Аннотация лекции за 15.09.21.

§1. Устойчивые распределения и их свойства. (продолжение)

Доказана теорема.

Теорема 3. Если X, X_1, X_2 — строго устойчивые н.о.р. с.в. с экспонентой α , то распределения $s^{1/\alpha}X_1 + t^{1/\alpha}X_2$ и $(s+t)^{1/\alpha}X$ совпадают для любых вещественных неотрицательных s и t.

Эта теорема дает возможность определить устойчивость через три н.о.р. с.в. (первое определение было через последовательность, что не всегда удобно). Доказана эквивалентность двух определений.

Доказана теорема.

Теорема 4. Если F — устойчивая ф.р.с экспонентой $\alpha \neq 1$, то существует b такое, что F(x+b) — строго устойчивая ф.р.

Следовательно, отцентрировав слагаемые подходящей константой, мы можем перейти к строго устойчивым законам, исключая особый случай $\alpha=1$, где это невозможно.

§2. Области притяжения.

Введено понятие области притяжения. По ЦПТ Леви распределения с конечными вторыми моментами принадлежат области притяжения нормального закона. По теореме Хинчина о ЗБЧ распределения с конечными средними принадлежат области притяжения вырожденного распределения.

Начато доказательство теоремы.

Теорема 5. Распределение F имеет область притяжения тогда и только тогда, когда F устойчиво.

Эта теорема объясняет значимость класса устойчивых распределений. Только устойчивые законы могут быть предельными в смысле слабой сходимости для центрированных и нормированных сумм н.о.р. с.в.

Для доказательства требуются две леммы, представляющие самостоятельный интерес.

Лемма 1. Нормирующие постоянные B_n удовлетворяют соотношениям $B_n \to \infty$ и $B_n/B_{n+1} \to 1$.

Эта лемма доказана, следующая лемма доказана частично.

Лемма 2. Пусть $\{\xi_n\}$ — последовательность с.в. такая, что $\xi_n \xrightarrow{d} \xi$ и $a_n \xi_n + \delta_n \xrightarrow{d} \eta$, где ξ и η — невырожденные с.в. Тогда существуют a > 0 и δ такие, что $a_n \to a$, $\delta_n \to \delta$ и распределения η и $a\xi + \delta$ совпадают.