Аннотация лекции за 29.09.21.

§3. Моменты и экспоненты устойчивых законов (продолжение).

Доказана теорема о том, что устойчивые величины с экспонентой α имеют моменты порядка $\beta < \alpha$. Момент порядка α может не существовать.

§4. Каноническое представление устойчивых х.ф.

Цель настоящего параграфа — найти вид спектральной функции Леви для устойчивых законов.

Теорема 7. $X.\phi.$ f(t) устойчива тогда и только тогда, когда она б.д. и в формуле Леви

$$f(t) = \exp\left\{it\gamma - \frac{\sigma^2 t^2}{2} + \int_{-\infty}^{0} k(t, x)dM(x) + \int_{0}^{\infty} k(t, x)dN(x)\right\}$$

либо

1) $M(-x) = c_1 x^{-\alpha} \ u \ N(x) = -c_2 x^{-\alpha} \ npu \ x > 0$, $\varepsilon \partial e \ c_1 \geqslant 0$, $c_2 \geqslant 0$, $c_1 + c_2 > 0$, $\alpha < 2$, $\alpha \sigma^2 = 0$,

2)
$$M(-x)=N(x)=0$$
 npu $\sec x > 0$, $\alpha=2$, $\sigma^2\geqslant 0$. $3\partial eco\ \gamma\in\mathbb{R},\ k(t,x)=e^{itx}-1-\frac{itx}{1+x^2}.$

Теорема доказана.

§5. Явный вид устойчивых х.ф.

В прошлом параграфе найден вид спектральной функции Леви устойчивых х.ф. Это дает возможность вывести явные формулы для них.

Сформулирован основной результат этого параграфа (следующая теорема) и описан детальный план его доказательства.

Теорема 8. $X.\phi$. f(t) устойчива тогда и только тогда, когда

$$f(t) = \exp\left\{it\gamma - c|t|^{\alpha}(1 - i\beta\frac{t}{|t|}\omega(t,\alpha))\right\},$$

 $εθe \ \gamma \in \mathbb{R}, \ c \geqslant 0, \ 0 < \alpha \leqslant 2, \ -1 \leqslant \beta \leqslant 1, \ \omega(t,\alpha) = \operatorname{tg} \frac{\pi \alpha}{2} \ npu \ \alpha \neq 1 \ u \ \omega(t,\alpha) = -\frac{2}{\pi} \ln|t| \ npu \ \alpha = 1.$

 γ — параметр сдвига, c — параметр масштаба, α — показатель устойчивого закона, β — параметр симметрии. При $\beta=0$ распределение симметрично.