Brunnian link maps in the 4-sphere

Sergey Melikhov

Steklov Math Institute, Moscow

April 29, 2022

A *link map* is a map $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ such that the images of the X_i are pairwise disjoint.

A *link map* is a map $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ such that the images of the X_i are pairwise disjoint.

A *link homotopy* is a homotopy $h_t \colon X_1 \sqcup \cdots \sqcup X_m \to Y$, $t \in [0,1]$ such that h_t is a link map for each t.

A *link map* is a map $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ such that the images of the X_i are pairwise disjoint.

A *link homotopy* is a homotopy $h_t \colon X_1 \sqcup \cdots \sqcup X_m \to Y$, $t \in [0,1]$ such that h_t is a link map for each t.

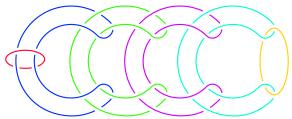
Link maps $S^n \sqcup \cdots \sqcup S^n \to S^m$, m > n: WLOG self-transverse immersions.

A *link map* is a map $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ such that the images of the X_i are pairwise disjoint.

A *link homotopy* is a homotopy $h_t \colon X_1 \sqcup \cdots \sqcup X_m \to Y$, $t \in [0,1]$ such that h_t is a link map for each t.

Link maps $S^n \sqcup \cdots \sqcup S^n \to S^m$, m > n: WLOG self-transverse immersions.

Example (J. Milnor, 1954). Milnor's link $M_n \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ is not link homotopic to the unlink:



A *link map* is a map $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ such that the images of the X_i are pairwise disjoint.

A *link homotopy* is a homotopy $h_t \colon X_1 \sqcup \cdots \sqcup X_m \to Y$, $t \in [0,1]$ such that h_t is a link map for each t.

Link maps $S^n \sqcup \cdots \sqcup S^n \to S^m$, m > n: WLOG self-transverse immersions.

Example (J. Milnor, 1954). Milnor's link $M_n \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ is not link homotopic to the unlink:

In fact, M_n is *Brunnian*, that is, if any component is omitted, it becomes link homotopic to the unlink.

Let $f = f_+ \sqcup f_- \colon S^2 \sqcup S^2 \to S^4$ be a generic link map.

Let $z = f_+(x) = f_+(y)$ be a double point of f_+ .

Let ε_z be its sign, which compares the two orientations of S^4 at z.

Let $f = f_+ \sqcup f_- \colon S^2 \sqcup S^2 \to S^4$ be a generic link map.

Let $z = f_+(x) = f_+(y)$ be a double point of f_+ .

Let ε_z be its sign, which compares the two orientations of S^4 at z.

Let $J_z \subset S^2$ be some arc connecting x and y.

Then $f_+(J_z)$ is a loop in the complement of $f_-(S^2)$ in S^4 .

Let ℓ_z be the linking number between $f_+(J_z)$ and f_- .

Let $f = f_+ \sqcup f_- \colon S^2 \sqcup S^2 \to S^4$ be a generic link map.

Let $z = f_+(x) = f_+(y)$ be a double point of f_+ .

Let ε_z be its sign, which compares the two orientations of S^4 at z.

Let $J_z \subset S^2$ be some arc connecting x and y.

Then $f_+(J_z)$ is a loop in the complement of $f_-(S^2)$ in S^4 .

Let ℓ_z be the linking number between $f_+(J_z)$ and f_- .

Then ℓ_z does not depend of the choice J_z and $|\ell_z|$ does not depend on the choice of the ordering of (x, y).

Let $f = f_+ \sqcup f_- \colon S^2 \sqcup S^2 \to S^4$ be a generic link map.

Let $z = f_+(x) = f_+(y)$ be a double point of f_+ .

Let ε_z be its sign, which compares the two orientations of S^4 at z.

Let $J_z \subset S^2$ be some arc connecting x and y.

Then $f_+(J_z)$ is a loop in the complement of $f_-(S^2)$ in S^4 .

Let ℓ_z be the linking number between $f_+(J_z)$ and f_- .

Then ℓ_z does not depend of the choice J_z and $|\ell_z|$ does not depend on the choice of the ordering of (x, y).

Let
$$\sigma_+(f) = \sum_{z \in \Delta(f_+)} \varepsilon_z(t^{|\ell_z|} - 1) \in \mathbb{Z}[t]$$
,

where $\Delta(f_+)$ is the set of all double points of f_+ .

◆□▶ ◆□▶ ◆□▶ ◆■▶ ● りへで

Let $f = f_+ \sqcup f_- \colon S^2 \sqcup S^2 \to S^4$ be a generic link map.

Let $z = f_+(x) = f_+(y)$ be a double point of f_+ .

Let ε_z be its sign, which compares the two orientations of S^4 at z.

Let $J_z \subset S^2$ be some arc connecting x and y.

Then $f_+(J_z)$ is a loop in the complement of $f_-(S^2)$ in S^4 .

Let ℓ_z be the linking number between $f_+(J_z)$ and f_- .

Then ℓ_z does not depend of the choice J_z and $|\ell_z|$ does not depend on the choice of the ordering of (x, y).

Let
$$\sigma_+(f) = \sum_{z \in \Delta(f_+)} \varepsilon_z(t^{|\ell_z|} - 1) \in \mathbb{Z}[t]$$
,

where $\Delta(f_+)$ is the set of all double points of f_+ .

Kirk's invariant $\sigma(f) = (\sigma_+(f), \sigma_-(f))$, where $\sigma_-(f)$ is defined similarly.

Let $f = f_+ \sqcup f_- \colon S^2 \sqcup S^2 \to S^4$ be a generic link map.

Let $z = f_+(x) = f_+(y)$ be a double point of f_+ .

Let ε_z be its sign, which compares the two orientations of S^4 at z.

Let $J_z \subset S^2$ be some arc connecting x and y.

Then $f_+(J_z)$ is a loop in the complement of $f_-(S^2)$ in S^4 .

Let ℓ_z be the linking number between $f_+(J_z)$ and f_- .

Then ℓ_z does not depend of the choice J_z and $|\ell_z|$ does not depend on the choice of the ordering of (x,y).

Let
$$\sigma_+(f) = \sum_{z \in \Delta(f_+)} \varepsilon_z(t^{|\ell_z|} - 1) \in \mathbb{Z}[t]$$
,

where $\Delta(f_+)$ is the set of all double points of f_+ .

Kirk's invariant $\sigma(f) = (\sigma_+(f), \sigma_-(f))$, where $\sigma_-(f)$ is defined similarly.

Theorem (Schneiderman–Teichner, 2019, Ann. of Math.) σ is injective.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

A *string link* is an embedding $f: I \times \{1, ..., m\} \rightarrow I \times \mathbb{R}^2$, where I = [0, 1], such that f(0, i) = (0, 0, i) and f(1, i) = (1, 0, i) for all i.

A string link is an embedding $f: I \times \{1, ..., m\} \to I \times \mathbb{R}^2$, where I = [0, 1], such that f(0, i) = (0, 0, i) and f(1, i) = (1, 0, i) for all i.

Link homotopies of string links are understood to keep the endpoints fixed.

A string link is an embedding $f: I \times \{1, ..., m\} \to I \times \mathbb{R}^2$, where I = [0, 1], such that f(0, i) = (0, 0, i) and f(1, i) = (1, 0, i) for all i.

Link homotopies of string links are understood to keep the endpoints fixed.

A fibered disk link map is a self-link-homotopy of the string unlink.

A string link is an embedding $f: I \times \{1, ..., m\} \to I \times \mathbb{R}^2$, where I = [0, 1], such that f(0, i) = (0, 0, i) and f(1, i) = (1, 0, i) for all i.

Link homotopies of string links are understood to keep the endpoints fixed.

A fibered disk link map is a self-link-homotopy of the string unlink.

Let $h = h_+ \sqcup h_- \colon I^2 \sqcup I^2 \to I^2 \times \mathbb{R}^2$ be a generic FDLM.

Let $z = h_+(x, t) = h_+(y, t)$ be a double point of h_+ .

So x, y are naturally ordered. By symmetry we may assume that x < y.

A string link is an embedding $f: I \times \{1, ..., m\} \to I \times \mathbb{R}^2$, where I = [0, 1], such that f(0, i) = (0, 0, i) and f(1, i) = (1, 0, i) for all i.

Link homotopies of string links are understood to keep the endpoints fixed.

A fibered disk link map is a self-link-homotopy of the string unlink.

Let
$$h = h_+ \sqcup h_- \colon I^2 \sqcup I^2 \to I^2 \times \mathbb{R}^2$$
 be a generic FDLM.

Let $z = h_+(x, t) = h_+(y, t)$ be a double point of h_+ .

So x, y are naturally ordered. By symmetry we may assume that x < y.

Then $h_+([x,y] \times t)$ is a loop in the complement of $h_-(I \times t)$ in $I \times t \times \mathbb{R}^2$.

Let ℓ_z be the linking number between these.

A string link is an embedding $f: I \times \{1, ..., m\} \to I \times \mathbb{R}^2$, where I = [0, 1], such that f(0, i) = (0, 0, i) and f(1, i) = (1, 0, i) for all i.

Link homotopies of string links are understood to keep the endpoints fixed.

A fibered disk link map is a self-link-homotopy of the string unlink.

Let
$$h = h_+ \sqcup h_- \colon I^2 \sqcup I^2 \to I^2 \times \mathbb{R}^2$$
 be a generic FDLM.

Let
$$z = h_+(x, t) = h_+(y, t)$$
 be a double point of h_+ .

So x, y are naturally ordered. By symmetry we may assume that x < y.

Then $h_+([x,y] \times t)$ is a loop in the complement of $h_-(I \times t)$ in $I \times t \times \mathbb{R}^2$.

Let ℓ_z be the linking number between these.

Let
$$\Sigma_+(h) = \sum_{z \in \Delta(h_+)} \varepsilon_z(t^{\ell_z} - 1) \in \mathbb{Z}[t^{\pm 1}].$$

Koschorke's invariant $\Sigma(h) = (\Sigma_+(h), \Sigma_-(h))$.

4日 > 4周 > 4 = > 4 = > ■ 900

A string link is an embedding $f: I \times \{1, ..., m\} \to I \times \mathbb{R}^2$, where I = [0, 1], such that f(0, i) = (0, 0, i) and f(1, i) = (1, 0, i) for all i.

Link homotopies of string links are understood to keep the endpoints fixed.

A fibered disk link map is a self-link-homotopy of the string unlink.

Let
$$h = h_+ \sqcup h_- \colon I^2 \sqcup I^2 \to I^2 \times \mathbb{R}^2$$
 be a generic FDLM.

Let
$$z = h_+(x, t) = h_+(y, t)$$
 be a double point of h_+ .

So x, y are naturally ordered. By symmetry we may assume that x < y.

Then
$$h_+([x,y] \times t)$$
 is a loop in the complement of $h_-(I \times t)$ in $I \times t \times \mathbb{R}^2$.

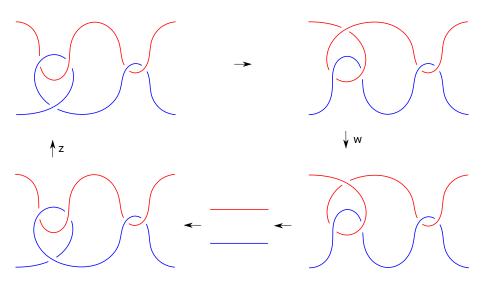
Let
$$\ell_z$$
 be the linking number between these.

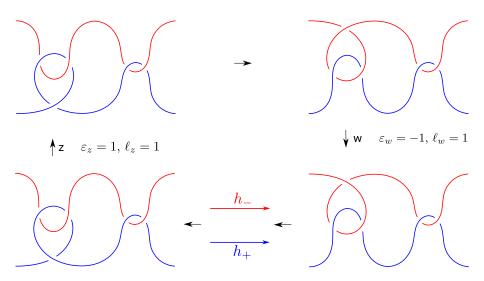
Let
$$\Sigma_+(h) = \sum_{z \in \Delta(h_+)} \varepsilon_z(t^{\ell_z} - 1) \in \mathbb{Z}[t^{\pm 1}].$$

$$FDLM_{2,2}^4 \stackrel{\Sigma}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathbb{Z}[t^{\pm 1}] \oplus \mathbb{Z}[t^{\pm 1}]$$
 closure $t^n \mapsto t^{|n|}$

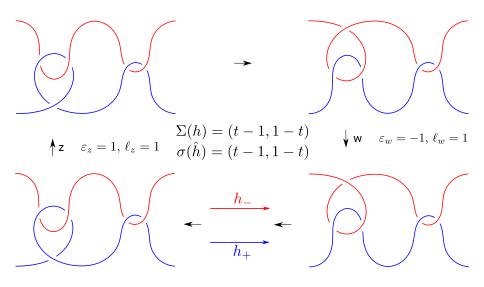
Koschorke's invariant
$$\Sigma(h) = (\Sigma_+(h), \Sigma_-(h))$$
. $LM_{2,2}^4 \xrightarrow{\sigma} \mathbb{Z}[t] \oplus \mathbb{Z}[t]$

▶ 4個 > 4 = > 4 = > = 9 q @

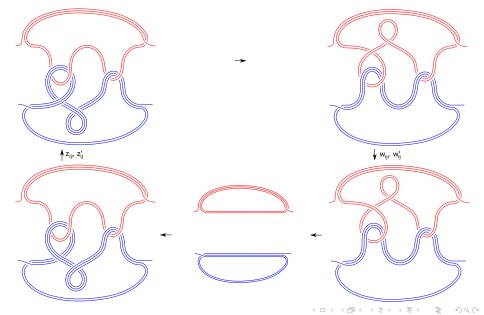




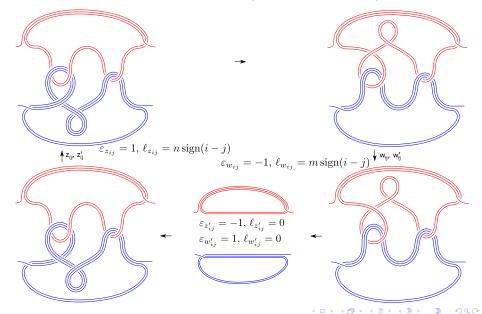




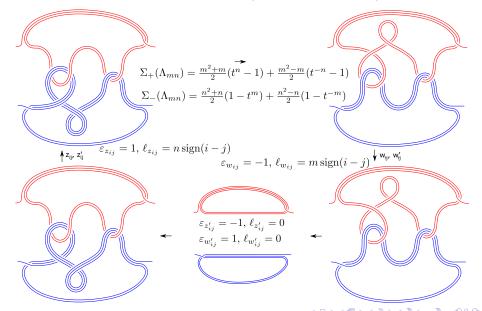
Cabled Fenn–Rolfsen link map (m = 3, n = -2)



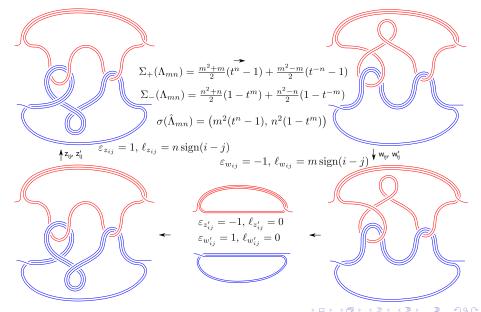
Cabled Fenn–Rolfsen link map (m = 3, n = -2)



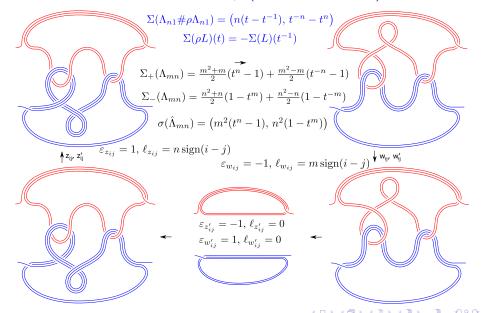
Cabled Fenn-Rolfsen link map (m = 3, n = -2)



Cabled Fenn-Rolfsen link map (m = 3, n = -2)



Cabled Fenn–Rolfsen link map (m = 3, n = -2)



Theorem (Kirk, 1988). im $\sigma = \ker \delta$, where $\delta \colon \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f' + g' + f'' + g''|_{t=1})$.

Theorem (Kirk, 1988). im $\sigma = \ker \delta$, where $\delta \colon \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f'+g'+f''+g''|_{t=1})$.

Theorem (\supset : Koschorke 1991, \subset : M.–Repovš 2005). im $\Sigma = \ker \Delta$, where $\Delta \colon \mathbb{Z}[t^{\pm 1}] \oplus \mathbb{Z}[t^{\pm 1}] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f' + g'|_{t=1}, f'' + g''|_{t=1})$.

Theorem (Kirk, 1988). im $\sigma = \ker \delta$, where $\delta \colon \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f'+g'+f''+g''|_{t=1})$.

Theorem (\supset : Koschorke 1991, \subset : M.–Repovš 2005). im $\Sigma = \ker \Delta$, where $\Delta \colon \mathbb{Z}[t^{\pm 1}] \oplus \mathbb{Z}[t^{\pm 1}] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f' + g'|_{t=1}, f'' + g''|_{t=1})$.

 \supset : because $\sigma(\hat{\Lambda}_{m,n})$ generate ker δ and $\Sigma(\Lambda_{m,n})$ generate ker Δ .

Theorem (Kirk, 1988). im $\sigma = \ker \delta$, where $\delta \colon \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f'+g'+f''+g''|_{t=1})$.

Theorem (\supset : Koschorke 1991, \subset : M.–Repovš 2005). im $\Sigma = \ker \Delta$, where $\Delta \colon \mathbb{Z}[t^{\pm 1}] \oplus \mathbb{Z}[t^{\pm 1}] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f' + g'|_{t=1}, f'' + g''|_{t=1})$.

 \supset : because $\sigma(\hat{\Lambda}_{m,n})$ generate ker δ and $\Sigma(\Lambda_{m,n})$ generate ker Δ .

 \subset : because the generalized Sato–Levine invariant β satisfies

$$\beta(L') - \beta(L) = \sum_{z \in \Delta(h_+) \cup \Delta(h_-)} \varepsilon_z \ell_z \tilde{\ell}_z$$

where $h=h_+\sqcup h_-$ is a link homotopy between links L' and L, and ℓ_z and $\tilde{\ell}_z$ are the linking numbers of J_z and \tilde{J}_z with the other component.

Theorem (Kirk, 1988). im $\sigma = \ker \delta$, where $\delta \colon \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f'+g'+f''+g''|_{t=1})$.

Theorem (\supset : Koschorke 1991, \subset : M.–Repovš 2005). im $\Sigma = \ker \Delta$, where $\Delta \colon \mathbb{Z}[t^{\pm 1}] \oplus \mathbb{Z}[t^{\pm 1}] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f' + g'|_{t=1}, f'' + g''|_{t=1})$.

 \supset : because $\sigma(\hat{\Lambda}_{m,n})$ generate $\ker \delta$ and $\Sigma(\Lambda_{m,n})$ generate $\ker \Delta$.

 \subset : because the generalized Sato–Levine invariant β satisfies

$$\beta(L') - \beta(L) = \sum_{z \in \Delta(h_+) \cup \Delta(h_-)} \varepsilon_z \ell_z \tilde{\ell}_z$$
,

where $h=h_+\sqcup h_-$ is a link homotopy between links L' and L, and ℓ_z and $\tilde{\ell}_z$ are the linking numbers of J_z and \tilde{J}_z with the other component.

$$\frac{\nabla_L(z)}{\nabla_{L_+}(z)\nabla_{L_-}(z)} = z\operatorname{lk}(L) + z^3\beta(L) + z^5(\dots).$$

◆ロト ◆個ト ◆注ト ◆注ト 注 りへぐ

Theorem (Kirk, 1988). im $\sigma = \ker \delta$, where $\delta \colon \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f'+g'+f''+g''|_{t=1}).$

Theorem (\supset : Koschorke 1991, \subset : M.–Repovš 2005). im $\Sigma = \ker \Delta$, where $\Delta: \mathbb{Z}[t^{\pm 1}] \oplus \mathbb{Z}[t^{\pm 1}] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f'+g'|_{t=1}, f''+g''|_{t=1}).$

 \supset : because $\sigma(\hat{\Lambda}_{m,n})$ generate ker δ and $\Sigma(\Lambda_{m,n})$ generate ker Δ .

 \subset : because the generalized Sato-Levine invariant β satisfies

$$\beta(L') - \beta(L) = \sum_{z \in \Delta(h_+) \cup \Delta(h_-)} \varepsilon_z \ell_z \tilde{\ell}_z$$

where $h = h_+ \sqcup h_-$ is a link homotopy between links L' and L, and ℓ_z and $\tilde{\ell}_z$ are the linking numbers of J_z and \tilde{J}_z with the other component.

$$\frac{\nabla_L(z)}{\nabla_{L_+}(z)\nabla_{L_-}(z)}=z\operatorname{lk}(L)+z^3\beta(L)+z^5(\dots).$$

Theorem (Nakanishi–Ohyama, 2003). Ik and β classify two-component links up to Δ -link homotopy.

Theorem (Kirk, 1988). im $\sigma = \ker \delta$, where $\delta \colon \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f'+g'+f''+g''|_{t=1})$.

Theorem (\supset : Koschorke 1991, \subset : M.–Repovš 2005). im $\Sigma = \ker \Delta$, where $\Delta \colon \mathbb{Z}[t^{\pm 1}] \oplus \mathbb{Z}[t^{\pm 1}] \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is given by $(f,g) \mapsto (f|_{t=1}, g|_{t=1}, f' + g'|_{t=1}, f'' + g''|_{t=1})$.

 \supset : because $\sigma(\hat{\Lambda}_{m,n})$ generate $\ker \delta$ and $\Sigma(\Lambda_{m,n})$ generate $\ker \Delta$.

 \subset : because the generalized Sato–Levine invariant β satisfies

$$\beta(L') - \beta(L) = \sum_{z \in \Delta(h_+) \cup \Delta(h_-)} \varepsilon_z \ell_z \tilde{\ell}_z,$$

where $h=h_+\sqcup h_-$ is a link homotopy between links L' and L, and ℓ_z and $\tilde{\ell}_z$ are the linking numbers of J_z and \tilde{J}_z with the other component.

$$\frac{\nabla_L(z)}{\nabla_{L_+}(z)\nabla_{L_-}(z)} = z\operatorname{lk}(L) + z^3\beta(L) + z^5(\dots).$$

Theorem (Nakanishi–Ohyama, 2003). Ik and β classify two-component links up to Δ -link homotopy. [M., 2018: New proof via im $\Sigma = \ker \Delta$.]

Link maps with *m* components

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zj} be the linking number between $f_i(J_z)$ and f_j .

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zi} be the linking number between $f_i(J_z)$ and f_i .

Let
$$\sigma_i^{\mathrm{ab}}(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z \Big| \prod_{j \neq i} t_j^{\ell_{zj}} - 1 \Big| \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}]/H$$
, where $H = \langle t_1^{n_1} \dots t_n^{n_k} - t_1^{-n_1} \dots t_n^{-n_k} | n_i \in \mathbb{Z} \rangle$ (subgroup, not ideal!)

15 / 43

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zj} be the linking number between $f_i(J_z)$ and f_j .

Let
$$\sigma_i^{\mathrm{ab}}(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z \Big| \prod_{j \neq i} t_j^{\ell_{zj}} - 1 \Big| \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}]/H$$
, where $H = \left\langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \right\rangle$ (subgroup, not ideal!)

Kirk-Koschorke invariant $\sigma^{ab}(f) = (\sigma_1^{ab}(f), \dots, \sigma_m^{ab}(f)).$

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zj} be the linking number between $f_i(J_z)$ and f_j .

Let
$$\sigma_i^{\mathrm{ab}}(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z \Big| \prod_{j \neq i} t_j^{\ell_{zj}} - 1 \Big| \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}]/H$$
, where $H = \left\langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \right\rangle$ (subgroup, not ideal!)

Kirk-Koschorke invariant $\sigma^{ab}(f) = (\sigma_1^{ab}(f), \dots, \sigma_m^{ab}(f)).$

Theorem 1. σ^{ab} is not injective for m > 2.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zj} be the linking number between $f_i(J_z)$ and f_j .

Let
$$\sigma_i^{\mathrm{ab}}(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z \Big| \prod_{j \neq i} t_j^{\ell_{zj}} - 1 \Big| \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}]/H$$
, where $H = \left\langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \right\rangle$ (subgroup, not ideal!)

Kirk-Koschorke invariant $\sigma^{ab}(f) = (\sigma_1^{ab}(f), \dots, \sigma_m^{ab}(f)).$

Theorem 1. σ^{ab} is not injective for m > 2.

Let $h = h_1 \sqcup \cdots \sqcup h_n \colon I^2 \sqcup \cdots \sqcup I^2 \to I^2 \times \mathbb{R}^2$ be a generic FDLM.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zj} be the linking number between $f_i(J_z)$ and f_j .

Let
$$\sigma_i^{\mathrm{ab}}(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z \Big| \prod_{j \neq i} t_j^{\ell_{zj}} - 1 \Big| \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}]/H$$
, where $H = \left\langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \right\rangle$ (subgroup, not ideal!)

Kirk-Koschorke invariant $\sigma^{ab}(f) = (\sigma_1^{ab}(f), \dots, \sigma_m^{ab}(f)).$

Theorem 1. σ^{ab} is not injective for m > 2.

Let
$$h = h_1 \sqcup \cdots \sqcup h_n \colon I^2 \sqcup \cdots \sqcup I^2 \to I^2 \times \mathbb{R}^2$$
 be a generic FDLM.

If $z = h_i(x, t) = h_i(y, t)$, where x < y, and $j \ne i$, let ℓ_{zj} be the linking number between $h_i([x, y] \times t)$ and $h_j(I \times t)$.

<ロト <個ト < 直ト < 重ト < 重 とり < で

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zj} be the linking number between $f_i(J_z)$ and f_j .

Let
$$\sigma_i^{\mathrm{ab}}(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z \Big| \prod_{j \neq i} t_j^{\ell_{zj}} - 1 \Big| \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}]/H$$
, where $H = \left\langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \right\rangle$ (subgroup, not ideal!)

Kirk-Koschorke invariant $\sigma^{ab}(f) = (\sigma_1^{ab}(f), \dots, \sigma_m^{ab}(f)).$

Theorem 1. σ^{ab} is not injective for m > 2.

Let
$$h = h_1 \sqcup \cdots \sqcup h_n$$
: $I^2 \sqcup \cdots \sqcup I^2 \to I^2 \times \mathbb{R}^2$ be a generic FDLM.

If $z = h_i(x, t) = h_i(y, t)$, where x < y, and $j \neq i$, let ℓ_{zj} be the linking number between $h_i([x, y] \times t)$ and $h_j(I \times t)$.

Let
$$\Sigma_i^{\mathrm{ab}}(h) = \sum_{z \in \Delta(h_i)} \varepsilon_z \left(\prod_{j \neq i} t_j^{\ell_{zj}} - 1 \right) \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}].$$

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ かへで

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

If $z \in \Delta(f_i)$ and $j \neq i$, let ℓ_{zj} be the linking number between $f_i(J_z)$ and f_j .

Let
$$\sigma_i^{\mathrm{ab}}(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z \Big| \prod_{j \neq i} t_j^{\ell_{zj}} - 1 \Big| \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}]/H$$
, where $H = \left\langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \right\rangle$ (subgroup, not ideal!)

Kirk-Koschorke invariant $\sigma^{ab}(f) = (\sigma_1^{ab}(f), \dots, \sigma_m^{ab}(f)).$

Theorem 1. σ^{ab} is not injective for m > 2.

Let
$$h = h_1 \sqcup \cdots \sqcup h_n$$
: $I^2 \sqcup \cdots \sqcup I^2 \to I^2 \times \mathbb{R}^2$ be a generic FDLM.

If $z = h_i(x, t) = h_i(y, t)$, where x < y, and $j \ne i$, let ℓ_{zj} be the linking number between $h_i([x, y] \times t)$ and $h_j(I \times t)$.

Let
$$\Sigma_i^{\mathrm{ab}}(h) = \sum_{z \in \Delta(h_i)} \varepsilon_z \left(\prod_{j \neq i} t_j^{\ell_{zj}} - 1 \right) \in \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_i^{\pm 1}, \dots, t_m^{\pm 1}].$$

Koschorke's invariant $\Sigma^{\mathrm{ab}}(f) = \big(\Sigma^{\mathrm{ab}}_1(f), \dots, \Sigma^{\mathrm{ab}}_m(f)\big).$

Brunnian decomposition. Let
$$[m] = \{1, ..., m\}$$
 and $2_m = 2, ..., 2$.
(a) $LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

(a)
$$LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$$

(b) $\sigma^{ab}(LM_{2_m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_M}^4)$

Brunnian decomposition. Let $[m] = \{1, ..., m\}$ and $2_m = 2, ..., 2$.

- $LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$ (a)
- (b) $\sigma^{ab}(LM_{2_m}^{4}) = \bigoplus_{M \subset [m]}^{M \subset [m]} \sigma^{ab}(BLM_{2_M}^{4})$
- (c) $FDLM_{2m}^4 = \bigoplus_{M \subset [m]}$ $BFDLM_2^4$

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

(a)
$$LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$$

(b) $\sigma^{ab}(LM_{2_m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_M}^4)$
(c) $FDLM_{2_m}^4 = \bigoplus_{M \subset [m]} BFDLM_{2_M}^4$
(d) $\Sigma^{ab}(FDLM_{2_m}^4) = \bigoplus_{M \subset [m]} \Sigma^{ab}(BFDLM_{2_M}^4)$

(b)
$$\sigma^{ab}(LM_{2_m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_M}^4)$$

(c)
$$FDLM_{2m}^4 = \bigoplus_{M \subset [m]} BFDLM_{2m}^4$$

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

(a)
$$LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$$

(b) $\sigma^{ab}(LM_{2_m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_M}^4)$
(c) $FDLM_{2_m}^4 = \bigoplus_{M \subset [m]} BFDLM_{2_M}^4$
(d) $\Sigma^{ab}(FDLM_{2_m}^4) = \bigoplus_{M \subset [m]} \Sigma^{ab}(BFDLM_{2_M}^4)$

(b)
$$\sigma^{ab}(LM_{2m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2m}^4)$$

(c)
$$FDLM_{2m}^4 = \bigoplus_{M \subset [m]} BFDLM_{2m}^4$$

(d)
$$\Sigma^{ab}(FDLM_{2_m}^4) = \bigoplus_{M \subset [m]} \Sigma^{ab}(BFDLM_{2_M}^4)$$

Proof: Eilenberg-MacLane, 1954 ("Cross-effect functors").

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

- $\begin{array}{lll} \text{(a)} & LM_{2_m}^4 = & \bigoplus_{M \subset [m]} & BLM_{2_M}^4 \\ \text{(b)} & \sigma^{\mathrm{ab}}(LM_{2_m}^4) = & \bigoplus_{M \subset [m]} & \sigma^{\mathrm{ab}}(BLM_{2_M}^4) \\ \text{(c)} & FDLM_{2_m}^4 = & \bigoplus_{M \subset [m]} & BFDLM_{2_M}^4 \\ \text{(d)} & \Sigma^{\mathrm{ab}}(FDLM_{2_m}^4) = & \bigoplus_{M \subset [m]} \Sigma^{\mathrm{ab}}(BFDLM_{2_M}^4) \end{array}$

Proof: Eilenberg-MacLane, 1954 ("Cross-effect functors").

Theorem (Gui-Song Li, 1999) Brunnian link maps in S^4 do exist. In fact, $\sigma^{ab}(BLM_{2m}^4)$ is nonempty for each m > 2.

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

- (a) $LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$ (b) $\sigma^{ab}(LM_{2_m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_M}^4)$ (c) $FDLM_{2_m}^4 = \bigoplus_{M \subset [m]} BFDLM_{2_M}^4$ (d) $\Sigma^{ab}(FDLM_{2_m}^4) = \bigoplus_{M \subset [m]} \Sigma^{ab}(BFDLM_{2_M}^4)$

Proof: Eilenberg-MacLane, 1954 ("Cross-effect functors").

Theorem (Gui-Song Li, 1999) Brunnian link maps in S^4 do exist. In fact, $\sigma^{ab}(BLM_{2m}^4)$ is nonempty for each m > 2.

("Kirk's invariant may have mixed terms")

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

- (a) $LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$ (b) $\sigma^{ab}(LM_{2_m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_M}^4)$ (c) $FDLM_{2_m}^4 = \bigoplus_{M \subset [m]} BFDLM_{2_M}^4$ (d) $\Sigma^{ab}(FDLM_{2_m}^4) = \bigoplus_{M \subset [m]} \Sigma^{ab}(BFDLM_{2_M}^4)$

Proof: Eilenberg-MacLane, 1954 ("Cross-effect functors").

Theorem (Gui-Song Li, 1999) Brunnian link maps in S^4 do exist. In fact, $\sigma^{ab}(BLM_{2m}^4)$ is nonempty for each m > 2.

("Kirk's invariant may have mixed terms")

Construction: A process of desingularization of towers of Whitney disks.

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

- (a) $LM_{2_m}^4 = \bigoplus_{M \subset [m]} BLM_{2_M}^4$ (b) $\sigma^{ab}(LM_{2_m}^4) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_M}^4)$ (c) $FDLM_{2_m}^4 = \bigoplus_{M \subset [m]} BFDLM_{2_M}^4$ (d) $\Sigma^{ab}(FDLM_{2_m}^4) = \bigoplus_{M \subset [m]} \Sigma^{ab}(BFDLM_{2_M}^4)$

Proof: Eilenberg-MacLane, 1954 ("Cross-effect functors").

Theorem (Gui-Song Li, 1999) Brunnian link maps in S^4 do exist. In fact, $\sigma^{ab}(BLM_{2m}^4)$ is nonempty for each m > 2.

("Kirk's invariant may have mixed terms")

Construction: A process of desingularization of towers of Whitney disks.

New construction: A single picture.

Brunnian decomposition. Let $[m] = \{1, \dots, m\}$ and $2_m = 2, \dots, 2$.

- (a) $LM_{2_{m}}^{4} = \bigoplus_{M \subset [m]} BLM_{2_{M}}^{4}$ (b) $\sigma^{ab}(LM_{2_{m}}^{4}) = \bigoplus_{M \subset [m]} \sigma^{ab}(BLM_{2_{M}}^{4})$ (c) $FDLM_{2_{m}}^{4} = \bigoplus_{M \subset [m]} BFDLM_{2_{M}}^{4}$ (d) $\Sigma^{ab}(FDLM_{2_{m}}^{4}) = \bigoplus_{M \subset [m]} \Sigma^{ab}(BFDLM_{2_{M}}^{4})$

Proof: Eilenberg-MacLane, 1954 ("Cross-effect functors").

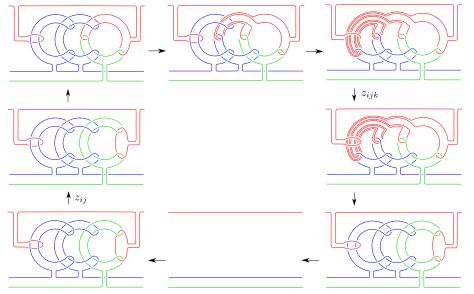
Theorem (Gui-Song Li, 1999) Brunnian link maps in S^4 do exist. In fact, $\sigma^{ab}(BLM_{2m}^4)$ is nonempty for each m > 2.

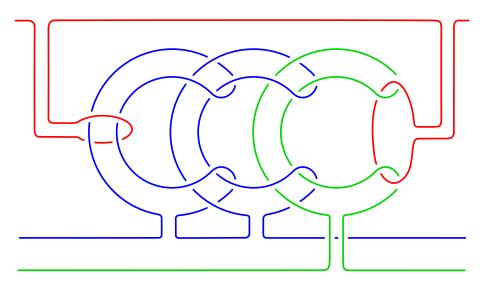
("Kirk's invariant may have mixed terms")

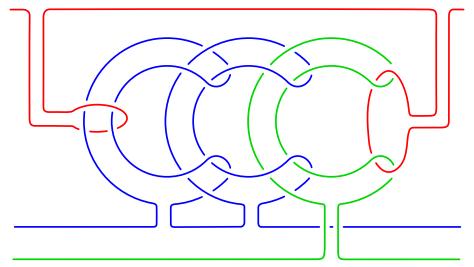
Construction: A process of desingularization of towers of Whitney disks.

New construction: A single picture.

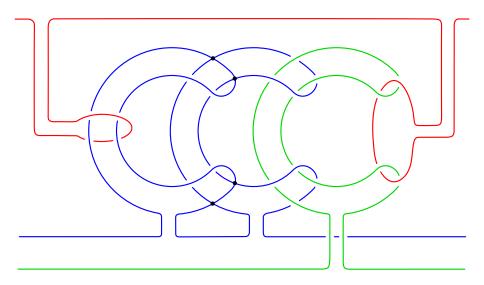
 \Rightarrow **Theorem 2:** A computation of $\sigma^{ab}(LM_{2,2,2}^4)$.

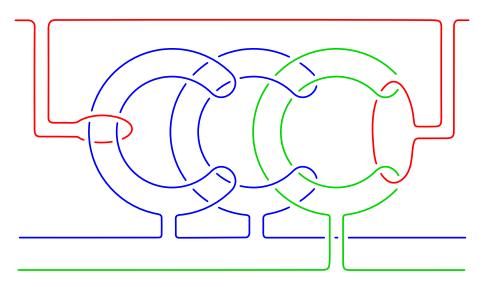


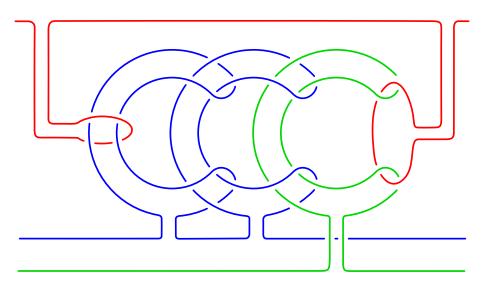


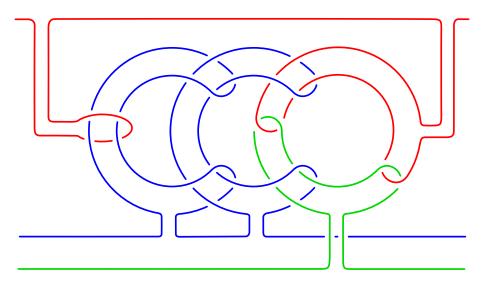


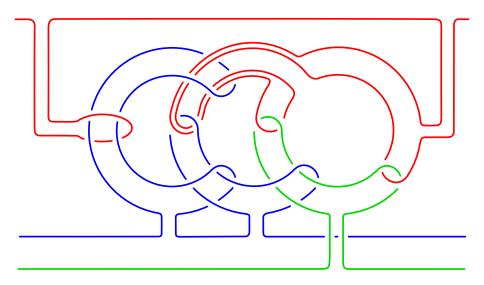
"A C_k-move (Goussarov–Habiro move)"

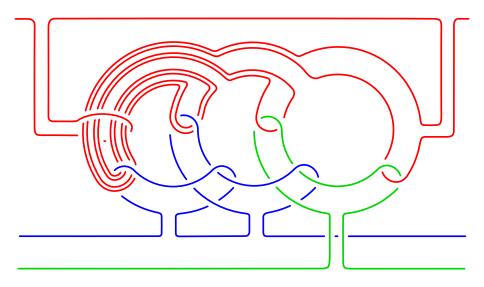


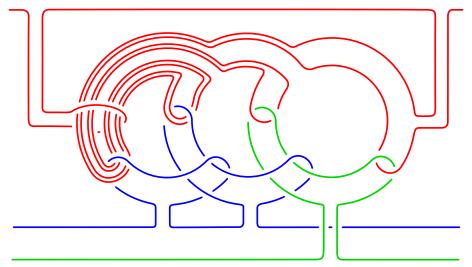




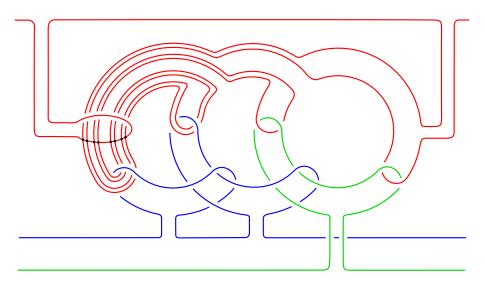


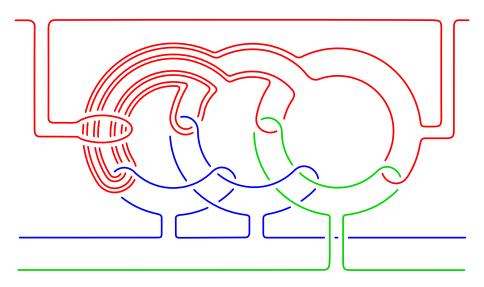


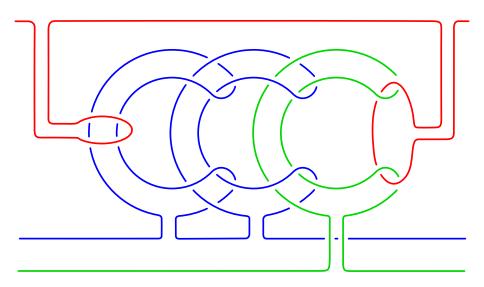


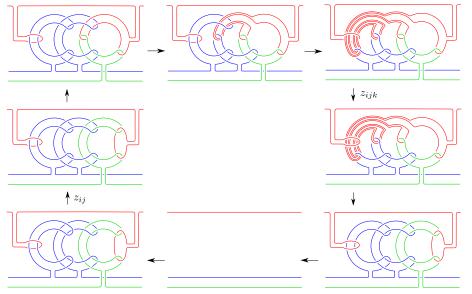


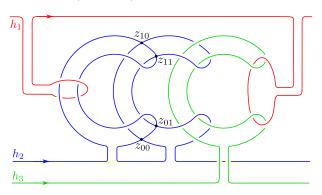
"A minimal solution of the Chinese Rings puzzle."

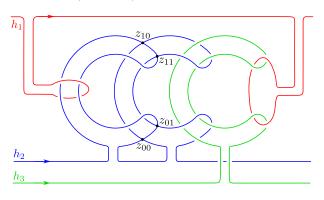




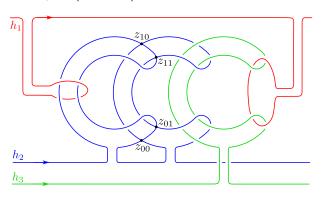






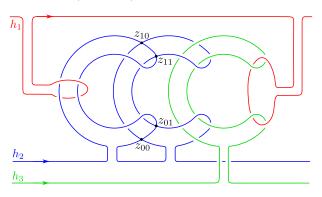


$$\ell_{z_{ij}3}=0$$



$$\ell_{z_{ii}3} = 0$$

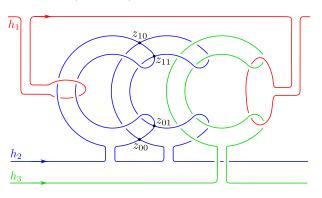
$$\ell_{z_{ij}3} = 0$$
$$\ell_{z_{ij}1} = i$$



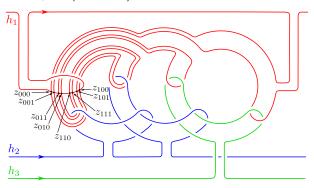
$$\ell_{z_{ij}3} = 0$$

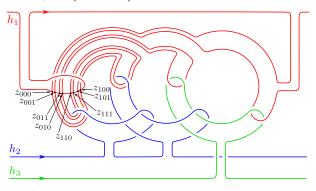
$$\ell_{z_{ij}1} = i$$

$$\varepsilon_{z_{ij}} = (-1)^{i+j}$$

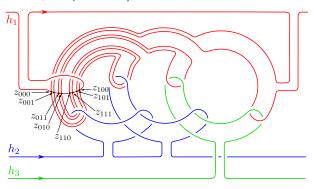


Brunnian link maps in the 4-sphere



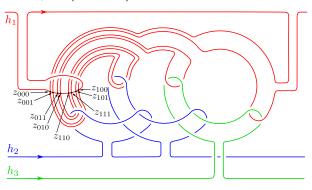


$$\ell_{z_{ijk}3} = k$$



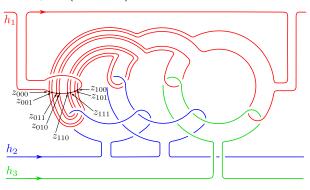
$$\ell_{z_{ijk}3} = k$$

$$\ell_{z_{ijk}2_a} = i, \quad \ell_{z_{ijk}2_b} = j$$

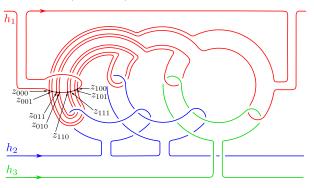


$$\begin{split} \ell_{z_{ijk}3} &= k \\ \ell_{z_{ijk}2_a} &= i, & \ell_{z_{ijk}2_b} &= j & \Rightarrow & \ell_{z_{ijk}2} &= i+j \end{split}$$

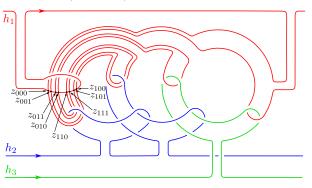
◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ 釣への



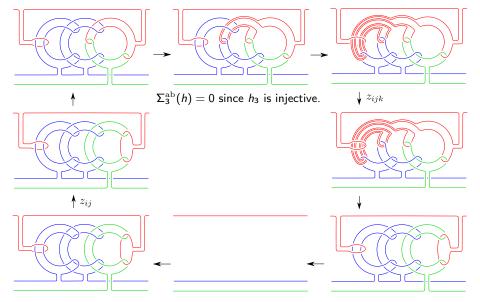
$$\begin{split} &\ell_{z_{ijk}3} = k \\ &\ell_{z_{ijk}2_a} = i, \quad \ell_{z_{ijk}2_b} = j \qquad \Rightarrow \qquad \ell_{z_{ijk}2} = i+j \\ &\varepsilon_{z_{ijk}} = (-1)^{i+j+k} \end{split}$$

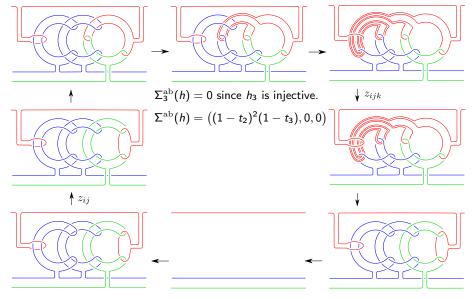


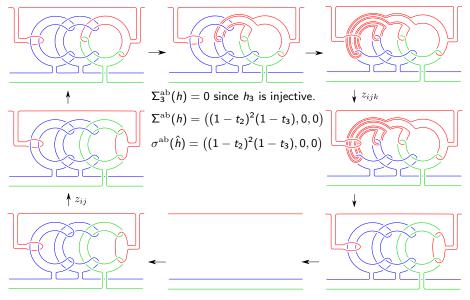
$$egin{aligned} \ell_{z_{ijk}3} &= k \ \ell_{z_{ijk}2_a} &= i, \quad \ell_{z_{ijk}2_b} &= j \quad \Rightarrow \quad \ell_{z_{ijk}2} &= i+j \ arepsilon_{z_{ijk}} &= (-1)^{i+j+k} \ \Sigma^{
m ab}_1(h) &= \sum\limits_{i,j,k \in \{0,1\}} (-1)^{i+j+k} (t_2^{i+j}t_3^k - 1) \end{aligned}$$

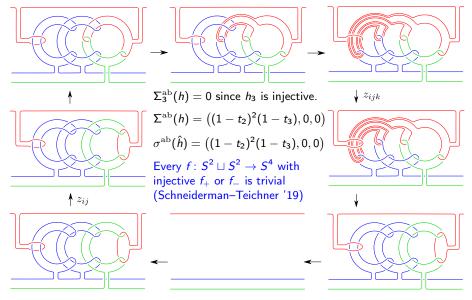


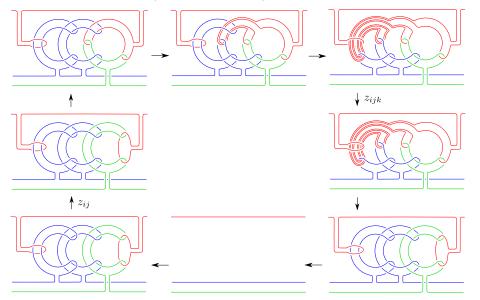
$$\begin{split} \ell_{z_{ijk}3} &= k \\ \ell_{z_{ijk}2_a} &= i, \quad \ell_{z_{ijk}2_b} = j \quad \Rightarrow \quad \ell_{z_{ijk}2} = i + j \\ \varepsilon_{z_{ijk}} &= (-1)^{i+j+k} \\ \Sigma_1^{ab}(h) &= \sum_{i,j,k \in \{0,1\}} (-1)^{i+j+k} (t_2^{i+j}t_3^k - 1) = (1-t_2)^2 (1-t_3) \end{split}$$

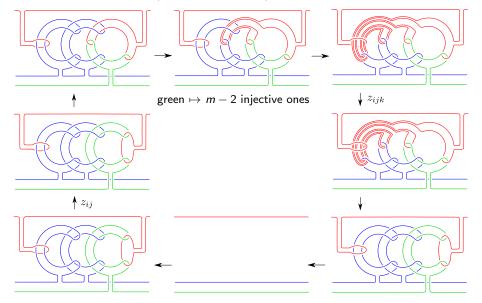


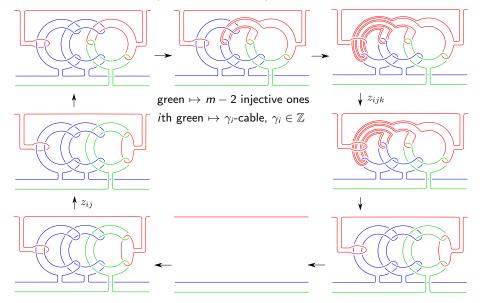


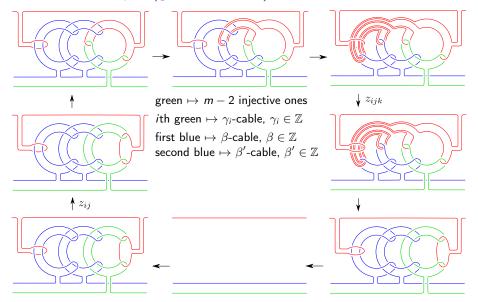


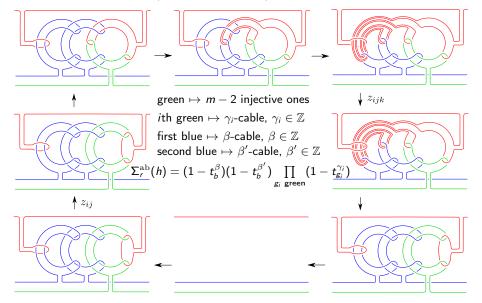


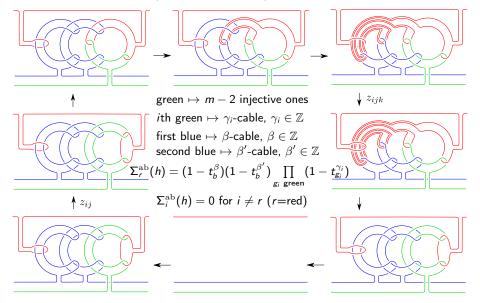












Images of σ^{ab} and Σ^{ab}

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4)=\bigoplus_{i=1}^3 \operatorname{im} \Sigma_i^{ab}$ and each $\operatorname{im} \Sigma_i^{ab}=\ker \Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m}\Big|_{t_1 = \dots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4)=\bigoplus_{i=1}^3\operatorname{im}\Sigma_i^{ab}$ and each $\operatorname{im}\Sigma_i^{ab}=\ker\Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m} \Big|_{t_1 = \cdots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Addendum. The inclusion im $\Sigma_i^{ab} \supset \ker \Delta_i^m$ also holds for m > 3.

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4) = \bigoplus_{i=1}^3 \operatorname{im} \Sigma_i^{ab}$ and each $\operatorname{im} \Sigma_i^{ab} = \ker \Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m} \Big|_{t_1 = \dots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Addendum. The inclusion im $\Sigma_i^{ab} \supset \ker \Delta_i^m$ also holds for m > 3.

Theorem 2'.
$$\sigma^{ab}(BLM_{2,2,2}^4) = \bigoplus_{i=1}^m \operatorname{im} \sigma_i^{ab}$$
 and each $\sigma_i^{ab} = \ker \delta_i^3$, where $\delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] / \langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \rangle \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}]$ is given by $|f| \mapsto \Delta_i^m(f)$.

35 / 43

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4) = \bigoplus_{i=1}^3 \operatorname{im} \Sigma_i^{ab}$ and each $\operatorname{im} \Sigma_i^{ab} = \ker \Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m}\Big|_{t_1 = \dots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Addendum. The inclusion im $\Sigma_i^{ab} \supset \ker \Delta_i^m$ also holds for m > 3.

Theorem 2'.
$$\sigma^{ab}(BLM_{2,2,2}^4) = \bigoplus_{i=1}^m \operatorname{im} \sigma_i^{ab}$$
 and each $\sigma_i^{ab} = \ker \delta_i^3$, where $\delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] / \langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \rangle \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}]$ is given by $|f| \mapsto \Delta_i^m(f)$.

Addendum. The inclusion im $\sigma_i^{ab} \supset \ker \delta_i^m$ also holds for m > 3.

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4) = \bigoplus_{i=1}^3 \operatorname{im} \Sigma_i^{ab}$ and each $\operatorname{im} \Sigma_i^{ab} = \ker \Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m}\Big|_{t_1 = \dots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Addendum. The inclusion im $\Sigma_i^{ab} \supset \ker \Delta_i^m$ also holds for m > 3.

Theorem 2'. $\sigma^{ab}(BLM_{2,2,2}^4) = \bigoplus_{i=1}^m \operatorname{im} \sigma_i^{ab}$ and each $\sigma_i^{ab} = \ker \delta_i^3$, where $\delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] / \langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \rangle \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}]$ is given by $|f| \mapsto \Delta_i^m(f)$.

Addendum. The inclusion im $\sigma_i^{ab} \supset \ker \delta_i^m$ also holds for m > 3.

⊃: Previous pictures.

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4) = \bigoplus_{i=1}^3 \operatorname{im} \Sigma_i^{ab}$ and each $\operatorname{im} \Sigma_i^{ab} = \ker \Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m} \Big|_{t_1 = \dots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Addendum. The inclusion im $\Sigma_i^{ab} \supset \ker \Delta_i^m$ also holds for m > 3.

Theorem 2'. $\sigma^{ab}(BLM_{2,2,2}^4) = \bigoplus_{i=1}^m \operatorname{im} \sigma_i^{ab}$ and each $\sigma_i^{ab} = \ker \delta_i^3$, where $\delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] / \langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \rangle \to$ $\mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}]$ is given by $|f| \mapsto \Delta_i^m(f)$.

Addendum. The inclusion im $\sigma_i^{ab} \supset \ker \delta_i^m$ also holds for m > 3.

 \supset : Previous pictures. \subset : a (new) crossing change formula for $\bar{\mu}(iijk)$.

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4) = \bigoplus_{i=1}^3 \operatorname{im} \Sigma_i^{ab}$ and each $\operatorname{im} \Sigma_i^{ab} = \ker \Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m} \Big|_{t_1 = \dots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Addendum. The inclusion im $\Sigma_i^{ab} \supset \ker \Delta_i^m$ also holds for m > 3.

Theorem 2'.
$$\sigma^{ab}(BLM_{2,2,2}^4) = \bigoplus_{i=1}^m \operatorname{im} \sigma_i^{ab}$$
 and each $\sigma_i^{ab} = \ker \delta_i^3$, where $\delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] / \langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \rangle \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}]$ is given by $|f| \mapsto \Delta_i^m(f)$.

Addendum. The inclusion im $\sigma_i^{ab} \supset \ker \delta_i^m$ also holds for m > 3.

 \supset : Previous pictures. \subset : a (new) crossing change formula for $\bar{\mu}(iijk)$.

Theorem 3. Two 3-component links that are link homotopic to the unlink are weakly Δ -link homotopic \Leftrightarrow they have equal $\bar{\mu}$ -invariants of length 4.

Theorem 2. $\Sigma^{ab}(BFDLM_{2,2,2}^4) = \bigoplus_{i=1}^3 \operatorname{im} \Sigma_i^{ab}$ and each $\operatorname{im} \Sigma_i^{ab} = \ker \Delta_i^3$, where

$$\begin{split} & \Delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}] \\ & \text{is given by } f \mapsto \left(\frac{\partial^m f}{\partial t_1 \cdots \partial t_m} \Big|_{t_1 = \dots = t_m = 1}; \ f|_{t_1 = 1}, \dots, f|_{t_m = 1}\right). \end{split}$$

Addendum. The inclusion im $\Sigma_i^{ab} \supset \ker \Delta_i^m$ also holds for m > 3.

Theorem 2'.
$$\sigma^{ab}(BLM_{2,2,2}^4) = \bigoplus_{i=1}^m \operatorname{im} \sigma_i^{ab}$$
 and each $\sigma_i^{ab} = \ker \delta_i^3$, where $\delta_i^m \colon \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, t_m^{\pm 1}] / \langle t_1^{n_1} \dots t_k^{n_k} - t_1^{-n_1} \dots t_k^{-n_k} \mid n_i \in \mathbb{Z} \rangle \to \mathbb{Z} \oplus \bigoplus_{c \neq a} \mathbb{Z}[t_1^{\pm 1}, \dots, \hat{t}_a^{\pm 1}, \dots, \hat{t}_c^{\pm 1}, \dots, t_m^{\pm 1}]$ is given by $|f| \mapsto \Delta_i^m(f)$.

Addendum. The inclusion im $\sigma_i^{ab} \supset \ker \delta_i^m$ also holds for m > 3.

 \supset : Previous pictures. \subset : a (new) crossing change formula for $\bar{\mu}(iijk)$.

Theorem 3. Two 3-component links that are link homotopic to the unlink are weakly Δ -link homotopic \Leftrightarrow they have equal $\bar{\mu}$ -invariants of length 4.

Weak \triangle -link-homotopy: C_2^{xxx} -moves (= \triangle -link homotopy) + $C_3^{xx,yz}$ -moves.

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: unlink_m: $S^1 \sqcup \cdots \sqcup S^1 \to S^3$

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\text{unlink}_m) = F_m = F(x_1, \dots, x_m)$, the non-abelian free group.

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\text{unlink}_m) = F_m = F(x_1, \dots, x_m)$, the non-abelian free group.

$$A_i = \text{ker}\left[F\langle x_1 \dots, x_m \rangle \to F\langle x_1, \dots, \hat{x}_i, \dots, x_m \rangle\right]$$

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\mathsf{unlink}_m) = F_m = F\langle x_1, \dots, x_m \rangle$, the non-abelian free group.

$$A_i = \text{ker}\left[F\langle x_1 \dots, x_m \rangle \to F\langle x_1, \dots, \hat{x}_i, \dots, x_m \rangle\right]$$

= the minimal normal subgroup containing x_i .

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\mathsf{unlink}_m) = F_m = F\langle x_1, \dots, x_m \rangle$, the non-abelian free group.

$$A_i = \ker \left[F\langle x_1 \dots, x_m \rangle \to F\langle x_1, \dots, \hat{x}_i, \dots, x_m \rangle \right]$$

= the minimal normal subgroup containing x_i .

$$G(\operatorname{unlink}_m) = F_m/(A_1' \cdots A_m')$$

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\mathsf{unlink}_m) = F_m = F\langle x_1, \dots, x_m \rangle$, the non-abelian free group.

$$A_i = \text{ker}\left[F\langle x_1 \dots, x_m \rangle \to F\langle x_1, \dots, \hat{x}_i, \dots, x_m \rangle\right]$$

= the minimal normal subgroup containing x_i .

$$\mathcal{G}(\mathsf{unlink}_m) = F_m/(A_1' \cdots A_m')$$

$$= F_m/\langle \mathsf{all commutators} \ [...[x_{i_1}, x_{i_2}], x_{i_3}], \dots, x_{i_n}] \ \mathsf{with repeats} \rangle$$

◆ロト ◆個ト ◆見ト ◆見ト ■ からの

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\mathsf{unlink}_m) = F_m = F\langle x_1, \dots, x_m \rangle$, the non-abelian free group.

$$A_i = \text{ker}\left[F\langle x_1 \dots, x_m \rangle \to F\langle x_1, \dots, \hat{x}_i, \dots, x_m \rangle\right]$$

= the minimal normal subgroup containing x_i .

$$\mathcal{G}(\mathsf{unlink}_m) = F_m/(A_1' \cdots A_m')$$

= $F_m/\langle \mathsf{all} \ \mathsf{commutators} \ [...[x_{i_1}, x_{i_2}], x_{i_3}], \dots, x_{i_n}] \ \mathsf{with} \ \mathsf{repeats} \rangle$
=: RF_m , the reduced free group.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\text{unlink}_m) = F_m = F(x_1, \dots, x_m)$, the non-abelian free group.

$$A_i = \ker \left[F\langle x_1 \dots, x_m \rangle \to F\langle x_1, \dots, \hat{x}_i, \dots, x_m \rangle \right]$$

= the minimal normal subgroup containing x_i .

$$\mathcal{G}(\mathsf{unlink}_m) = F_m/(A_1' \cdots A_m')$$

= $F_m/\langle \mathsf{all} \ \mathsf{commutators} \ [...[x_{i_1}, x_{i_2}], x_{i_3}], \dots, x_{i_n}] \ \mathsf{with} \ \mathsf{repeats} \rangle$
=: RF_m , the $reduced$ free group.

Note: if n > m, any such commutator has a repeat.

- 4 ロ ト 4 個 ト 4 直 ト 4 直 ・ 夕 Q ()

Let $f: X_1 \sqcup \cdots \sqcup X_m \to Y$ be a link map. Write $\pi_1(f) = \pi_1(Y \setminus \operatorname{im} f)$.

Let A_i be the kernel of the inclusion induced map $\pi_1(f) \to \pi_1(f \setminus f|_{X_i})$.

Milnor's link group $G(f) = \pi_1(f)/(A'_1 \cdots A'_n)$, where G' = [G, G].

Example: $\operatorname{unlink}_m \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$

 $\pi_1(\mathsf{unlink}_m) = F_m = F\langle x_1, \dots, x_m \rangle$, the non-abelian free group.

$$A_i = \ker \left[F\langle x_1 \dots, x_m \rangle \to F\langle x_1, \dots, \hat{x}_i, \dots, x_m \rangle \right]$$

= the minimal normal subgroup containing x_i .

$$\mathcal{G}(\mathsf{unlink}_m) = F_m/(A_1' \cdots A_m')$$

$$= F_m/\langle \mathsf{all commutators} \ [...[x_{i_1}, x_{i_2}], x_{i_3}], \dots, x_{i_n}] \ \mathsf{with repeats} \rangle$$

$$=: RF_m, \ \mathsf{the} \ \mathit{reduced} \ \mathsf{free} \ \mathsf{group}.$$

Note: if n > m, any such commutator has a repeat. So RF_m is nilpotent.

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i.

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

$$= \left\{ x^k y^l [y,x]^c \mid \right.$$

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

$$= \left\{ x^k y^l [y, x]^c \mid x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = \right.$$

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

$$= \left\{ x^k y^l [y, x]^c \ \big| \ x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = x^{k+k'} y^{l+l'} [y, x]^{c+c'+k'l} \right\}$$

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

$$= \left\{ x^k y^l [y, x]^c \mid x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = x^{k+k'} y^{l+l'} [y, x]^{c+c'+k'l} \right\}$$

$$\simeq$$
 discrete Heisenberg group $\left\{ egin{array}{cc|c} 1 & l & c \ 0 & 1 & k \ 0 & 0 & 1 \end{array} \middle| k,l,c \in \mathbb{Z}
ight\}$

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

Example: m=3. Here $RF_2=F\langle x,y\rangle/\langle \text{all commutators of length}\geq 3\rangle$

$$= \left\{ x^k y^l [y, x]^c \mid x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = x^{k+k'} y^{l+l'} [y, x]^{c+c'+k'l} \right\}$$

 \simeq discrete Heisenberg group $\left\{ egin{array}{ccc} 1 & l & c \ 0 & 1 & k \ 0 & 0 & 1 \end{array} \middle| egin{array}{ccc} k,l,c \in \mathbb{Z} \end{array}
ight\}$

$$\begin{pmatrix} 1 & l & c \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & l' & c' \\ 0 & 1 & k' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & l+l' & c+c'+k'l \\ 0 & 1 & k+k' \\ 0 & 0 & 1 \end{pmatrix}$$

←□ → ←□ → ← = → ← = → へ

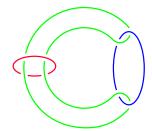
Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

Example: m=3. Here $RF_2=F\langle x,y\rangle\big/\langle \text{all commutators of length}\geq 3\rangle$

$$= \left\{ x^k y^l [y,x]^c \ \big| \ x^k y^l [y,x]^c \cdot x^{k'} y^{l'} [y,x]^{c'} = x^{k+k'} y^{l+l'} [y,x]^{c+c'+k'l} \right\}$$



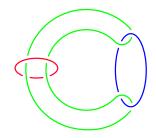
 $f: S^1 \sqcup S^1 \sqcup S^1 \to S^3$ Brunnian link

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i : S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

$$= \left\{ x^k y^l [y, x]^c \mid x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = x^{k+k'} y^{l+l'} [y, x]^{c+c'+k'l} \right\}$$



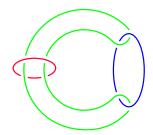
$$f: S^1 \sqcup S^1 \sqcup S^1 \to S^3$$
 Brunnian link $RF_2 = \mathcal{G}(f_1 \sqcup f_2)$

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

$$= \left\{ x^k y^l [y, x]^c \mid x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = x^{k+k'} y^{l+l'} [y, x]^{c+c'+k'l} \right\}$$



$$f \colon S^1 \sqcup S^1 \sqcup S^1 \to S^3$$
 Brunnian link

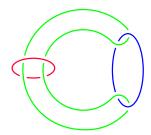
$$RF_2 = \mathcal{G}(f_1 \sqcup f_2) \supset [f_3]$$

Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

$$= \left\{ x^k y^l [y, x]^c \mid x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = x^{k+k'} y^{l+l'} [y, x]^{c+c'+k'l} \right\}$$



$$f\colon S^1\sqcup S^1\sqcup S^1\to S^3$$
 Brunnian link

$$RF_2 = \mathcal{G}(f_1 \sqcup f_2) \supset [f_3] \ni x^k y^l [y, x]^c$$

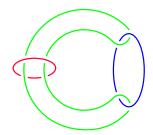
Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

Example: m=3. Here $RF_2=F\langle x,y\rangle\big/\langle \text{all commutators of length}\geq 3\rangle$

$$= \left\{ x^k y^l [y, x]^c \mid x^k y^l [y, x]^c \cdot x^{k'} y^{l'} [y, x]^{c'} = x^{k+k'} y^{l+l'} [y, x]^{c+c'+k'l} \right\}$$



$$f: S^1 \sqcup S^1 \sqcup S^1 \to S^3$$
 Brunnian link $RF_2 = \mathcal{G}(f_1 \sqcup f_2) \supset [f_3] \ni x^k y^l [y, x]^c$ $k = \operatorname{lk}(13) = 0$ and $l = \operatorname{lk}(23) = 0$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

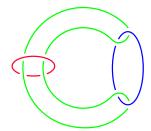
Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

Example: m=3. Here $RF_2=F\langle x,y\rangle/\langle \text{all commutators of length}\geq 3\rangle$

$$= \left\{ x^k y^l [y,x]^c \ \big| \ x^k y^l [y,x]^c \cdot x^{k'} y^{l'} [y,x]^{c'} = x^{k+k'} y^{l+l'} [y,x]^{c+c'+k'l} \right\}$$



$$f \colon S^1 \sqcup S^1 \sqcup S^1 \to S^3$$
 Brunnian link

$$RF_2 = \mathcal{G}(f_1 \sqcup f_2) \supset [f_3] \ni x^k y^l [y, x]^c$$

$$k = lk(13) = 0$$
 and $l = lk(23) = 0$.

Hence c is well-defined up to conjugation.

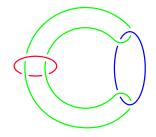
Lemma (Milnor, 1954). For links $f = \sqcup_i f_i \colon S^1 \sqcup \cdots \sqcup S^1 \to S^3$ the Milnor link group $\mathcal{G}(f)$ is an invariant of link homotopy.

Corollary. If f link homotopic to the unlink, then $\mathcal{G}(f) \simeq RF_m$.

Corollary. If f is Brunnian, then $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$ for each i. Hence the conjugacy class $[f_i] \subset \mathcal{G}(f \setminus f_i) = RF_{m-1}$ is a link homotopy invariant.

Example: m=3. Here $RF_2=F\langle x,y\rangle\big/\langle \text{all commutators of length}\geq 3\rangle$

$$= \left\{ x^k y^l [y,x]^c \ \big| \ x^k y^l [y,x]^c \cdot x^{k'} y^{l'} [y,x]^{c'} = x^{k+k'} y^{l+l'} [y,x]^{c+c'+k'l} \right\}$$



$$f: S^1 \sqcup S^1 \sqcup S^1 \to S^3$$
 Brunnian link

$$RF_2 = \mathcal{G}(f_1 \sqcup f_2) \supset [f_3] \ni x^k y^l [y, x]^c$$

$$k = lk(13) = 0$$
 and $l = lk(23) = 0$.

Hence c is well-defined up to conjugation.

 $\mu(123) := c$ is a link homotopy invariant.

Lemma (Habegger–Lin, 1990) $\mathcal{G}(f) \simeq RF_m$ for every string link $f: I \sqcup \cdots \sqcup I \to I^3$.

Lemma (Habegger–Lin, 1990) $\mathcal{G}(f) \simeq RF_m$ for every string link $f: I \sqcup \cdots \sqcup I \to I^3$.

Lemma (Krushkal, 2012) $\mathcal{G}(F) \simeq RF_m$ for every generic disk link map $F: D^2 \sqcup \cdots \sqcup D^2 \to B^4$.

Lemma (Habegger–Lin, 1990) $\mathcal{G}(f) \simeq RF_m$ for every string link $f: I \sqcup \cdots \sqcup I \to I^3$.

Lemma (Krushkal, 2012) $\mathcal{G}(F) \simeq RF_m$ for every generic disk link map $F: D^2 \sqcup \cdots \sqcup D^2 \to B^4$.

Corollary. $G(F) \simeq RF_m$ for every generic link map $F: S^2 \sqcup \cdots \sqcup S^2 \to S^4$.

Lemma (Habegger–Lin, 1990) $\mathcal{G}(f) \simeq RF_m$ for every string link $f: I \sqcup \cdots \sqcup I \to I^3$.

Lemma (Krushkal, 2012) $\mathcal{G}(F) \simeq RF_m$ for every generic disk link map $F: D^2 \sqcup \cdots \sqcup D^2 \to B^4$.

Corollary. $\mathcal{G}(F) \simeq RF_m$ for every generic link map $F: S^2 \sqcup \cdots \sqcup S^2 \to S^4$.

Addendum. If $H: (S^2 \sqcup \cdots \sqcup S^2) \times I \to S^4 \times I$ is a generic link homotopy between link maps $F_0, F_1: S^2 \sqcup \cdots \sqcup S^2 \to S^4$, then the inclusion induced maps $\mathcal{G}(F_i) \to \mathcal{G}(H)$ are isomorphisms.

Let RF_m/c be the set of conjugacy classes of the group RF_m .

Let RF_m/c be the set of conjugacy classes of the group RF_m .

Let $t \colon RF_m/c \to RF_m/c$ be the involution induced by the anti-automorphism $g \mapsto g^{-1}$ of RF_m .

Let RF_m/c be the set of conjugacy classes of the group RF_m .

Let $t \colon RF_m/c \to RF_m/c$ be the involution induced by the anti-automorphism $g \mapsto g^{-1}$ of RF_m .

Remark. $\mathbb{Z}[(RF_m/c)/t] \simeq \mathbb{Z}[RF_m]/T$ as groups, where T is the sugroup $\langle g - g^{-1}, g - g^h \mid g, h \in RF_m \rangle$ of the additive group of $\mathbb{Z}[RF_m]$.

Let RF_m/c be the set of conjugacy classes of the group RF_m .

Let $t: RF_m/c \to RF_m/c$ be the involution induced by the anti-automorphism $g \mapsto g^{-1}$ of RF_m .

Remark. $\mathbb{Z}[(RF_m/c)/t] \simeq \mathbb{Z}[RF_m]/T$ as groups, where T is the sugroup $\langle g - g^{-1}, g - g^h \mid g, h \in RF_m \rangle$ of the additive group of $\mathbb{Z}[RF_m]$.

Example. Let $H \subset \mathbb{Z}[RF_2]$ be the copy of $\mathbb{Z}[\mathbb{Z}]$ generated by the powers of [y,x]. Then $T \cap H = \langle [y,x]^m - [y,x]^{-m} \rangle$ and there is an epimorphism $\mathbb{Z}[RF_2]/T \to H/T \cap H \simeq \mathbb{Z}[t]$.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $J_z \subset S^2$ be an arc between x and y.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $J_z \subset S^2$ be an arc between x and y.

Then $f_i(J_z)$ represents an element of $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $J_z \subset S^2$ be an arc between x and y.

Then $f_i(J_z)$ represents an element of $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$.

Its conjugacy class in RF_{m-1}/c is invariant under homotopy of J_z rel ∂ .

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $J_z \subset S^2$ be an arc between x and y.

Then $f_i(J_z)$ represents an element of $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$.

Its conjugacy class in RF_{m-1}/c is invariant under homotopy of J_z rel ∂ .

Its orbit $\lambda_z \in (RF_{m-1}/c)/t$ is also invariant under exchanging x and y.

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $J_z \subset S^2$ be an arc between x and y.

Then $f_i(J_z)$ represents an element of $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$.

Its conjugacy class in RF_{m-1}/c is invariant under homotopy of J_z rel ∂ .

Its orbit $\lambda_z \in (RF_{m-1}/c)/t$ is also invariant under exchanging x and y.

Let
$$\sigma_i(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z(\lambda_z - 1) \in \mathbb{Z}[RF(x_1, \dots, \hat{x}_i, \dots, x_m)]/T$$
.

Non-abelian invariant of link maps in S^4

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $J_z \subset S^2$ be an arc between x and y.

Then $f_i(J_z)$ represents an element of $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$.

Its conjugacy class in RF_{m-1}/c is invariant under homotopy of J_z rel ∂ .

Its orbit $\lambda_z \in (RF_{m-1}/c)/t$ is also invariant under exchanging x and y.

Let
$$\sigma_i(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z(\lambda_z - 1) \in \mathbb{Z}[RF(x_1, \dots, \hat{x}_i, \dots, x_m)]/T$$
.

Let
$$\sigma(f) = (\sigma_1(f), \ldots, \sigma_m(f)).$$

Non-abelian invariant of link maps in S^4

Let $f = f_1 \sqcup \cdots \sqcup f_m \colon S^2 \sqcup \cdots \sqcup S^2 \to S^4$ be a generic link map.

For each double point $f_i(x) = f_i(y) = z$ let ε_z be its sign.

Let $J_z \subset S^2$ be an arc between x and y.

Then $f_i(J_z)$ represents an element of $\mathcal{G}(f \setminus f_i) \simeq RF_{m-1}$.

Its conjugacy class in RF_{m-1}/c is invariant under homotopy of J_z rel ∂ .

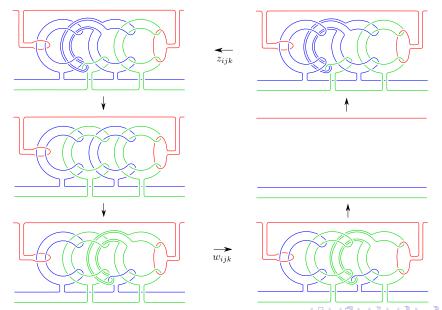
Its orbit $\lambda_z \in (RF_{m-1}/c)/t$ is also invariant under exchanging x and y.

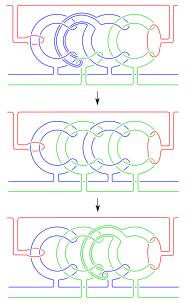
Let
$$\sigma_i(f) = \sum_{z \in \Delta(f_i)} \varepsilon_z(\lambda_z - 1) \in \mathbb{Z}[RF(x_1, \dots, \hat{x}_i, \dots, x_m)]/T$$
.

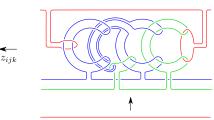
Let
$$\sigma(f) = (\sigma_1(f), \ldots, \sigma_m(f)).$$

Lemma. $\sigma(f)$ is a link homotopy invariant.

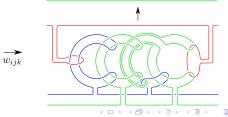
- **◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・ 恵 ・ か**へで

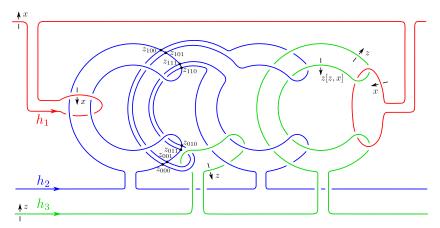


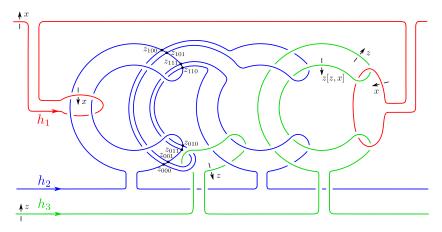




 $\Sigma_1(h) = 0$ since h_1 is injective.

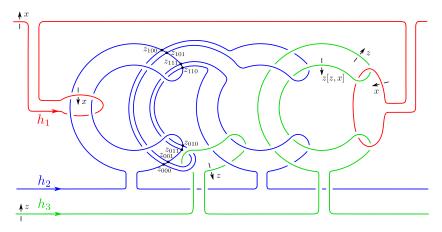






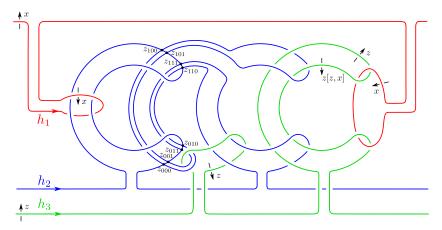
$$\Sigma_2(h) = (z-1)(x-1)([z,x]-1)$$

- **イロト 4個ト 4 注ト 4 注ト - 注 - 约**9.0



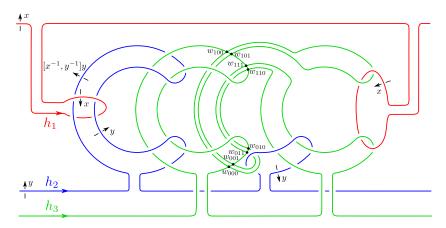
$$\Sigma_2(h) = (z-1)(x-1)([z,x]-1)$$
 \Rightarrow $\Sigma_2^{ab}(h) = 0$

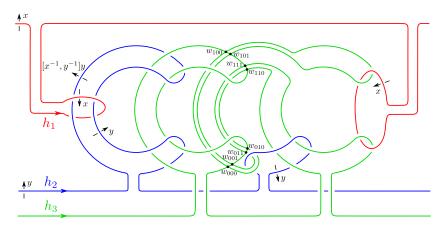
◆ロト ◆個ト ◆重ト ◆重ト ■ りゅ○



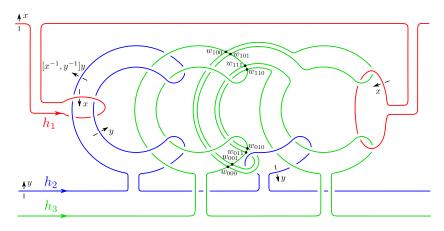
$$\Sigma_2(h) = (z-1)(x-1)([z,x]-1)$$
 \Rightarrow $\Sigma_2^{ab}(h) = 0$

$$\sigma_2(\hat{h}) = (z-1)(x-1)([z,x]-1) = T[z,x]-1 \neq 0.$$

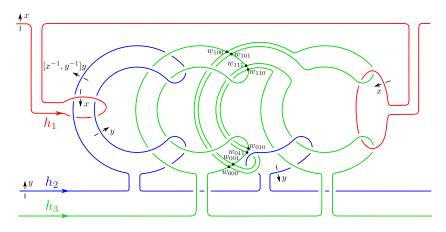




$$\Sigma_3(h) = (1-x)(1-y)(1-[x,y])$$



$$\Sigma_3(h) = (1-x)(1-y)(1-[x,y])$$
 \Rightarrow $\Sigma_3^{ab}(h) = 0.$



$$\Sigma_3(h)=(1-x)(1-y)(1-[x,y]) \qquad \Rightarrow \qquad \Sigma_3^{\mathrm{ab}}(h)=0.$$

$$\sigma_3(\hat{h}) = (1-x)(1-y)(1-[x,y]) = 1-[x,y] \neq 0.$$

4□ > 4周 > 4 = > 4 = > = 90