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Example. Every PL knot is isotopic to the unknot.
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A knot which is locally equivalent to the Bing sling, but isotopic to
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Theorem 1. Not all links are isotopic to PL links.
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Two m-component links are called /-equivalent if they cobound an
injective continuous map of m annuli in S3 x /. (If the annuli are
locally flat, the links are called concordant.)

Theorem (Giffen, 1976). Every knot is /-equivalent to the unknot.

Theorem 2. There exists a 2-component link which is not
I-equivalent to any PL link.

Problem (Rolfsen, 1974). If Ly and L; are PL links connected by
a topological isotopy, are they PL isotopic?

Theorem (Melikhov, 2003). Yes if the following conjecture holds:

Conjecture. PL isotopy classes of links are separated by finite type
invariants that are well-defined up to PL isotopy.

Update: No progress...
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h-Seifert surface

K C S3 oriented topological knot

An h-Seifert surface for K is an oriented properly embedded
smooth surface F C S3\ K such that

[F] [K]
Mm m

H$e(S3\ K) —=— Ha(S3,K) H:(K)
0 —~ 1

homology based on infinite chains Steenrod homology

12

5

F need not be a true Seifert surface (even if K is PL or smooth)
because F may fail to be a manifold with boundary
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L = (K, K’) oriented topological link with Ik(L) =0

Lemma. K has an h-Seifert surface ¥ that is disjoint from K’.
Similarly, K’ has an h-Seifert surface ¥’ that is disjoint from K.

We may assume that ¥ and ¥’ meet transversely along a closed
oriented 1-manifold F.

Since ¥ and Y’ are oriented, they are framed, and hence so is F.

The Sato—Levine invariant B(L) is the self-linking number of F,
that is, the total linking number Ik(F, F™*), where F*1 is a
pushoff of F along the sum of the two vectors of the framing.

B(L) = [F] € Qff(S3) ~ m3(5?) ~ Z. Clearly B(K,K') = B(K', K).

Theorem. (3 is well-defined and is an invariant of I-equivalence.
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Example: twisted Whitehead link

F =Y N and its pushoff 79 within ¥’

B(Wa) = Ik(F, F+*) = Ik(F, F9) = 2 and similarly 3(W,) = n.
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Cochran’s derived invariants for topological links
L = (K, K') oriented topological link with Ik(L) =0

F =X NY (as before)
By attaching a finger to & we may assume that F is nonempty.

By attaching tubes to ¥ along paths in ¥’ we may assume that F
is connected.

Then 91L := (F**,K’) is a two-component link.
Since F*1 is disjoint from X', we have lk(d;L) = 0.

Let Bp(L) = B5(01...01L). Thus 51 = 8.
1
Theorem. Each (3; is well-defined and is an |-equivalence invariant.

BLK',K) = Ba(K,K') = B(Ds ... 02 L), where 9,L := (K, F*).

n—1
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feo =
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Example: twisted Whitehead link

0o(W,) = (K, F) is the unlink, so 8/(W,) =0 for i > 1.

h(W,) = (F,K’) is also the unlink, so 8;(W,) =0 for i > 1.

*3
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Example: infinite twisted Milnor's link

%&

[ -

W1 .n2,ns,... Wwhere (n1, np, n3) = (1,0, —1).

/Bi( Wnl,nz,n3,.,,) = n;.

Cochran power series: Cp(x) = >, Bi(L)x". We have proved

Realization Theorem. For every formal power series P € Z[[x]]
there exists a link W(P) such that Cy(py = P.
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Theorem (Cochran). If L is a PL link, then C is rational.
This also follows from the following new formula:

Theorem. Given a PL link L = (K, K’) with k(L) =0, let K#,K’
be any band connected sum and let —K™ be a zero pushoff of K

with reversed orientation, disjoint from the band. Let
N = (K#pK',—K™). Then

_ Va(2)
Vki(z)

—zC(—2%)

Proof uses the Tsukamoto—Yasuhara factorization theorem (2007)

From the realization theorem, invariance theorem and rationality
theorem we get

Corollary. If P € Z[[x]] is non-rational, then the link W(P) is not
I-equivalent to any PL link.

Example. Wy 2131 is not [-equivalent to any PL link.
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Alternative links My, , .. such that

ﬁi(Mnl,nz,..A) = n;.

U

Wi, ns.... where (n1, n2) = (1,0).

Theorem. Let L be an m-component topological link. Then there
exist only finitely many multi-indices / (with entries from

{1,..., m}) such that ji,;(L) # 0.

Multi-index with entries from S: a finite sequence of elements of S.

Lemma (Higman 1952). Every infinite sequence /1, b, ... of
multi-indices with entries from {1,..., m} has an infinite
subsequence Ji, J, ... such that each Jx embeds in Ji 1.

| embeds in J means that / is a subsequence of J.
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Kojima's n-function of a PL link L = (K, K’) with Ik(L) = 0.

Idea. Suppose that K’ is unknotted. Then the infinite cyclic cover
X of S3\ K’ is homeomorphic to R3. Let K* be a parallel pushoff
of K. Let K and K™ be nearby lifts of K and K™ in X.

o0

: ! -
Define n(t) = NG n:Z—:oo (¢ T"KH)t.

If K" is knotted, the same idea can be made to work using that
Hy(X) is A-torsion, A = Z[til]. Suppose that A(t) € A annihilates
[K] € Hi(X). Thus A(t)K = 9¢ for some 2-chain ¢ in X.

Kojima and Yamasaki (1979) wrote in their introduction:
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Kojima's n-function of a PL link L = (K, K’) with Ik(L) = 0.

Idea. Suppose that K’ is unknotted. Then the infinite cyclic cover
X of S3\ K’ is homeomorphic to R3. Let K* be a parallel pushoff
of K. Let K and K™ be nearby lifts of K and K™ in X.

o0

Define 7.(t) = (3 nzz_oo (¢ T"KH)en.

If K" is knotted, the same idea can be made to work using that
Hy(X) is A-torsion, A = Z[til]. Suppose that A(t) € A annihilates
[K] € Hi(X). Thus A(t)K = 9¢ for some 2-chain ¢ in X.

Kojima and Yamasaki (1979) wrote in their introduction:

““In the study of the 7n-function, we became aware of
the impossibility to define it for wild links. The
reason is essentially due to the fact that the knot
module of some wild knot is not A-torsion.”’

Kojima and Yamasaki (1979): A-polynomial — defined for wild
links, but non-invariant under isotopy.
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Cochran (1985): The n-function is equivalent by a change of
variable to a rational power series C;(z) =Y ; Bi(L)z" with integer
coefficients, which admits a simple geometric definition.

Theorem (Melikhov, 2003). 1) Each f3; extends to a Q-valued
Vassiliev invariant f; of order 2i + 1 (of all two-component PL
links, with possibly nonzero linking number).

2) For each two-component link L and every i there exists an £ > 0
such that all PL links L that are e-close to L (in the sup metric)
have equal 3;(L").

Corollary. Each j3; uniquely extends to wild links and (when so
extended) is an invariant of isotopy.

Theorem. When |k = 0, each 5; coincides with 3; as defined using
h-Seifert surfaces, and hence is an invariant of /-equivalence.

When |k = 1, 3; of PL links is not even a concordance invariant.



