}^{2}.
 bounder of $\left(B_{\infty}^{2}\right) \delta$

$$
f(x)=1-\frac{\delta}{2(1-x)}
$$

Note:- $\partial(K)_{\delta}$ need not be C^{\prime}

- 2 Facts:

If $K[\sigma]$ is convex, then $K_{[\delta]}=K_{\delta}$
Tho (Meyer + Reisner)
If K is a 0 -symmetric convex body, then $K[\sigma]=K_{\sigma}$

Some more properties

- Kr is strictly convex
- through every point an ∂k_{σ} there is at least ore hyreeplonelt that cubs off a set of volume δ of k and this hypuplare toulls $d K_{r}$ in exactly this one point whin is then the centroid of HonK

Q: Why consider floating bodies 2
I.2. Affine surface area
K convex body in \mathbb{R}^{n}.

$$
\begin{aligned}
\operatorname{as}(k) & =\int_{\partial K} K(x)^{\frac{1}{n+1}} d \mu_{k}(x)= \\
& =\int_{J^{n-1}} f_{k}^{\frac{n}{n+1}}(n) d b(n)
\end{aligned}
$$

Where \mathcal{H} is the Gauso-c curvature at $x \in \partial k$
μ_{k} is the usual surface measure on $\partial K: \int_{\partial K} d_{\mu_{k}}=|\partial K|$
f_{k} is the curvature function of K at n, i.e. $f_{k}(u)=\frac{1}{x(x)}$ s.te.

$$
N(x)=u
$$

Examples as $\left.(K)=\int_{\partial K} K^{\frac{1}{n+1}} a \mu_{K}\right)$

$$
\cdot \operatorname{as}\left(B_{2}^{n}\right)=\left|\partial B_{2}^{n}\right|=n\left|B_{2}^{n}\right|
$$

- Let p be a poistrone

$$
\operatorname{as}(p)=0<\square
$$

Properties

- affine invariant: map, det $T \neq 0$

$$
\operatorname{as}(T K)=|\operatorname{det} T|^{\frac{n-1}{n+1}} \operatorname{ar}(K)
$$

- valuation (Suhint $), k, L$

$$
\text { as }(K \cup L)+a s(K \cap L)=a s(K)+a(L)
$$

s.te. KUL is cunex

- upper-semicontinuas (lut wak)

$$
K_{j} \xrightarrow{d H} k \Rightarrow \lim _{j} \sup \operatorname{as}\left(K_{j}\right) \leq \operatorname{as}(K)
$$

as cannot he contimes of the Hous dorff metric

$$
\begin{aligned}
P_{j} \longrightarrow B_{2}^{n} \quad \operatorname{as}\left(P_{j}\right) & =0 \vee j \\
\operatorname{as}\left(B_{2}^{n}\right) & >0
\end{aligned}
$$

- affine iso perimedic inequality

$$
\frac{\operatorname{as}(K)}{\text { as }\left(B_{2}^{n}\right)} \leq\left(\frac{|K|}{\left|B_{2}^{n}\right|}\right)^{\frac{b-1}{b+1}} \text { wire }
$$

equaity ift K is an eelipsuid
aftine isoperimedic in equality Blaschke - santaló in equality
K convax body in $\mathbb{R}^{n}, \quad O \in \operatorname{int}(K)$

$$
K^{0}=\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \leq 1 \quad \forall x \in K\right\}
$$

$$
B_{\infty}^{n}
$$

Blaschke santels inequatit \exists a unique $s_{0} \in \operatorname{int}(K)$, w. l.o. δ $s_{0}=0$, s.te.

$$
|K|\left|K^{0}\right| \leq\left|B_{2}^{n}\right|^{2}
$$

wite equality iff K is on ellipunid Q: What about lower bounds of

$$
(K)\left|k^{0}\right| ?
$$

For 0 -summunic K
$-|K|\left|K^{0}\right| \geqslant\left|B_{\infty}^{n}\right|\left|B_{1}^{h}\right|$
Mabler conjecture:

- $\left|K\left\|K^{\circ}\left|\geqslant\left|S \| S^{\circ}\right| S\right.\right.\right.$ simpax

Mabler conjechure is open of $n \geqslant \psi$ Symmetic 3-dim. case solved by - Ir iyeh + Shibata

Blaschke Santaló inequality \Rightarrow affine iso perimetic inequeity

$$
\operatorname{as}(k)=\int_{S^{n-1}} f_{k}^{\frac{n}{n+1}} d \sigma=\int_{S_{n-1}}\left(\frac{f_{k} \cdot h_{k}}{h_{k}}\right)^{\frac{n}{n+1}} d \sigma
$$

Holder $p=\frac{n+1}{n} \rightarrow \frac{1}{p}=\frac{n}{n+1} \rightarrow \frac{1}{9}=\frac{1}{n+1} \quad 9=n+1$

$$
\leq\left(\int_{S^{n-1}} f_{k} \cdot h_{k} d b\right)^{\frac{n}{n+1}}\left(\int h_{k}^{-n} d \sigma\right)^{p} \frac{1}{n+1}
$$

hk is the suppratfundion af K

$$
h_{k}(u)=\max _{x \in K}\left\langle u_{1} x\right\rangle=\left\langle u, x_{0}\right\rangle
$$

Claim $\int_{s_{n-1}} f_{k} h_{k}=n|k|$

$$
\begin{aligned}
& \longrightarrow \int_{S_{n-1}} h_{k}^{-n}=n \cdot\left|k^{0}\right| \\
& \frac{1}{n} \int_{\int_{n-1}^{n-1}} f_{k} h_{k} d z=\frac{1}{n} \int_{\partial k}\left((x, N(x)) d \mu_{k}=f_{k} \cdot d b\right.
\end{aligned}
$$

$$
\begin{array}{r}
h_{k}(u)=\max _{y \in k}\langle u, y\rangle=\langle u, x\rangle^{\psi} \\
\text { s.j. u }=N(x)
\end{array}
$$

Instead of $\quad K^{0} \left\lvert\,=\frac{1}{n} \int_{S_{n-1}} \frac{1}{4 K^{n}} d z\right.$ we shaw

$$
|k|=\frac{1}{n} \int_{S_{n-1}} \frac{1}{h_{k 0}^{n}} d \delta
$$

$$
\begin{aligned}
& |k|=\int_{R^{n}} x_{k}^{(x)} d x= \\
& \int_{S^{n-1}} \int_{r=0}^{\infty} x_{k}(r u) r^{n-1} d r d \sigma(u) \\
& =\int_{S^{n-1}} \int_{r=0}^{r_{k}(u)} r^{n-1} d r d z=\frac{1}{n} \int_{S^{n-1}} \frac{r_{k}(u)}{11} d \sigma
\end{aligned}
$$

$$
\begin{aligned}
& h_{k^{0}}(u)=\max _{y \in K^{0}}\langle u, y\rangle=\left\langle u, y_{0}\right\rangle \\
& y_{0} \in K^{0} \\
& =\left\langle y_{0}, \frac{r_{k}(u) u}{r_{k}(u)}\right\rangle=\frac{1}{r_{k}(u)}\langle y_{0}, \underbrace{r_{k}(u) u}\rangle \\
& \underbrace{T}_{\leqslant 1} \\
& \leq \frac{1}{r_{k}(u)} \\
& \rho_{K}(u) u \in \partial K \\
& \rightarrow \exists y_{0} \in k^{0} \text { s.te. } \\
& y_{0} \in K^{0} \\
& 1=\left\langle y_{0}, r_{k}(u) u\right\rangle=r_{k}(k) \underbrace{\left\langle y_{0}, u\right\rangle} \\
& \leq r_{k}(u) h_{k^{\circ}}(u) \\
& \max _{y \in k^{0}}\langle y, u\rangle
\end{aligned}
$$

PeHy
$f_{k}^{-1} \cdot h_{k}^{n+1}=$ const $\Longleftrightarrow k$ is an echiso
$C x, N(x j)^{n+1} x(x) \ddot{ }=$ const $\Leftrightarrow k$ is an ellipsaid
$\partial K[\delta] \geqslant J K_{\delta}$
Mesetreisus

$$
k=-k \Rightarrow k_{[\sigma]}=k v
$$

B_{∞}^{2}
B_{p}^{n}
For
Lehaviour around 0

