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Epigraph: “We are counting cards”
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If you are annoyed while waiting for the beginning of the lecture, please type

“Very sparkly” in YouTube search and watch the three-minutes extract from the

movie “Rainman” (pay attention starting from the conversation with Iris):

https://www.youtube.com/watch?v=Wjc58nT4hUA

This is the best epigraph which I can imagine for my lectures. I fully identify

myself with Rainman, except that he and his brother were counting cards for a

day and, together with my collaborators, we were obsessively counting

square-tiled surfaces for many years... We have not finished yet.



Intersection numbers (Witten–Kontsevich correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth

complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complex dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.
The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n
determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=
∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional
quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich;

alternative proofs belong to A. Okounkov and R. Pandharipande, to

M. Mirzakhani, to M. Kazarian and S. Lando (and there are more).
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Recursive relations
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Initial data: 〈τ30 〉 = 1, 〈τ1〉 = 1
24 .

String equation:

〈τ0τd1 . . . τdn〉g,n+1 = 〈τd1−1 . . . τdn〉g,n + · · ·+ 〈τd1 . . . τdn−1〉g,n .

Dilaton equation:

〈τ1τd1 . . . τdn〉g,n+1 = (2g − 2 + n)〈τd1 . . . τdn〉g,n .
Virasoro constraints (in Dijkgraaf–Verlinde–Verlinde form; k ≥ 1):

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

[
n∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g

+
1

2

∑

r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn〉g−1

+
1

2

∑

r+s=k−1
r,s≥0

(2r+1)!!(2s+1)!!
∑

{1,...,n}=I
∐

J

〈τr
∏

i∈I

τdi〉g′〈τs
∏

i∈J

τdi〉g−g′

]

.



Uniform large genus asymptotics
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We stated in August 2019 a conjecture which was proved by Amol Aggarwal

already in April 2020.

Theorem (Aggarwal). The following uniform asymptotic formula is valid:

∫

Mg,n

ψd1
1 . . . ψdn

n =

=
1

24g
· (6g − 5 + 2n)!

g! (3g − 3 + n)!
· d1! . . . dn!

(2d1 + 1)! · · · (2dn + 1)!
·
(
1 + ε(d)

)
,

where ε(d) = O
(

1 + (n+log g)2

g

)

uniformly for all n = o(
√
g) and all

partitions d, d1 + · · ·+ dn = 3g − 3 + n, as g → +∞.



Volume polynomials
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n
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Up to a numerical factor, the polynomial Ng,n(b1, . . . , bn) coincides with the

top homogeneous part of the Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn)
providing the Weil–Petersson volume of the moduli space of bordered Riemann

surfaces:

V top
g,n (b) = 22g−3+n ·Ng,n(b) .
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Define the formal operation Z on monomials as

Z :
n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extend it to symmetric polynomials in bi by linearity.



Trivalent ribbon graphs
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This trivalent ribbon graph defines an orientable surface of genus g = 1 with
n = 2 boundary components. If we assigned lengths to all edges of the core

graph, each boundary component gets induced length, namely, the sum of the

lengths of the edges which it follow.

Note, however, that in general, fixing a genus g, a number n of boundary
components and integer lengths b1, . . . , bn of boundary components, we get

plenty of trivalent integral metric ribbon graphs associated to such data. The

Theorem of Kontsevich counts them.



Kontsevich’s count of metric ribbon graphs
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Theorem (M. Kontsevich; in this form — P. Norbury). Consider a collection

of positive integers b1, . . . , bn such that
∑n

i=1 bi is even. The weighted count

of genus g connected trivalent metric ribbon graphs Γ with integer edges and

with n labeled boundary components of lengths b1, . . . , bn is equal to

Ng,n(b1, . . . , bn) up to the lower order terms:

∑

Γ∈Rg,n

1

|Aut(Γ)| NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denote the set of (nonisomorphic) trivalent ribbon graphs Γ of

genus g and with n boundary components.

This Theorem is an important part of Kontsevich’s proof of Witten’s conjecture.



Stable graph associated to a square-tiled surface
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders.
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders. The

associated stable graph Γ is the dual graph to the multicurve. The vertices of Γ
are in the natural bijection with metric ribbon graphs given by components of

S \ γ. The edges are in the bijection with the waist curves γi of the cylinders.

The marked points are encoded by “legs” — half-edges of the dual graph.



Number of square-tiled tori
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φ

b

h

φ

The number of square-tiled tori tiled with at most N squares has asymptotics

∑

b,h∈N
b·h≤N

b =
∑

b,h∈N

b≤N
h

b ∼
∑

h∈N

1

2
·
(

N

h

)2

=
N2

2

∑

h∈N

1

h2
=
N2

2
·
π2

6
=
N2

2
ζ(2) =

=
N2

2
Z(b) , where Z :

n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
.
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) b1 1

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) b1
1 1

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2)

b1 b2
0

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2)

b1 b2
0 1

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3)

b1 b2
b30 0

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3)

b1 b2 b3

0

0
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) = 1

2 · b1
(

1
384(2b

2
1)(2b

2
1)
)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) = 1
4 · b1

(
1
48b

2
1

) (
1
48b

2
1

)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2) = 1

8 · b1b2 ·
(
1
4(2b

2
1 + 2b22)

)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2) = 1

4 · b1b2 ·
(
1
)
·
(

1
48b

2
2

)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3) = 1

16 · b1b2b3 · (1) · (1)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3) = 1

24 · b1b2b3 · (1) · (1)



Volume of Q2
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b1
1

192 · b51
Z7−→ 1

192 ·
(
5! · ζ(6)

)
= 1

1512 · π6

b1

1
9216 · b51

Z7−→ 1
9216 ·

(
5! · ζ(6)

)
= 1

72576 · π6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z7−→ 1
16 · 2

(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

720 · π6

b1
b2

1
192 · b1b32

Z7−→ 1
192 ·

(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

17280 · π6

b1
b2

b3
1
16b1b2b3

Z7−→ 1
16 ·

(
1! · ζ(2)

)3
= 1

3456 · π6

b1
b2

b3
1
24b1b2b3

Z7−→ 1
24 ·

(
1! · ζ(2)

)3
= 1

5184 · π6

VolQ2 =
128
5 ·

(
1

1512 +
1

72576 +
1

720 +
1

17280 +
1

3456 +
1

5184

)
· π6 = 1

15π
6 .

These contributions to VolQ2 are proportional to Mirzakhani’s frequencies of corresponding multicurves.
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Volume of Qg,n
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Theorem (Delecroix, Goujard, Zograf, Zorich). The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
· 1

|AutΓ| ·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.
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Theorem (Delecroix, Goujard, Zograf, Zorich). The Masur–Veech volume
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Remark. The Weil–Petersson volume of Mg,n corresponds to the constant

term of the volume polynomial Ng,n(L) when the lengths of all boundary

components are contracted to zero. To compute the Masur–Veech volume we
use the top homogeneous parts of volume polynomials; i.e. we use them in the

opposite regime when the lengths of all boundary components tend to infinity.



Masur–Veech volumes of the
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Very flat surface of genus two
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Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Period coordinates and Masur–Veech measure
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.

Considered as complex numbers, they represent integrals of the holomorphic

form ω = dz along paths joining zeroes of the form ω. (In polygonal

representation the zeroes of ω are represented by vertices of the polygon.)



Period coordinates and Masur–Veech measure
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In other words, the moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is

a complex curve and ω is a holomorphic 1-form on C having zeroes of
prescribed multiplicities m1, . . . ,mn, where

∑
mi = 2g − 2, is modeled on

the vector space H1(S, {P1, . . . , Pn};C). The latter vector space contains a

natural lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of

the volume element dν in these period coordinates.



Flat area of the surface as a positive homogeneous function

20 / 27

We have a natural action of R+ on any moduli space H(m1, . . . ,mn): given a

positive integer r > 0 we can rescale a flat surface by factor r. The flat area of

the surface gets rescaled by the factor r2.
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We have a natural action of R+ on any moduli space H(m1, . . . ,mn): given a

positive integer r > 0 we can rescale a flat surface by factor r. The flat area of

the surface gets rescaled by the factor r2.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C

ω ∧ ω̄ =

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where

r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the

volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on the hyperboloid H1 and d = dimC H(m1, . . . ,mn).



Masur–Veech volume
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Summary. Every stratum of Abelian differentials admits

• A local structure of a vector space H1(S, {P1, . . . , Pn};C);
• An integer lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ) which allows to normalize

the associated Lebesgue measure;

• A positive homogeneous function which allows to define an analog of a unit
sphere (or rather of a unit hyperboloid).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian differentials or of

meromorphic quadratic differentials with at most simple poles is finite.



Integer points as square-tiled surfaces
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Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

22 / 27

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

22 / 27

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

22 / 27

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

22 / 27

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

22 / 27

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

23 / 27

Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→
(∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z⊕iZ) = T, where P1 is a zero of ω .

The ramification points of the cover are exactly the zeroes of ω.
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Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by analogous “pillowcase covers” over CP1 branched at four

points. Thus, counting volumes of the strata is similar to counting analogs of

Hurwitz numbers.
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Counting volume by counting integer points in a large cone
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X1 H1

To count volume of the cone C(X1) one can take a small grid and count the

number of lattice points inside it. Counting points of the 1
N

-grid in the cone
C(X1) = {r · S|S ∈ X1, r ≤ 1} is the same as counting integer points in the

larger proportionally rescaled cone CN (X1) = {r · S|S ∈ X1, r ≤ N}.
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X1 H1

Let H = H(m1, . . . ,mn); let d = dimC H(m1, . . . ,mn) = 2g + n− 1. We get:

VolH1 = 2d · lim
N→+∞

(
number of square-tiled surfaces in H
tiled with at most N identical squares

)

Nd
.



Volume of the space of flat tori
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φ

b

h

φ

The number of square-tiled tori tiled with at most N squares has asymptotics

∑

b,h∈N
b·h≤N

b =
∑

b,h∈N
b≤N

h

b ∼
∑

h∈N

1

2
·
(

N

h

)2

=
N2

2

∑

h∈N

1

h2
=
N2

2
· ζ(2) =

N2

2
·
π2

6
.

VolH1(0) = 2 · 2 · lim
N→+∞

(
number of square-tiled surfaces in H
tiled with at most N identical squares

)

N2
=
π2

3
.



Methods of evaluation of Masur–Veech volumes
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• M. Kontsevich–A. Zorich (1998). Straightforward calculation of square-tiled surfaces.

• (A. Eskin–A. Okounkov–R. Pandharipande; D. Chen–M. Möller–D. Zagier;

E. Goujard) A. Eskin and A. Okounkov observed in 2000 that the generating

function for the count of square-tiled surfaces is a quasimodular form.

• D. Chen–M. Möller–A. Sauvaget; M. Kazarian; Di Yang–D. Zagier–Y. Zhang
(2018–) Using recent BCGGM smooth compactification of the moduli space,

one can work with the volume element as with the cohomology class.

Intersection theory.

• V. Delecroix–E. Goujard–P. Zograf–A. Zorich (2018) (F. Arana–Herrera):

volume of the principal stratum of quadratic differentials through Kontsevich’s
count of metric ribbon graphs in terms of Witten–Kontsevich correlators.

• D. Chen–M. Möller–A. Sauvaget–D. Zagier; A. Aggarwal (2018–) Large

genus asymptotics for any stratum of Abelian differentials (proving conjectures

of Eskin–Zorich and of Delecroix–Goujard–Zograf–Zorich).

• Andersen–Borot–Charbonnier–Delecroix–Giacchetto–Lewanski–Wheeler,

2020 (inspired by the formula of Delecroix-Goujard–Zograf–Zorich): topological
recursion.
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Lecture 2. Count of simple closed geodesics on Riemann surfa ces
(after Maryam Mirzakhani)

Anton Zorich

(Reference: M. Mirzakhani, “Growth of the number of simple closed geodesics
on hyperbolic surfaces”, Annals of Math. (2) 168 (2008), no. 1, 97–125.)
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Hyperbolic surfaces
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Any smooth orientable surface of genus g ≥ 2 admits a metric of constant

negative curvature (usually chosen to be −1), called hyperbolic metric.

Allowing to metric to have several singularities (cusps), one can construct a

hyperbolic metric also on a sphere and on a torus.



Simple closed curves and simple closed geodesics
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A smooth closed curve on a surface is called simple if it does not have

self-intersections.

Suppose that we have a simple closed curve γ on a hyperbolic surface
(possibly with cusps). Suppose that the curve is essential, that is not

contractible to a small curve encircling some disc or some cusp.

Interpreting our curve as an elastic loop, let it slide along the surface to contract
to the shortest shape in our hyperbolic metric. We get a closed geodesic, which

remains to be smooth non self-intersecting curve.
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Families of hyperbolic surfaces
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Consider a configuration of four distinct points on the Riemann sphere CP1.

Using appropriate holomorphic automorphism of CP1 we can send three out of

four points to 0, 1 and ∞. There is no more freedom: any further holomorphic

automorphism of CP1 fixing 0, 1 and ∞ is already the identity transformation.

The remaining point serves as a complex parameter in the space M0,4 of
configurations of four distinct points on CP1 (up to a holomorphic diffeomorphism).
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By the uniformization theorem, complex structures on a surface with marked

points are in natural bijection with hyperbolic metrics of curvature −1 with

cusps at the marked points, so the moduli space M0,4 can be also seen as the

family of hyperbolic spheres with four cusps. Deforming the configuration of

points we change the shape of the corresponding hyperbolic surface.
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Topological types of simple closed curves

8 / 31

Let us say that two simple closed curves on a smooth surface have the same

topological type if there is a diffeomorphism of the surface sending one curve to

another.

It immediately follows from the classification theorem of surfaces that there is a

finite number of topological types of simple closed curves. For example, if the

surface does not have punctures, all simple closed curves which do not
separate the surface into two pieces, belong to the same class.

One can consider more general primitive multicurves: collections of pairwise
disjoint non-homotopic simple closed curves. For any fixed pair (g, n) the

number of topological types of primitive multicurves on a surface of genus g
with n punctures is also finite.
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Example: primitive multicurves on a surface of genus two
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The picture below illustrates all possible types of primitive multicurves on a

surface of genus two without punctures.

Note that contracting all components of a multicurve we get a “stable curve” —
a Riemann surface degenerated in one of the several regular ways. In this way

the “topological types of primitive multicurves” on a smooth surface Sg,n of

genus g with n punctures are in the natural bijective correspondence with

boundary classes of the Deligne–Mumford compactification Mg,n of the

moduli space of pointed complex curves.



Mapping class group
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The group of all diffeomorphisms of a closed smooth orientable surface of

genus g quotient over diffeomorphisms homotopic to identity is called the

mapping class group and is denoted by Modg.

When the surface has n marked points (punctures) we require that

diffeomorphism sends marked points to marked points; the corresponding

mapping class group is denoted Modg,n.
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Simple closed multicurve, its topological type and underly ing
primitive multicurve
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The first homology H1(M
2;Z) of the surface is great to study closed curves,

but it ignores some interesting curves. The fundamental group π1(M
2) is also

wonderful, but it is mainly designed to work with self-intersecting cycles.

Thurston invented yet another structure to work with simple closed multicurves;

in many aspects it resembles the first homology, but there is no group structure.

A general multicurve ρ:

the canonical representative γ = 3γ1 + γ2 + 2γ3 in its orbit Mod2 · ρ under

the action of the mapping class group and the associated reduced multicurve.

γ = 3γ1 + γ2 + 2γ3 γreduced = γ1 + γ2 + γ3

γ1

γ2

γ3



Space of multicurves
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In certain natural piecewise-linear coordinates, integral multic-

urves are represented by integer points of a conical polytope

(like integral homology cycles are represented by lattice points
in a vector space). Colors illustrate distinct orbits of the

mapping class group. The homothety action on the

polytope allows to define a natural

Thurston measure.



Space of measured laminations MLg,n. Ergodicity of the
Thurston measure
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In the presence of a hyperbolic metric the integral multicurves take the shape of

simple closed geodesic multicurves. Moreover, every (not necessary integral)

point of the conical polytope defines a measured geodesic lamination. The

“natural coordiantes” are, for example, the train tracks coordinates.

Integral points in MLg,n are in a one-to-one correspondence with the set of

integral multi-curves, so the piecewise-linear action of Modg,n on MLg,n

preserves the “integral lattice” MLg,n(Z), and, hence, preserves the Thurston

measure µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just

Thurston measure rescaled by some constant factor.
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Picture by François Labourie taken at CIRM



Geodesic representatives of multicurves
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Consider now several pairwise nonintersecting essential simple closed curves

γ1, . . . , γk on a smooth surface Sg,n of genus g with n punctures. We have

seen that in the presence of a hyperbolic metric X on Sg,n the simple closed

curves become simple closed geodesics.

Fact. For any hyperbolic metric X the simple closed geodesics representing

γ1, . . . , γk do not have pairwise intersections.
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We can consider formal linear combinations γ :=
∑k

i=1 aiγi of such simple

closed curves with positive coefficients. When all coefficients ai are integer

(respectively rational), we call such γ integral (respectively rational) multicurve.

In the presence of a hyperbolic metric X we define the hyperbolic length of a
multicurve γ as ℓγ(X) :=

∑k
i=1 aiℓX(γi), where ℓX(γi) is the hyperbolic

length of the simple closed geodesic in the free homotopy class of γi.

Denote by sX(L, γ) the number of simple closed geodesic multicurves on X
of topological type [γ] and of hyperbolic length at most L.
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Main counting results
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Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n one has

sX(L, γ) ∼ µTh(BX) ·
c(γ)

bg,n
· L6g−6+2n as L → +∞ .

Here the quantity µTh(BX) depends only on the hyperbolic metric X (it is the

Thurstom measure of the unit ball BX in the metric X); bg,n is a global

constant depending only on g and n (which is the average value of B(X) over

Mg,n); c(γ) depends only on the topological type of γ (expressed in terms of

the Witten–Kontsevich correlators).
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Thurstom measure of the unit ball BX in the metric X); bg,n is a global

constant depending only on g and n (which is the average value of B(X) over

Mg,n); c(γ) depends only on the topological type of γ (expressed in terms of

the Witten–Kontsevich correlators).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to

the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=

c(γ1)

c(γ2)
.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example. (M. Mirzakhani, 2008); confirmed experimentally in 2017 by M. Bell;

confirmed in 2017 by more implicit computer experiment of V. Delecroix and by

other means.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a
hyperbolic surface in M0,7. Right picture represents the same multicurve this

time realized as the union of the waist curves of horizontal cylinders of a

square-tiled surface of the same genus, where cusps of the hyperbolic surface

are in the one-to-one correspondence with the conical points having cone

angle π (i.e. with the simple poles of the corresponding quadratic differential).
The weights of individual connected components γi are recorded by the

heights of the cylinders. Clearly, there are plenty of square-tiled surface

realizing this multicurve.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich, 201 8). For any

topological class γ of simple closed multicurves considered up to

homeomorphisms of a surface Sg,n, the associated Mirzakhani’s asymptotic

frequency c(γ) of hyperbolic multicurves coincides with the asymptotic
frequency of simple closed flat geodesic multicurves of type γ represented by

associated square-tiled surfaces.

Remark. Francisco Arana Herrera recently found an alternative proof of this
result. His proof uses more geometric approach.

Singular layers and ribbon graphs



Idea of the proof and a notion of a “random multicurve”
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Changing the hyperbolic metric X we change the length

function ℓγ(X) and the domain ℓγ(X) ≤ L, but we do

not change the densities of different orbits:

they are defined topologically!
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Changing the hyperbolic metric X we change the length

function ℓγ(X) and the domain ℓγ(X) ≤ L, but we do

not change the densities of different orbits:

they are defined topologically!

———————————————————–



More honest idea of the proof
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Recall that sX(L, γ) denotes the number of simple closed geodesic multicurves

on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .

Finally, Mirzakhani computes the scaling factor kγ as follows:

kγ · bg,n =

∫
Mg,n

kγ · µTh(BX) dX =

∫
Mg,n

µγ(BX) dX =

=

∫
Mg,n

lim
L→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
dX =

∫
Mg,n

lim
L→+∞

sX(L, γ)

L6g−6+2n
dX =

= lim
L→+∞

1

L6g−6+2n

∫
Mg,n

sX(L, γ) dX = lim
L→+∞

P (L, γ)

L6g−6+2n
dX = c(γ) ,

so kγ = c(γ)/bg,n. Interchanging the integral and the limit we used the

estimate of Mirzahani sX (L,γ)
L6g−6+2n ≤ F (X), where F is integrable over Mg,n.



More honest idea of the proof

22 / 31

Recall that sX(L, γ) denotes the number of simple closed geodesic multicurves

on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .

Finally, Mirzakhani computes the scaling factor kγ as follows:

kγ · bg,n =

∫
Mg,n

kγ · µTh(BX) dX =

∫
Mg,n

µγ(BX) dX =

=

∫
Mg,n

lim
L→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
dX =

∫
Mg,n

lim
L→+∞

sX(L, γ)

L6g−6+2n
dX =

= lim
L→+∞

1

L6g−6+2n

∫
Mg,n

sX(L, γ) dX = lim
L→+∞

P (L, γ)

L6g−6+2n
dX = c(γ) ,

so kγ = c(γ)/bg,n. Interchanging the integral and the limit we used the

estimate of Mirzahani sX (L,γ)
L6g−6+2n ≤ F (X), where F is integrable over Mg,n.



Shape of a random multicurve on
a surface of genus two

Hyperbolic geometry of
surfaces

Space of multicurves

Statement of main result

Random multicurves:
genus two

• Separating versus
non-separating

• Train tracks carrying
simple closed curves
• Four basic train tracks
on S0,4

• Space of multicurves

23 / 31



What shape has a random simple closed multicurve?
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Picture from a book of Danny Calegari

Questions.

• Which simple closed geodesics are more frequent: separating or

non-separating?

Take a random (non-primitive) multicurve γ = m1γ1 + · · ·+mkγk. Consider

the associated reduced multicurve γreduced = γ1 + · · ·+ γk.

• With what probability that γreduced slices the surface into 1, ..., 2g − 2
connected components?

• With what probability γreduced has k = 1, 2, . . . , 3g − 3 primitive connected

components γ1, . . . , γk?



Separating versus non-separating simple closed curves in g = 2
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

6
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

24

after correction of a tiny bug in Mirzakhani’s calculation.
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48

after further correction of another trickier bug in Mirzakhani’s calculation.
Confirmed by crosscheck with Masur–Veech volume of Q2 computed by

E. Goujard using the method of Eskin–Okounkov. Confirmed by calculation of

M. Kazarian; by independent computer experiment of V. Delecroix; by

extremely heavy and elaborate recent experiment of M. Bell. Most recently it

was independently confirmed by V. Erlandsson, K. Rafi, J. Souto and by

A. Wright by methods independent of ours.



Multicurves on a surface of genus two and their frequencies
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The picture below illustrates all topological types of primitive multicurves on a

surface of genus two without punctures; the fractions give frequencies of

non-primitive multicurves γ having a reduced multicurve γreduced of the

corresponding type.

16

63

8

15

1

9

1

189

1

45

2

27

In genus 3 there are already 41 types of multicurves, in genus 4 there are 378
types, in genus 5 there are 4554 types and this number grows faster than

exponentially when genus g grows. It becomes pointless to produce tables: we

need to extract a reasonable sub-collection of most common types which

ideally, carry all Thurston’s measure when g → +∞.
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B. Farb and D. Margalit “A Primer
on Mapping Class Groups”)
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Train tracks carrying simple closed curves
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.

1

2

2

4 6

3

We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.

1

2

2

4 6

3

We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.

Note that the two weights in red uniquely determine all other weights.



Four basic train tracks on S0,4
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.
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Four basic train tracks on S0,4
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.

Conclusion: there are four types of simple closed curves in S0,4, depending on

which of each of the two pairs of arcs they use in the middle square. This is the

same as saying that any simple closed curve in is carried by one of the

following four train tracks:



Space of multicurves
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x
y

x
y

xy x y

The four train tracks τ1, τ2, τ3, τ4 give four coordinate charts on the set of

isotopy classes of simple closed curves in S0,4. Each coordinate patch

corresponding to a train track τi is given by the weights (x, y) of two chosen

edges of τi. If we allow the coordinates x and y to be arbitrary nonnegative

real numbers, then we obtain for each τi a closed quadrant in R
2. Arbitrary

points in this quadrant are measured train tracks.



Space of multicurves
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0
y

0
y

xy x y

Weight zero on an edge of a train track tells that such edge can be deleted.
This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. The integral points in this R2

correspond to isotopy classes of multicurves in S0,4.
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Weight zero on an edge of a train track tells that such edge can be deleted.

This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. The integral points in this R2

correspond to isotopy classes of multicurves in S0,4.
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Lecture 3. Large genus asymptotic geometry of random square -tiled
surfaces and of random multicurves

Anton Zorich

(after a joint work with V. Delecroix, E. Goujard and P. Zograf);

(based on arXiv:2007.04740.)

School “Moduli Spaces, Combinatorics and Integrable Systems”

St. Petersburg, November 26, 2021
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Intersection numbers (Witten–Kontsevich correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth

complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complex dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.
The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n
determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=
∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional
quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich;

alternative proofs belong to A. Okounkov and R. Pandharipande, to

M. Mirzakhani, to M. Kazarian and S. Lando (and there are more).



Volume polynomials
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Define the formal operation Z on monomials as

Z :
n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extend it to symmetric polynomials in bi by linearity.



Stable graph associated to a square-tiled surface
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders.
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders. The

associated stable graph Γ is the dual graph to the multicurve. The vertices of Γ
are in the natural bijection with metric ribbon graphs given by components of

S \ γ. The edges are in the bijection with the waist curves γi of the cylinders.

The marked points are encoded by “legs” — half-edges of the dual graph.



Number of square-tiled tori
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φ

b

h

φ

The number of square-tiled tori tiled with at most N squares has asymptotics

∑

b,h∈N
b·h≤N

b =
∑

b,h∈N
b≤N

h

b ∼
∑

h∈N

1

2
·
(

N

h

)2

=
N2

2

∑

h∈N

1

h2
=
N2

2
·
π2

6
=
N2

2
ζ(2) =

=
N2

2
Z(b) , where Z :

n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
.



Volume of Qg,n
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Theorem (Delecroix, Goujard, Zograf, Zorich). The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
· 1

|AutΓ| ·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.



Shape of a random multicurve on
a surface of large genus. Shape
of a random square-tiled surface

of large genus.
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Statistics of prime decompositions: random integer number s
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The Prime Number Theorem states that an integer number n taken randomly in

a large interval [1, N ] is prime with asymptotic probability logN
N .

Actually, one can tell much more about prime decomposition of a large random

integer. Denote by ω(n) the number of prime divisors of an integer n counted

without multiplicities. In other words, if n has prime decomposition
n = pm1

1 . . . pmk

k , let ω(n) = k. By the Erdős–Kac theorem, the centered and

rescaled distribution prescribed by the counting function ω(n) tends to the

normal distribution:

Erdős–Kac Theorem (1939)

lim
N→+∞

1

N
card

{

n ≤ N
∣
∣
∣
ω(n)− log logN√

log logN
≤ x

}

=
1√
2π

∫ x

−∞
e−

t2

2 dt .

The subsequent results of of A. Selberg (1954) and of A. Rényi and P. Turán

(1958) describe the rate of convergence.



Statistics of prime decompositions: random permutations
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Denote by Kn(σ) the number of disjoint cycles in the cycle decomposition of a

permutation σ in the symmetric group Sn. Consider the uniform probability

measure on Sn. A random permutation σ of n elements has exactly k cycles in

its cyclic decomposition with probability P
(
Kn(σ) = k

)
= s(n,k)

n! , where

s(n, k) is the unsigned Stirling number of the first kind. It is immediate to see
that P

(
Kn(σ) = 1

)
= 1

n . V. L. Goncharov computed the expected value and

the variance of Kn as n→ +∞:

E(Kn) = logn+ γ + o(1) , V(Kn) = logn+ γ − ζ(2) + o(1) ,

and proved the following central limit theorem:

Theorem (V. L. Goncharov, 1944)

lim
n→+∞

1

n!
card

{

σ ∈ Sn

∣
∣
∣
Kn(σ)− logn√

log n
≤ x

}

=
1√
2π

∫ x

−∞
e−

t2

2 dt .



What shape has a random simple closed multicurve?
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Picture from a book of Danny Calegari

Questions.

• Which simple closed geodesics are more frequent: separating or

non-separating?

Take a random (non-primitive) multicurve γ = m1γ1 + · · ·+mkγk. Consider

the associated reduced multicurve γreduced = γ1 + · · ·+ γk.

• With what probability that γreduced slices the surface into 1, ..., 2g − 2
connected components?

• With what probability γreduced has k = 1, 2, . . . , 3g − 3 primitive connected

components γ1, . . . , γk?



Multicurves on a surface of genus two and their frequencies
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The picture below illustrates all topological types of primitive multicurves on a

surface of genus two without punctures; the fractions give frequencies of

non-primitive multicurves γ having a reduced multicurve γreduced of the

corresponding type.

16

63

8

15

1

9

1

189

1

45

2

27

In genus 3 there are already 41 types of multicurves, in genus 4 there are 378
types, in genus 5 there are 4554 types and this number grows faster than

exponentially when genus g grows. It becomes pointless to produce tables: we

need to extract a reasonable sub-collection of most common types which

ideally, carry all Thurston’s measure when g → +∞.



Shape of a random square-tiled surface of large genus?
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Questions.

• With what probability a random square-tiled surface S of genus g has
1, 2, 3, . . . singular horizontal leaves (in blue on the right picture)?

• With what probability a random square-tiled surface S of genus g has

Kg(S) = 1, 2, 3, . . . , 3g − 3 maximal horizontal cylinders (represented by red

waist curves on the left picture)?

• What are the typical heights h1, . . . , hk of the cylinders?

• What is the shape of a random square-tiled surface of large genus?

Partly suggested to Leonid Monin and to Peter Pushkar Jr. about ten years ago as a 3-weeks student’s project



Random multicurves and random square-tiled surfaces
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Denote by Kg(γ) the number of components k of the multicurve γ =
∑k

i=1miγi
on a surface of genus g counted without multiplicities.

Denote by Kg(S) the number of maximal horizontal cylinders in the cylinder

decomposition of a square-tiled surface S of genus g. We will always consider

square-tiled surfaces without cone-angles π, i.e. the ones corresponding to

holomorphic quadratic differentials.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). For any genus g ≥ 2
and for any k ∈ N, the probability pg(k) that a random multicurve γ on a

surface of genus g has exactly k components counted without multiplicities

coincides with the probability that a random square-tiled surface S of genus g
has exactly k maximal horizontal cylinders:

pg(k) = P
(
Kg(γ) = k

)
= P

(
Kg(S) = k

)
.

In other words, Kg(γ) and Kg(S), considered as random variables, determine

the same probability distribution pg(k), where k = 1, 2, . . . , 3g − 3.



Shape of a random multicurve (random square-tiled surface)
on a surface of large genus in simple words
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Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). The reduced

multicurve γreduced = γ1 + · · ·+ γk associated to a random integral

multicurve m1γ1 + . . .mkγk separates the surface with probability which
tends to zero as genus g grows. For large g, γreduced has about (log g)/2
components and has one of the following topological types

0.09 log(g) components

. . . . . . . . . . . .

0.62 log(g) components

P

(

0.09 log g < Kg(γ) < 0.62 log g
)

= 1−O
(

(log g)24g−1/4
)

.

A random square-tiled surface (without conical points of angle π) of large genus
has about log(g)

2 cylinders, and all its conical points sit at the same level.



Weights of a random multicurve (heights of cylinders of a ran -
som square-tiled surface)
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Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). A random integer

multicurve m1γ1 + · · ·+mkγk with bounded number k of primitive

components is reduced (i.e., m1 = · · · = mk = 1) with probability which
tends to 1 as g → +∞. In other terms, if we consider a random square-tiled

surface with at most K cylinders, the heights of all cylinders would be very

likely equal to 1 for g ≫ 1.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). A general random

integer multicurve m1γ1 + · · ·+mkγk is reduced (i.e., m1 = · · · = mk = 1)

with probability which tends to
√
2
2 as genus grows. More generally, all weights

m1, . . .mk of a random multicurve are bounded from above by an integer m

with probability which tends to
√

m
m+1 as g → +∞.

In other words, for more 70% of square-tiled surfaces of large genus, the

heights of all cylinders are equal to 1.

However, the mean value of m1 + ...+mk is infinite in any genus g.



Main Theorem (informally)
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Main Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). As g grows, the

probability distribution pg rapidly becomes, basically, indistinguishable from the
distribution of the number of cycles in a (very explicitly nonuniform) random

permutation. In particular, for any k ∈ N the difference of the k-th moments of

the two distributions is of the order O(g−1).

Actually, we have an explicit asymptotic formula for all cumulants. For example

E(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2 + o(1) ,

V(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2− 3

4
ζ(2) + o(1) ,

where γ = 0.5772 . . . denotes the Euler–Mascheroni constant.

Let λ3g−3 = log(6g − 6)/2. We have uniformly in 0 ≤ k ≤ 1.233 · λ3g−3

P
(
Kg(γ) = k+1

)
= e−λ3g−3 ·

λk3g−3

k!
·





√
π

2Γ
(

1 + k
2λ3g−3

) +O

(
k

(log g)2

)


 .



Keystone underlying results
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Our results are strongly based on the following conjecture which we stated in

August 2019, and which Amol Aggarwal proved in April 2020.

Theorem (Aggarwal). The following uniform asymptotic formula is valid:

∫

Mg,n

ψd1
1 . . . ψdn

n =

=
1

24g
· (6g − 5 + 2n)!

g! (3g − 3 + n)!
· d1! . . . dn!

(2d1 + 1)! · · · (2dn + 1)!
·
(
1 + ε(d)

)
,

where ε(d) = O
(

1 + (n+log g)2

g

)

uniformly for all n = o(
√
g) and all

partitions d, d1 + · · ·+ dn = 3g − 3 + n, as g → +∞.



Another Keystone result
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Denote by ST (Qg,n, N) the set of square-tiled surfaces of genus g having

exactly n conical points of angle π and tiled with at most N squares.

Reformulating a theorem of H. Masur of 1982 one concludes that for

2g + n > 3 the following limit is a strictly positive (finite) number:

VolQg,n

2(6g − 6 + 2n)
= lim

N→+∞
card(ST (Qg,n), 2N)

Nd
.

Another Conjecture which we stated in August 2019 was also proved by Amol

Aggarwal in April 2020.

Theorem (Aggarwal). The Masur–Veech volume of the moduli space of

holomorphic quadratic differentials has the following large genus asymptotics:

VolQg ∼ 4

π
·
(
8

3

)4g−4

as g → +∞ .



Random permutations
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Let θ = {θk}k≥1 be positive real numbers. Given a permutation σ ∈ Sn with

cycle type (1µ12µ2 . . . nµn) we define its weight as

wθ(σ) := θµ1

1 θµ2

2 · · · θµn
n .

To every sequence θ = {θk}k≥1 we associate a probability measure on the

symmetric group Sn by setting

Pθ,n(σ) :=
wθ(σ)

Wθ,n
where Wθ,n :=

∑

σ∈Sn

wθ(σ).

Constant weights θi = 1 correspond to the uniform measure on Sn; the

probability measures on Sn obtained from constant weights θi = α 6= 1 are
called Ewens measure.



Probability that a random permutations has k cycles
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The following Lemma identifies normalized weighted multi-variate harmonic

sums as total contributions of permutations having exactly k cycles to the total

sum Wθ,n.

Lemma. Let θ = {θk}k≥1 be non-negative real numbers and consider the
associated probability measure Pθ,n on the symmetric group Sn for some n.

Then
1

n!
·
∑

σ∈Sn

Kn(σ)=k

wθ(σ) =
1

k!
·

∑

i1+···+ik=n

θi1θi2 · · · θik
i1 · · · ik

,

where Kn(σ) is the number of cycles in the cycle decomposition of σ and the

sum in the right hand-side is taken over positive integers i1, . . . , ik. In other

words, we have the identity in the ring Q[[t, z]] of formal power series in t and z

∑

n≥1

∑

σ∈Sn

wθ(σ)t
Kn(σ) z

n

n!
= exp



t
∑

k≥1

θk
zk

k



 .



Schematic idea of the proof.
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• Observe that square-tiled surfaces corresponding to stable graphs with more

than one vertex taken together contribute only O
(
1
g

)

to the count of all

square-tiled surfaces of genus g (this conjecture of ours was proved by

A. Aggarwal).

• Using large genus asymptotics for the Witten–Kontsevich correlators
(conjectured by us and proved by A. Aggarwal) compute the contribution of

square-tiled surfaces of genus g represented by the stable graph with exactly

one vertex and with j loops. Recognize in the resulting expression the

multivariate harmonic sum as in the above Lemma corresponding to

parameters θk = ζ(2k)/2, where k = 1, 2, . . . .

• Apply the analytic technique developed by H. Hwang for random

permutations to prove mod-Poisson convergence of the resulting distribution of
the number of cycles Kn(σ) of a random permutation σ, where “randomness”

is defined using parameters θk = ζ(2k)/2, where k = 1, 2, . . . .
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