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A (topological) link is an injective continuous map S1 t · · · t S1 → S3.

Two links are called isotopic if they are homotopic through links.

Example. Every PL knot is isotopic to the unknot.

Problem (Rolfsen, 1974). Is every knot isotopic to a PL knot (⇔
to the unknot)? Is the “Bing sling” isotopic to the unknot?

The Bing sling (R. H. Bing, 1956)

Theorem 1. Not all links are isotopic to PL links.
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Two m-component links are called I -equivalent if they cobound an
injective continuous map of m annuli in S3 × I . (If the annuli are
locally flat, the links are called concordant.)

Theorem (Giffen, 1976). Every knot is I -equivalent to the unknot.

Theorem 2. There exists a 2-component link which is not
I -equivalent to any PL link.

Problem (Rolfsen, 1974). If L0 and L1 are PL links connected by
a topological isotopy, are they PL isotopic?

Theorem (Melikhov, 2003). Yes if the following conjecture holds:

Conjecture. PL isotopy classes of links are separated by finite type
invariants that are well-defined up to PL isotopy.

Update: No progress...
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h-Seifert surface

K ⊂ S3 oriented topological knot

An h-Seifert surface for K is an oriented properly embedded
smooth surface F ⊂ S3 \ K such that

[F ] [K ]

H∞2 (S3 \ K ) H2(S3,K ) H1(K )

homology based on infinite chains Steenrod homology

∈ ∈

' '
∂∗

F need not be a true Seifert surface (even if K is PL or smooth)
because F̄ may fail to be a manifold with boundary
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Sato–Levine invariant for topological links
L = (K ,K ′) oriented topological link with lk(L) = 0

Lemma. K has an h-Seifert surface Σ that is disjoint from K ′.

Similarly, K ′ has an h-Seifert surface Σ′ that is disjoint from K .

We may assume that Σ and Σ′ meet transversely along a closed
oriented 1-manifold F .

Since Σ and Σ′ are oriented, they are framed, and hence so is F .

The Sato–Levine invariant β(L) is the self-linking number of F ,
that is, the total linking number lk(F ,F++), where F++ is a
pushoff of F along the sum of the two vectors of the framing.

β(L) = [F ] ∈ Ωfr
1 (S3) ' π3(S2) ' Z. Clearly β(K ,K ′) = β(K ′,K ).

Theorem. β is well-defined and is an invariant of I -equivalence.
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Example: twisted Whitehead link

Wn for n = 2

Σ′ and Σ

F = Σ ∩ Σ′ and its pushoff F+0 within Σ′

β(W2) = lk(F ,F++) = lk(F ,F+0) = 2 and similarly β(Wn) = n.
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Cochran’s derived invariants for topological links
L = (K ,K ′) oriented topological link with lk(L) = 0

F = Σ ∩ Σ′ (as before)

By attaching a finger to Σ we may assume that F is nonempty.

By attaching tubes to Σ along paths in Σ′ we may assume that F
is connected.

Then ∂1L := (F++,K ′) is a two-component link.

Since F++ is disjoint from Σ′, we have lk(∂1L) = 0.

Let βn(L) = β(∂1 . . . ∂1︸ ︷︷ ︸
n−1

L). Thus β1 = β.

Theorem. Each βi is well-defined and is an I -equivalence invariant.

β′n(K ′,K ) := βn(K ,K ′) = β(∂2 . . . ∂2︸ ︷︷ ︸
n−1

L), where ∂2L := (K ,F++).
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Example: twisted Whitehead link

Wn = (K ,K ′)

F = Σ ∩ Σ′

∂2(Wn) = (K ,F ) is the unlink, so β′i (Wn) = 0 for i > 1.

∂1(Wn) = (F ,K ′) is also the unlink, so βi (Wn) = 0 for i > 1.
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Example: twisted Milnor’s link

Wn1,...,nm for m = 3 and (n1, n2, n3) = (1, 0,−1).

βi (Wn1,...,nm) =

{
ni for i ≤ m

0 for i > m

β′i (Wn1,...,nm) = 0 unless i = m = 1
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∂1(Wn1,...,nm) is equivalent to Wn2,...,nm :



Example: infinite twisted Milnor’s link

Wn1,n2,n3,... where (n1, n2, n3) = (1, 0,−1).

βi (Wn1,n2,n3,...) = ni .

Cochran power series: CL(x) =
∑∞

i=1 βi (L)x i . We have proved

Realization Theorem. For every formal power series P ∈ Z[[x ]]
there exists a link W (P) such that CW (P) = P .
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Theorem (Cochran). If L is a PL link, then CL is rational.

This also follows from the following new formula:

Theorem. Given a PL link L = (K ,K ′) with lk(L) = 0, let K#bK
′

be any band connected sum and let −K+ be a zero pushoff of K
with reversed orientation, disjoint from the band. Let
Λ = (K#bK

′,−K+). Then

−zCL(−z2) =
∇Λ(z)

∇K ′(z)
.

Proof uses the Tsukamoto–Yasuhara factorization theorem (2007)

From the realization theorem, invariance theorem and rationality
theorem we get

Corollary. If P ∈ Z[[x ]] is non-rational, then the link W (P) is not
I -equivalent to any PL link.

Example. W1!,2!,3!,... is not I -equivalent to any PL link.
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Alternative links Mn1,n2,... such that

βi (Mn1,n2,...) = ni .

Wn1,n2,... where (n1, n2) = (1, 0).

Theorem. Let L be an m-component topological link. Then there
exist only finitely many multi-indices I (with entries from
{1, . . . ,m}) such that µ̄I (L) 6= 0.

Multi-index with entries from S : a finite sequence of elements of S .

Lemma (Higman 1952). Every infinite sequence I1, I2, . . . of
multi-indices with entries from {1, . . . ,m} has an infinite
subsequence J1, J2, . . . such that each Jk embeds in Jk+1.

I embeds in J means that I is a subsequence of J.
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Kojima’s η-function of a PL link L = (K ,K ′) with lk(L) = 0.

Idea. Suppose that K ′ is unknotted. Then the infinite cyclic cover
X of S3 \ K ′ is homeomorphic to R3. Let K+ be a parallel pushoff
of K . Let K̃ and K̃+ be nearby lifts of K and K+ in X .

Define ηL(t) =
∞∑

n=−∞
lk
(
K̃ , τnK̃+

)
tn.

If K ′ is knotted, the same idea can be made to work using that
H1(X ) is Λ-torsion, Λ = Z[t±1]. Suppose that ∆(t) ∈ Λ annihilates
[K̃ ] ∈ H1(X ). Thus ∆(t)K̃ = ∂ζ for some 2-chain ζ in X .

Kojima and Yamasaki (1979) wrote in their introduction:

“In the study of the η-function, we became aware of
the impossibility to define it for wild links. The
reason is essentially due to the fact that the knot
module of some wild knot is not Λ-torsion.”

Kojima and Yamasaki (1979): λ-polynomial — defined for wild
links, but non-invariant under isotopy.
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“In the study of the η-function, we became aware of
the impossibility to define it for wild links. The
reason is essentially due to the fact that the knot
module of some wild knot is not Λ-torsion.”

Kojima and Yamasaki (1979): λ-polynomial — defined for wild
links, but non-invariant under isotopy.
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Cochran (1985): The η-function is equivalent by a change of
variable to a rational power series CL(z) =

∑
i βi (L)z i with integer

coefficients, which admits a simple geometric definition.

Theorem (Melikhov, 2003). 1) Each βi extends to a Q-valued
Vassiliev invariant β̄i of order 2i + 1 (of all two-component PL
links, with possibly nonzero linking number).

2) For each two-component link L and every i there exists an ε > 0
such that all PL links L′ that are ε-close to L (in the sup metric)
have equal β̄i (L′).

Corollary. Each β̄i uniquely extends to wild links and (when so
extended) is an invariant of isotopy.

Theorem. When lk = 0, each β̄i coincides with βi as defined using
h-Seifert surfaces, and hence is an invariant of I -equivalence.

When lk = 1, β̄i of PL links is not even a concordance invariant.
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