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From polyhedra to knots and links

Borromean Rings cone–manifold and Lambert cube

We start with a simple geometrical construction done by W. Thurston,
D. Sullivan and J. M. Montesinos.
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From polyhedra to knots and links

From the above consideration we get

Vol B(λ, µ, ν) = 8Vol L(
λ

2
,
µ

2
,
ν

2
).

Recall that B(λ, µ, ν) is
i) hyperbolic if 0 < λ, µ, ν < π (E. M. Andreev)
ii) Euclidean if λ = µ = ν = π

iii) spherical if π < λ, µ, ν < 3π, λ, µ, ν 6= 2π
(R. Diaz, D. Derevnin and M.)
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From polyhedra to knots and links

Volume calculation for L(α, β, γ). The main idea.
0. Existence

L(α, β, γ) :


0 < α, β, γ < π/2, H3

α = β = γ = π/2, E 3

π/2 < α, β, γ < π, S3.

1. Schläfli formula for V = Vol L(α, β, γ)

kdV =
1

2
(`αdα + `βdβ + `γdγ), k = ±1, 0

In particular in hyperbolic case:{
∂V
∂α = − `α

2 ,
∂V
∂β = − `β

2 ,
∂V
∂γ = − `γ

2 (∗)
V (π2 ,

π
2 ,

π
2 ) = 0. (∗∗)
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From polyhedra to knots and links

2. Trigonometrical and algebraic identities
(i) Tangent Rule

tanα

tanh `α
=

tanβ

tanh `β
=

tan γ

tanh `γ
= T (R.Kellerhals)

(ii) Sine-Cosine Rule (3 different cases)

sinα

sinh `α

sinβ

sinh `β

cos γ

cosh `γ
= 1 (Derevnin−Mednykh)

(iii)

T 2 − A2

1 + A2

T 2 − B2

1 + B2

T 2 − C 2

1 + C 2

1

T 2
= 1, (HLM,Topology′90)

where
A = tanα,B = tanβ,C = tan γ. Equivalently,
(T 2 + 1)(T 4 − (A2 + B2 + C 2 + 1)T 2 + A2B2C 2) = 0.
Remark. (ii) ⇒(i) and (i) & (ii) ⇒ (iii).
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From polyhedra to knots and links

3. Integral formula for volume
Hyperbolic volume of L(α, β, γ) is given by

W =
1

4

∞∫
T

log

(
t2 − A2

1 + A2

t2 − B2

1 + B2

t2 − C 2

1 + C 2

1

t2

)
dt

1 + t2
,

where T is a positive root of the integrant equation (iii).
Proof. By direct calculation and Tangent Rule (i) we have:

∂W

∂α
=
∂W

∂A

∂A

∂α
= −1

2
arctan

A

T
= −`α

2
.

In a similar way

∂W

∂β
= −

`β
2

and
∂W

∂γ
= −`γ

2
.

By convergence of the integral W (π2 ,
π
2 ,

π
2 ) = 0. Hence,

W = V = Vol L(α, β, γ).
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Lambert cube: spherical volume

Theorem 21 (D. A. Derevnin and M., 2009)

The volume of a spherical Lambert cube Q(α, β, γ), π
2 < α, β, γ < π is

given by the formula

V (α, β, γ) =
1

4
(δ(α,Θ) + δ(β,Θ) + δ(γ,Θ)− 2δ(

π

2
,Θ)− δ(0,Θ)),

where

δ(α,Θ) =

π
2∫

Θ

log(1− cos 2α cos 2τ)
dτ

cos 2τ

and Θ, π
2 < Θ < π is defined by

tan2 Θ = −K +
√

K 2 + L2M2N2, K = (L2 + M2 + N2 + 1)/2,

L = tanα, M = tanβ, N = tan γ.
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Lambert cube: hyperbolic volume

Remark. The function δ(α,Θ) can be considered as a spherical analog of
the function

∆(α,Θ) = Λ(α + Θ)− Λ(α−Θ).

The main result of R. Kellerhals (1989) for hyperbolic volume can be
obtained from the above theorem by replacing δ(α,Θ) to ∆(α,Θ) and K
to −K .
Recall that the Lobachevsky function is defined by the integral

Λ(x) = −
x∫
0

log |2 sin t|dt.
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Lambert cube: hyperbolic volume

As a consequence of the above mentioned volume formula for Lambert
cube we obtain

Proposition 1 (D. A. Derevnin and M., 2009)
Let L (α, β, γ) be a spherical Lambert cube such that
cos2 α + cos2 β + cos2 γ = 1. Then

Vol L (α, β, γ) =
1

4
(
π2

2
− (π − α)2 − (π − β)2 − (π − γ)2).

1. Since cos2 2π
3 + cos2 2π

3 + cos2 3π
4 = 1, we have

Vol L (
2π

3
,

2π

3
,

3π

4
) =

31

576
π2 (D. Derevnin, A. Mednykh).

2. Also, since cos2 2π
3 + cos2 3π

5 + cos2 4π
5 = 1, we get

Vol L (
2π

3
,

3π

5
,

4π

5
) =

17

360
π2 (A. Kolpakov and S. Robins).
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Rational Volume Problem

The following problem is widely known and still open.

Rational Volume Problem. Let P be a spherical polyhedron whose
dihedral angles are in πQ. Then Vol (P) ∈ π2Q.

One of the reasons for the problem to be true is the following observation.

Let P be a Coxeter polyhedron in S3 (that is all dihedral angles of P are π
n

for some n ∈ N). Then the Coxeter group ∆(P) generated by reflections in
faces of P is finite and

Vol (P) =
Vol (S3)

|∆(P)|
=

2π2

|∆(P)|
∈ π2Q.
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History

Heron of Alexandria (60 B.C.) left us the following remarkable formula that
relates the area A of a triangle to its side lengths a, b and c

A =
√

(s − a)(s − b)(s − c)s,

where s = (a + b + c)/2 is the semiperimeter.
Brahmagupta (XVII century) gave the analogues formula for a convex
cyclic (= inscribed in a circle) quadrilateral with side lengths a, b, c and d

A =
√

(s − a)(s − b)(s − c)(s − d),

where s = (a + b + c + d)/2.
D.P. Robbins (1994) found a way to generalize these formulas.
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History

The general result is the following

Theorem 1
For each n ≥ 3 there is a unique irreducible homogeneous polynomial αn

with integer coefficients, such that

αn(16A2, a2
1, . . . , a

2
n) = 0,

whenever a1, . . . , an are side lengths of a cyclic n−gon and A is its area.

The polynomials αn are known in the literature as generalized Heron
polynomials. Certainly, the Heron’s and Brahmagupta’s theorems are the
partial cases of the above theorem. The properties of polynomials αn were
investigated by V.V. Varfolomeev (2003) and M. Fedorchuk and I. Pak
(2005). Related results are also obtained by Ren Guo and Nilgün Sönmez
(2010).
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History

A three dimensional version of the Heron formula belongs to Tartaglia
(1499-1557) who found a formula for the volume of Euclidean tetrahedron.
More precisely, let be an Euclidean tetrahedron with edge lengths
dij , 1 ≤ i < j ≤ 4. Then V = Vol(T ) is given by

288V 2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 d2

12 d2
13 d2

14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

∣∣∣∣∣∣∣∣∣∣
.

Note that V is a root of quadratic equation whose coefficients are integer
polynomials in dij , 1 ≤ i < j ≤ 4. High dimensional generalization of this
result is known as the Cayley-Menger formula.
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History

The result of Tartaglia can be generalized in the following way.

Theorem 2 (I. Kh. Sabitov, 1996)
Let P be a simplicial Euclidean polyhedron. Then V = Vol(P) is a root of
an even degree algebraic equation whose coefficients are integer
polynomials in edge lengths of P depending on combinatorial type of P
only.

P1 P2

(All edge lengths are taken to be 1)

Example

The volumes V1 = Vol(P1) and V2 = Vol(P2) are roots of the same
algebraic equation a0V

2n + a1V
2n−2 + . . .+ anV

0 = 0.
Recently, A.A. Gaifullin (2015) proved a muti–dimensional dimensional
version of the Sabitov’s theorem.
Also, he explained a situation in the hyperbolic and spherical spaces.
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History

The volume of non-Euclidean tetrahedron was investigated by many
authors. Very shortly, the history is the following.
A formula the volume of an arbitrary hyperbolic tetrahedron has been
unknown until recently. The general algorithm for obtaining such a formula
was indicated by W.–Y. Hsiang (1988) and the complete solution of the
problem was given by Yu. Cho and H. Kim (1999), J. Murakami, M. Yano
(2001) and A. Ushijima (2002).
An excellent exposition of these results and a complete geometric proof of
the volume formula was given by Y. Mohanty (2003) in her Ph.D. thesis.
A simple integral formula was obtained in our joint paper D. Derevnin and
A. Mednykh (2005).
More than a century ago, in 1906, the Italian mathematician G. Sforza
found the formula for the volume of a non-Euclidean tetrahedron. It was
discovered during a discussion of the author with J. M. Montesinos in
August 2006.
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Non-Euclidean geometry

We start with the following well-known results from non-Euclidean
geometry. The area of a triangle with angles α, β and γ is given by the
formulas

A = π − α− β − γ, (H2)

A = α + β + γ − π, (S2)

A = s2 tan (α/2) tan (β/2) tan (γ/2). (E2)

In the later formula the semiperimeter s plays a role of scale on the
Euclidean plane E2.
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Non-Euclidean geometry

There are three non-Euclidean version of the Heron formula on the
hyperbolic plane. The area A of a hyperbolic triangle with side lengths
a, b, and c is given by each of the following formulas

Sine of 1/2 Area Formula

sin2 A

2
=

sinh(s − a) sinh(s − b) sinh(s − c) sinh(s)

4 cosh2 ( a2 ) cosh2 (b2 ) cosh2 ( c2 )
,

Tangent of 1/4 Area Formula

tan2 A

4
= tanh(

s − a

2
) tanh(

s − b

2
) tanh(

s − c

2
) tanh(

s

2
),

Sine of 1/4 Area Formula

sin2 A

4
=

sinh( s−a2 ) sinh( s−b2 ) sinh( s−c2 ) sinh( s2 )

cosh ( a2 ) cosh (b2 ) cosh ( c2 )
.

The third formula can be obtained by the squaring of the product of the
first two.
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Brahmagupta’s theorem for cyclic non-Euclidean
quadrilateral

Theorem 3 (M., 2013)
The area A of a cyclic hyperbolic quadrilateral with side lengths a, b, c and
d can be found by the formula

sin2 A

2
=

sinh(s − a) sinh(s − b) sinh(s − c) sinh(s − d)

4 cosh2 ( a2 ) cosh2 (b2 ) cosh2 ( c2 ) cosh2 (d2 )
(1− ε),

where

ε =
sinh( a2 ) sinh(b2 ) sinh( c2 ) sinh(d2 )

cosh( s−a2 ) cosh( s−b2 ) cosh( s−c2 ) cosh( s−d2 )

and s = (a + b + c + d)/2.

We note that if d = 0 then ε = 0 and the theorem reduces to the
correspondent theorem for a hyperbolic triangle.
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Brahmagupta’s theorem for cyclic non-Euclidean
quadrilateral

Theorem 4 (M., 2013)
The area A of a cyclic hyperbolic quadrilateral with side lengths a, b, c and
d can be found by the formula

tan2 A

4
=

1

1− ε
tanh(

s − a

2
) tanh(

s − b

2
) tanh(

s − c

2
) tanh(

s − d

2
),

where

ε =
sinh( a2 ) sinh(b2 ) sinh( c2 ) sinh(d2 )

cosh( s−a2 ) cosh( s−b2 ) cosh( s−c2 ) cosh( s−d2 )

and s = (a + b + c + d)/2.

If d = 0 then ε = 0 and the theorem reduces to the theorem for a
hyperbolic triangle.
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Brahmagupta’s theorem for cyclic non-Euclidean
quadrilateral

By squaring the product of the two previous area formulas we obtain

Theorem 5
The area A of a cyclic hyperbolic quadrilateral with side lengths a, b, c and
d can be found by the formula

sin2 A

4
=

sinh( s−a2 ) sinh( s−b2 ) sinh( s−c2 ) sinh( s−d2 )

cosh ( a2 ) cosh (b2 ) cosh ( c2 ) cosh (d2 )
,

where s = (a + b + c + d)/2.
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Brahmagupta’s theorem for inscribed and circumscribed
quadrilateral

Corollary
The area A of an inscribed and circumscribed hyperbolic quadrilateral with
side lengths a, b, c and d can be found by the formula

sin2 A

4
= tanh(

a

2
) tanh(

b

2
) tanh(

c

2
) tanh(

d

2
).

An Euclidean version of this result is known for a long time. See for
example (Ivanoff, 1960). In this case

A2 = a b c d .
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Sketch of the proof

The proof is based on the following two observations.
1◦ The necessary and sufficient condition for hyperbolic quadrilateral to

be inscribed into circle, horocycle or one branch of an equidistant
curve were suggested by J. E. Valentine (1970) who were influenced
by H. S. M. Coxeter. In terms of side lengths it can be given by the
following the non-Euclidean version of Ptolemy’s theorem.

s(a)s(c) + s(b)s(d) = s(e)s(f ),

where s(x) = sinh( x2 ), and e and f are lengths of the diagonals.
2◦ The necessary and sufficient condition for hyperbolic quadrilateral to

be inscribed into circle, horocycle or one branch of an equidistant curve
were given by F.V. Petrov (2009) in terms of angles. They are just

A + C = B + D.
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The Bretschneider theorem for area of an arbitrary
quadrilateral

In 1842 Carl Bretschneider related the area of an arbitrary Euclidean
quadrilateral to its side lengths and the sum of two opposite angles. The
area S of an Euclidean quadrilateral with side lengths a, b, c , d and
opposite angles A and C is given by the formula

S2 = (s − a)(s − b)(s − c)(s − d)− a b c d cos2 A + C

2
,

where s = (a + b + c + d)/2 is the semiperimeter. The statement of the
theorem remains valid if one substitutes A + C with the sum of another
pair of opposite angles B + D. By making use of the identity
A + B + C + D = 2π for any Euclidean quadrilateral we can rewrite the
Bretschneider theorem in the following more symmetric way

S2 = (s − a)(s − b)(s − c)(s − d)− a b c d sin2 A− B + C − D

4
.
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The Bretschneider theorem

Th latter statement allows a generalization for the case of non-Euclidean
quadrilateral. In the particular case of inscribed quadrilateral (when
A + C = B + D) we get a Brahmagupta formula. Recall that the sum of
angles is not equal to 2π anymore.
The following theorem gives a hyperbolic version of Bretschneider formula.

Theorem (Baigonakova, Mednykh, 2012)
The area S of a hyperbolic quadrilateral with side lengths a, b, c , d and
angles A,B,C ,D is given by the formula

sin2 S

4
=

sinh s−a
2 sinh s−b

2 sinh s−c
2 sinh s−d

2

cosh a
2 cosh b

2 cosh c
2 cosh d

2

− tanh
a

2
tanh

b

2
tanh

c

2
tanh

d

2
sin2 A− B + C − D

4
,

where s = (a + b + c + d)/2 is the semiperimeter.
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The Bretschneider theorem

For K = A−B + C −D = 0, as a consequence, we have the Brahmahupta
formula again

sin2 S

4
=

sinh
p − a

2
sinh

p − b

2
sinh

p − c

2
sinh

p − d

2

cosh
a

2
cosh

b

2
cosh

c

2
cosh

d

2

.
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The Bretschneider theorem for a circumscribed quadrilateral

For a circumscribed quadrilateral, like in the Euclidean case, we have
a + c = b + d , hence p − a = c , p − b = d , p − c = a, p − d = b. By the
evident identity 1− sin2 K

4 = cos2 K
4 , from the Bretschneider theorem we

obtain

Theorem
The area S of a circumscribed hyperbolic quadrilateral is given by the
formula

sin2 S

4
= tanh

a

2
tanh

b

2
tanh

c

2
tanh

d

2
cos2 A− B + C − D

4
.
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Area formula for trapezoid

Following F.V. Petrov (2009) we define a trapezoid to be a quadrilateral
ABCD whose angles satisfy A + B = C + D. We note that
A + B = C + D = π, < π or > π in the Euclidean, hyperbolic and
spherical geometries, respectively.

Theorem 6 (Dasha Sokolova and M., 2004)
The area S of a hyperbolic trapezoid ABCD with side lengths
a = AB, b = BC , c = CD, d = DA can be found by the formula

sin2 S

4
=

sinh2 b+d
2 sinh a+b−c−d

4 sinh a+b+c−d
4 sinh −a+b+c−d

4 sinh a−b+c+d
4

sinh2 b−d
2 cosh a−b−c−d

4 cosh a−b+c−d
4 cosh a+b−c+d

4 cosh a+b+c+d
4

.

Recall that the area S of an Euclidean trapezoid satisfies the equation S2 =
(a + b − c − d)(a + b + c − d)(−a + b + c − d)(a− b + c + d)(b + d)2

16(b − d)2
.
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Pythagorean Theorem on the plane

Everybody knows the classical Pythagorean Theorem a2 + b2 = c2. Its
non-Euclidean versions are also well-known. On the hyperbolic and
spherical planes they are respectively

cosh a cosh b = cosh c and cos a cos b = cos c .

The are just the consequences of more general cosine rules

cosh c = cosh a cosh b + sinh a sinh b cos γ

and
cos c = cos a cos b − sin a sin b cos γ.
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Pythagorean Theorem for tetrahedra in the space

Right angled tetrahedron

By elementary calculation one can easily check that

W 2 = X 2 + Y 2 + Z 2,

where X ,Y ,Z ,W are the respective face areas of the tetrahedron.
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Pythagorean Theorem for tetrahedra in Non-Euclidean
3-space

Now, the Pythagorean Theorem has a form:

Theorem
cos W

2 = cos X
2 cos Y

2 cos Z
2 ± sin X

2 sin Y
2 sin Z

2 ,
where, throughout, ± is + in hyperbolic space, and − in spherical space.

For details of the proof, see numerous internet papers written by
B. D. S. McConnell on his website Blue’s Blog: The Bloog!
http://daylateanddollarshort.com/bloog/category/hedronometry/
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