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Three geometries of constant curvature

1 Euclidean geometry E3, K = 0 (Euclid)
2 Spherical geometry S3, K > 0 (before Euclid ?) Studed by Riemann
3 Hyperbolic geometry H3, K < 0 (N.I. Lobachevsky and Janos Bolyai)
4 Eight geometries by William Thurston:

E3, S3, H3, S2 × R, H2 × R, Nil, Solv and P̃SL(2,R).

Thurston’s geometrization conjecture: Any three dimensional manifold
can be decomposed into pieces, each modeled in one of the eight above
mentioned geometries.

This conjecture was proved by Grigori Perelman in 2003. As as
consequence, he proved the famous Poincaré conjecture:
Any closed three dimensional manifold with the trivial fundamental group
is the sphere.
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Three dimensional hyperelliptic manifolds

The notion of hyperelliptic surface originally comes from complex analysis.
Riemann surface is said to be hyperelliptic if it can be repesented as a two
fold branched covering of the sphere. To create its three dimensional
counterpart consider a 3-manifold M and suppose that there exists an
involution τ : M → M such that the factor space M/〈τ〉 is homeomarphic
to a three dimensional sphere S3.

In this case, τ is called a hyperelliptic involution, and M is called a
hyperelliptic manifold. If M is endowed by geometrical structure, we
suppose that τ is an isometry. The factor space M/〈τ〉 is the 3-sphere with
singular locus formed by knot of link.
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Three dimensional hyperelliptic manifolds

We claim that there exist three dimensional hyperelliptic manifolds in all
the eight Thurston geometries. The general construction was described in
my paper (M., 1990).

Theorem
There exists a hyperelliptic manifold in each of the eight Thurston
geometries E3, S3, H3, S2 ⊕ R1, H2 ⊕ R1, Nil, Solv, ˜SL(2,R).

In the recent paper A. Mednykh and B. Vuong "On hyperelliptic Euclidean
3-manifolds"(2020) we proved that up to homeomorphism there are exactly
five hyperelliptic manifolds modelled in the Eucliden geometry E3.
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Three dimensional hyperelliptic manifolds

Alexander Mednykh (IM SB RAS) Volumes of knots 5 / 35



Three dimensional hyperelliptic manifolds
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Three dimensional hyperelliptic manifolds
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Cone–manifold and geometry knots

Following (D. Cooper, C.D.Hodgson and S.P. Kerckhoff, 2000) we
introduce the basic definitions from the cone-manifold theory.

Definition
An n-dimensional cone-manifold is a manifold, M, which can be
triangulated so that the link of each simplex is piecewise linear
homeomorphic to a standard sphere and M is equipped with a complete
path metric such that the restriction of the metric to each simplex is
isometric to a geodesic simplex of constant curvature K . The cone-manifold
is hyperbolic, Euclidean or spherical if K is −1, 0, or +1 respectively.

The singular set Σ of a cone-manifold M consists of the points with no
neighbourhood isometric to a ball in a Riemannian manifold.
In the present paper, we will deal only with cone-manifolds whose
underlying space M is the three dimensional sphere S3 and singular set Σ is
a knot or link.
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Geometry of two bridge knots and links

S
3

=

α

β

α

β

Hopf link cone-manifold 22
1(α, β).
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Schläfli formula

The main tool for volume calculation is the following Schläfli formula.
Let M be a 3-dimensional cone–manifold of constant curvature K = ±1.
Then its volume V is a solution of the differential equation

KdV =
1

2

∑
i

`αidαi ,

where the sum is taken over all components of the singular set Σ with
lengths lαi and cone-angles αi .

? In the above case of Hopf link we have K = +1, `α = β, `β = α.

Hence dV = 1
2 (βdα + αdβ) and V = αβ

2 .
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Geometry of two bridge knots. Trefoil knot.

Let T (α) = 31(α) be a cone–manifold whose underlying space is the
three-dimensional sphere S3 and singular set is trefoil knot T with cone
angle α. See Figure below.

Рис.: Cone-manifold 31(α)

Since T is a toric knot by the Thurston theorem its complement
T (0) = S3 \ T in the S3 does not admit a hyperbolic structure. However,
the trefoil knot admits othrer geometric structures. By H. Seifert and C.
Weber (1933) the spherical space of dodecahedron (also known as the
Poincaré homology 3-sphere) is a cyclic 5-fold covering of S3 branched over
T . This means that cone–manifold 31( 2π

5 ) has a spherical structure.
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Geometry of two bridge knots. Trefoil knot.

Note that T (2π/n), n ∈ N is a geometric orbifold, so it can be represented
in the form X3/Γ, where X3 is one of the eight three-dimensional
homogeneous geometries and Γ is a discrete group of isometries of X3. By
Dunbar classification (1983) of non-hyperbolic orbifolds, T (2π/n) has a
spherical structure for n ≤ 5, Nil for n = 6 and P̃SL(2,R) for n ≥ 7. Quite
surprising situation appears in the case of the trefoil knot complement
T (0). By P. Norbury (see Appendix A in the lecture notes by
W. P. Neumann), the manifold T (0) admits two geometrical structures
H2 × R and P̃SL(2,R).
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Geometry of two bridge knots. Trefoil knot.

The following theorem describes a spherical structure on the trefoil
cone-manifold.

Theorem

The trefoil cone-manifold T (α) is spherical for π
3 < α < 5π

3 . The spherical
volume of T (α) is given by the formula

Vol (T (α)) =
(3α− π)2

12
.

For the proof consider S3 as the unite sphere in the complex space C2

endowed by the Riemannian metric

ds2
λ = |dz1|2 + |dz2|2 + λ(dz1dz2 + dz1dz2),

where λ = (2 sin α
2 )−1. Then S3 = (S3, ds2

λ) is the spherical space of
constant curvature +1.
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The fundamental set for T (α) is given by the following polyhedron

Рис.: Fundamental set for T (α)

where E = e i α and F = e i
α−π

2 (see Figure 2). The length `α of singular
geodesic of T (α) is given by `α = |P0P3|+ |P1P4| = 3α− π.
By the Schläfli formula dVol T (α) = `α

2 dα = 3α−π
2 dα. So,

Vol T (α) = (3α−π)2

12 + C , where C is a constant of integration.
Recall that a 2-fold cover of orbifold 31(π) is the lens space L(3, 1) which,
in turn, is thrice covered by the three dimensional sphere S3. Since the
spherical volume of S3 is 2π2, we have Vol T (π) = 2π2 : 6 = π2

3 .

Therefore, C = 0 and Vol T (α) = (3α−π)2

12 .
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Geometry of two bridge knots. 41– knot.

The figure eight knot or 41 knot is the unique prime knot of four crossings.

Рис.: Figure eight knot 41
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Geometry of two bridge knots. 41– knot.

It was shown in Thurston lecture notes (1990) that the figure eight knot
compliment S3 \ 41 can be obtained by gluing two copies of a regular ideal
tetrahedron. Thus, S3 \ 41 admits a complete hyperbolic structure.
Independently, the existence of the complete hyperbolic structure on the
complement of the figure eight knot was proved by R. Riley in his
unpublished manuscript. Later, it was discovered by A.C. Kim, H. Helling
and J. Mennicke (1998) that the n-fold cyclic coverings of the 3-sphere
branched over 41 produce beautiful examples of the hyperbolic Fibonacci
manifolds.
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Geometry of two bridge knots. 41– knot.

The following result takes a place due to W.P. Thurston, H.M. Hilden,
M.T. Lozano, J.M. Montesinos (1998), S. Kojima (1998), A.A. Rasskazov
and A.D. Mednykh (2006).

Theorem
A cone-manifold 41(α) is hyperbolic for 0 ≤ α < α0 = 2π/3, Euclidean for
α = α0 and spherical for α0 < α < 2π − α0.

Other geometries on the figure eight cone-manifold were studied by
C. Hodgson, W. Dunbar, E. Molnár, J. Szirmai and A. Vesnin (2009).
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Geometry of two bridge knots. 41– knot.

The volume of the figure eight cone-manifold in the spaces of constant
curvature is given by the following theorem.

Theorem 6 (A. Rasskazov and M., 2006)
Let V(α) = Vol 41(α) and `α is the length of singular geodesic of 41(α).
Then

(H3) V(α) =
∫ α0

α arccosh (1 + cos θ − cos 2θ)dθ, 0 ≤ α < α0 = 2π
3 ,

(E3) V(α0) =
√

3
108 `

3
α0
,

(S3) V(α) =
∫ α
α0

arccos (1 + cos θ − cos 2θ)dθ, α0 < α ≤ π, V(π) = π2

5 ,

V(α) = 2V(π) + π(α− π)−V(2π − α), π ≤ α < 2π − α0.
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Geometry of two bridge knots. 41– knot.

The following fundamental polyhedron can be realized in each of three
spaces of constant curvature H3, S3, and E3.

Рис.: Fundamental set for a two bridge knot
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Geometry of two bridge knots and links

The three twist knot 52

The knot 52 is a rational knot of a slope 7/2.

Historically, it was the first knot which was related with hyperbolic
geometry. Indeed, it has appeared as a singular set of the hyperbolic
orbifold constructed by L.A. Best (1971) from a few copies of Lannér
tetrahedra with Coxeter scheme ◦ ≡ ◦ − ◦ = ◦. The fundamental set of
this orbifold is a regular hyperbolic cube with dihedral angle 2π/5. Later,
R. Riley (1979) discovered the existence of a complete hyperbolic structure
on the complement of 52. In his time, it was one of the nine known
examples of knots with hyperbolic complement.
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Geometry of two bridge knots. 52– knot.

A few years later, it has been proved by W. Thurston that all non-satellite,
non-toric prime knots possess this property. Just recently it became known
(2007) that the Weeks-Fomenko-Matveev manifoldM1 of volume
0.9427... is the smallest among all closed orientable hyperbolic three
manifolds. We note thatM1 was independently found by J. Przytycki and
his collaborators (1986). It was proved by A. Vesnin and M. (1998) that
manifoldM1 is a cyclic three fold covering of the sphere S3 branched over
the knot 52. It was shown by J. Weeks computer program Snappea and
proved by Moto-O Takahahsi (1989) that the complement S3 \ 52 is a
union of three congruent ideal hyperbolic tetrahedra.
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Geometry of two bridge knots. 52– knot.

The next theorem has been proved by A. Rasskazov and M. (2002), R.
Shmatkov (2003) and J. Porti (2004) for hyperbolic, Euclidean and
spherical cases, respectively.

Theorem

A cone manifold 52(α) is hyperbolic for 0 ≤ α < α0, Euclidean for α = α0,
and spherical for α0 < α < 2π − α0, where α0 ' 2.40717... and
A0 = cot(α0

2 ) is given by the formula

A0 =

√
1/23(−17− 8

√
2 + 2

√
−235 + 344

√
2).
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Geometry of two bridge knots. 52– knot.

Theorem 8 (A. Mednykh, 2009)
Let 52(α), 0 ≤ α < α0 be a hyperbolic cone-manifold. Then the volume of
52(α) is given by the formula

Vol (52(α)) = i

∫ z

z̄
log

[
8(ζ2 + A2)

(1 + A2)(1− ζ)(1 + ζ)2

]
dζ

ζ2 − 1
,

where A = cot α2 and z , =z > 0 is a root of equation

8(z2 + A2) = (1 + A2)(1− z)(1 + z)2.

A completely different approach to find volume of the above cone-manifold
is contained in our resent paper (Ji-Young Ham, Alexander Mednykh,
Vladimir Petrov, 2014).
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Geometry of two bridge knots. 52– knot.

Spherical volume of the 52– knot is given by the following theorem.

Theorem

Let 52(α), α0 < α < 2π − α0 be a spherical cone-manifold. Then for any
α, α0 < α < π, the volume V (α) of 52(α) is given by the formula

V (α) =

∫ z2

z1

log

(
8(ζ2 + A2)

(1 + A2)(1− ζ)(1 + ζ)2

)
dζ

ζ2 − 1
,

where A = cot α2 and z1, z2, (−1 < z1 < z2) are roots of the cubic equation

8(z2 + A2) = (1 + A2)(1− z)(1 + z)2.

Also, V (π) = π2/7 and

V (α) = 2V (π) + π(α− π)− V (2π − α) for π < α < 2π − α0.
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How to get a hyperbolic structure?

Let M be a hyperbolic 3-dimensional cone-manifold whose singular set Σα

is a knot with cone angle α, 0 < α ≤ 2π. Choose the canonical
longitude-meridian pair (l ,m) in the fundamental group π1(M \ Σα) in
such a way that m is an oriented boundary of meridian disc of Σα and a
longitude curve l is nullhomologous outside of Σα. Let
h : π1(M \ Σα)→ PSL(2,C) be the holonomy map of M \ Σα. Then (see
F. Gonzalez-Acuña, J. M. Montesinos-Amilibia, 1993) h admits two liftings
to SL(2,C). The image of l in SL(2,C) under these two liftings is the same
since l is nullhomologous outside the singular set. Thus up to conjugation
in SL(2,C),

h(m) = ±
[
e i

α
2 0

0 e−i
α
2

]
, h(l) =

[
e

γα
2 0

0 e−
γα
2

]
,

where γα = `α + i ϕα, `α is the length of Σα, and ϕα, −2π ≤ ϕα < 2π, is
the angle of the lifted holonomy of Σα. For the sake of simplicity, we will
refer to γα = `α + i ϕα as a complex length of the singular geodesics Σα.
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How to get a spherical structure?

Let M be a spherical cone-manifold and Σα be it singular set formed by a
knot. Let (l ,m) be the canonical longitude-meridian pair in the
fundamental group π1(M \ Σα). Following HLM (1996), we note that the
holonomy map h : π1(M \ Σα)→ SO(4) has two lifts into SU(2)× SU(2).
Up to conjugation in SU(2)× SU(2), they are given by the formulas

h(m) =

(
±
[
e i

α
2 0

0 e−i
α
2

]
,±
[
e i

α
2 0

0 e−i
α
2

])
,

h(l) =

([
e iγ 0
0 e−iγ

]
,

[
e iφ 0
0 e−iφ

])
.

In this case, `α = γ − φ is the length of knot Σα, and
ϕα = γ + φ, −2π ≤ ϕα < 2π, is the angle of the lifted holonomy of Σα.
We have the following important relations

γ =
1

2
(ϕα + `α), φ =

1

2
(ϕα − `α). (1)
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A-polynomial equation

In this report, we contribute a notion of A-polynomial for M \ Σα given by
( D. Cooper, M. Culler, H. Gillet, D.D. Long and P.B. Shalen, 1994).
In the hyperbolic case, cone angle α and complex length γα = `α + i ϕα of
knot Σα are related by the equation

A(L,M) = 0, where L = e
γα
2 and M = e i

α
2 . (2)

Also, by the basic properties of A-polynomial we have
A(L,M) = A(L−1,M) and A(L,M) = A(L,−M).
Up to our knowledge, A-polynomials never used before in spherical
geometry.
Form the above observation, in the spherical geometry, A-polynomial
equation has the form

A(L,M) = 0, where L = e
i
2

(ϕα±`α), and M = e i
α
2 . (3)
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Geometry of two bridge knots. 52– knot.

The proof of the spherical volume formula is based on the following
Cotangent Rule. Indeed, this is a trigonometrical version of the
A-polynomial equation.

Theorem

Let 52(α), α0 < α < 2π − α0 be a spherical cone-manifold. Denote by `α
the length of the longitude of 41(α) and by ϕα the angle of its lifted
holonomy. Then

cot(
4α + ϕα ± `α

4
) cot(

α

2
) = z1,2,

where z1 and is z2 are roots of the equation
8(z2 + A2) = (1 + A2)(1− z)(1 + z)2 and A = cot(α2 ).
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Proof of the Cotangent Rule for 52– knot.

The A-polynomial of knot 52 is given by

A52(L,M) = L3M14 + L2
(
−M14 + 2M12 + 2M10 −M6 + M4

)
+ L

(
M10 −M8 + 2M4 + 2M2 − 1

)
+ 1.

We set L = e
i
2

(ϕα±`α) and M = e i
α
2 . Then, by the spherical version of

A-polynomial equation we have A52(L,M) = 0. To find its trigonometrical
version we set z = (LM4+1)(M2+1)

(LM4−1)(M2−1)
and A = i M

2+1
M2−1

= cot(α2 ). Eliminating L

and M from the obtained equations, we derive that
cot( 4α+ϕα±`α

4 ) cot(α2 ) = z and equation A52(L,M) = 0 is equivalent to
8(z2 + A2) = (1 + A2)(1− z)(1 + z)2.
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Proof of the spherical volume formula

Suppose that α0 < α < π. Let `α be the length of the longitude for 52(α)
and ϕα be the angle of its lifted holonomy. By the Cotangent Rule, there
are real roots z1 and z2 of the equation
8(z2 +A2) = (1 +A2)(1− z)(1 + z)2 such that z1 = cot( 4α+ϕα−`α

4 ) cot(α2 )

and z2 = cot( 4α+ϕα+`α
4 ) cot(α2 ). Consider the function

V (α) =

∫ z2

z1

log F (A, ζ)

ζ2 − 1
dζ,

where F (A, ζ) = 8(ζ2+A2)
(1+A2)(1−ζ)(1+ζ)2 and A = cot(α2 ). To prove the integral

volume formula, one has to show that V (α) satisfies the Schläfli equation
V ′(α) = `α

2 with initial data V (α0) = 0. Taking into account that z1 and
z2 are roots of the integrant, we obtain
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Proof of the spherical volume formula

dV (α)

dα
=

log F (A, z2)

z2
2 − 1

dz2

dα
− log F (A, z1)

z2
1 − 1

dz1

dα

+

∫ z2

z1

∂

∂A

(
log F (A, ζ)

ζ2 − 1

)
dA

dα
dζ =

∫ z2

z1

A

A2 + ζ2
dζ

= arccot(z2/A)− arccot(z1/A)

=
(4α + ϕα + `α

4

)
−
(4α + ϕα − `α

4

)
=
`α
2
.
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Proof of the spherical volume formula

Note that function A = cot(α2 ) is strictly increasing on the interval
α0 < α < π and varies from 0 to A0 = cot(α0

2 ) = 0.3846585... For any
A ∈ (0,A0), the cubic equation 8(z2 + A2) = (1 + A2)(1− z)(1 + z)2 has
three real solutions z1, z2, z3 which are continuous functions of A.
Two of them, z1, z2 chosen such that −1 < z1 < z2, satisfy the property
z1, z2 → z0 =

√
2−

√
2
√

2− 1 = 0.0620201... as A→ A0. This ensures
that the initial condition V (α0) = 0 holds. The third one z3, satisfies the
inequality z3 < −8 on (0,A0) and has no geometrical meaning.
Now let α = π. Since 52 is a rational knot with slope 7/2, we have

Vol(52(π)) =
1

2
Vol(L(7, 2)) =

1

14
Vol(S3) =

π2

7
.

The equality V (α) = 2V (π) +π(α−π)−V (2π−α) for π < α < 2π−α0

follows from the Schäfli formula and the identity `α = 2π − `2π−α.
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Specific Euclidean volume of 52(α)

The following theorem gives the specific volume of cone-manifold 52(α) in
the Euclidean case. Numerically, this result was obtained earlier by
R. N. Shmatkov in his Ph.D. thesis (2003).

Theorem

Let 52(α0), where α0 = 2.40717... be an Euclidean cone-manifold. Then its
specific volume v0 = Vol (52(α0))

`3
α0

is given by the formula

vol (52(α0)) = 1/
(

6

√
−6 + 68

√
2 + 4

√
983 + 946

√
2
)

= 0.00990963...

To prove the theorem, we note that v0 = limα→α0

Vol(52(α))
`3
α

and
Vol(52(α))→ 0 and `α → 0 as α→ α0. Assume 0 < α < α0. Then, by
making use of the Schläfli formula and L’Hôpital’s rule we obtain
v0 = limα→α0

(Vol(52(α)))′α
(`3

α)′α
= limα→α0

−`α/2
3`2

α(`α)′α
= limα→α0

1
−3(`2

α)′α
.
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We also have the following result for Stevedore’s Knot 61.

Theorem
The volume of the hyperbolic cone-manifold 61(α) is given by integral

i

∫ z

z
log

[
8(ζ2 + A2)

(1 + A2)(1− ζ)(2 + ζ + ζ2 − (1− ζ)
√

2 + 2ζ + ζ2)

]
dζ

ζ2 − 1
,

where A = cot α2 and z and z are complex conjugated roots of the
integrand.

Рис.: Knot 61
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Tables

We resume the results of numerical calculation for limit of hyperbolicity α0

and specific Euclidean volume v0 in the following table. The table contains
all hyperbolic knots up to 7 crossings.

Knot Slope Limit of hyperboliciy α0 Specific volume v0

41 5/2, 5/3 2.094395 0.01603750
52 7/2, 7/3 2.407169 0.00990963
61 9/2, 9/5 2.574141 0.00732926
62 11/3, 11/4 2.684035 0.00538066
63 13/5, 13/8 2.757265 0.00431666
72 11/2, 11/6 2.678787 0.00585537
73 13/3, 13/9 2.755110 0.00449424
74 15/4, 15/11 2.808209 0.00376538
75 17/5, 17/7 2.848733 0.00321842
76 19/8, 19/12 2.880078 0.00283945
77 21/8, 21/13 2.905300 0.00254482
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