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. SSV property: structured sets of small values

L¢9,‘€;9;a o elul |, kN, T RS S

We say that() has the SSV property with SSV function ) if
there exist c1, ¢, c3 > 0 with ¢3 > ¢ such that SSV,; is contained
in@ intervals of siz In decreasing order of strength:
o If yp(m) :\L_ﬂm, we say that ¢ has the' SSV property.
o If (m) = L—1mem e say that ¢ has the log-SSV
property.

o If yp(m) = [~am we say that ¢ has the square-SSV
R c,am,u
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2. The SSV property holds for L = 3,4

L=

For L = 3 the SSV property turns out to be true for all angles.
Let us see why SSV property holds for any set of non-collinear 4

points and for any angle.
When L = 4, some normalizations are possible. In fact, three out of

four of the similarity centers z; can be mapped to arbitrary points

by an affine map, leaving only one truly free parameter z3 = rae%.
Without loss of generality, then, zz; = 0,z = 1, z3 = i./Note that
. L £ o
Z elrj cos(0;—0)§ _ @ ,
"VA_

[1 4+ eicos(0)§ 4+ eicos(@)tan(&).ﬁ 4+ eir4 cos(ﬁ[cos(&)—l—tan(@) sin(04)]£}/
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By a change of variable tan(0) — t, cos(0)¢ — &, we can write

P

A
( 6e(€) == (1+e’f+e’t5+e ©ey, )

where t € [—1,1] and g(t) = tsin(04) + cos(4); of course other 0
are handled by symmetry. So for this ¢; = ¢, we consider

1o\ g/’c/"

k O —— | ]

It will be convenient to argue with “pseudo” trigonometric

identities:
& L

Ix Ix ix X4 | > Xj — Xk
|e”t 4 "2 + " + ™| 2 H | cos ( 5 )| (1)

e ISk

For us, x1 = 0,x = &, x3 = t€, x4 = g(t)€. Letting
af = %(XJ — Xk), it is enough to prove the following claim.
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4. Claim SSV always holds, L =4

Claim: The function (&) = cos(af) has the SSV property (with
L =4) for any a € R. One may take c3/cy arbitrarily large
independent of «.

Consider the product of trigonometric functions. Repeating the
double angle formula, one gets /qlc

m—1

M sin(x Hcos (2%x) —sm(2 x)

-

Using the substitution m — 2m + 1,

2m ™

2 -4 sin( Hcos (25x) = sin(2 - 4™x) G

k=0
m
Omitting even terms and reindexing, li” vl
A
15
v

/.m mCOS kX
=" = L et 3
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Now let x = a&, where £ € [0,1]. Then

cm i B m1Sin(2 - 4Maf)
4 2!1(1;[Ocos(4 af)| 2 47" sin(a) |-

The SSV of the right hand side are readily understood. Such £ € R
are contained in this set:

(=c™4" Mot e "o + w27 a2 a7 2.

.

—

These intervals are exponentially small, and of the appropriate
number. Their SSV property is achieved by making C large and,
hence, ¢ very small. This means that c3/c, can be made arbitrarily
large by making ¢; large and so ¢ small.

This proves the claim.
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6. The SSV property can fail for L =5 on a large set of

angles

The self-similar set with L =5 and z = 27(0 — i/3),<”

zp =2m(3/12 + i/3), z3 =2m(4/12 — i/3), z4 = 2w(8/12 + i/3),
zs = 2m(9/12 — i/3). (The imaginary coordinates do not matter in
this example other than to avoid collinearity.) Then ¢ function for
the projection on the line with angle 8 = 0 will be

And for a fixed m,

P1o(§) = | | ¢0(57¢).

— .
-i/.2%
We will see now that its set of small values (SSV) is not structured
correctly, and that it does not satisfy SSV property. Moreover,
this holds for all angles # € [-5—200vm 5-200vm]
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7. The reason for the SSV failure

The reason for the SSV failure is that ¢g(5%¢) has a recurring zero

at f = 1: ?;-2/
do(1) = ¢o(5%) =0,k =1, ..... fﬂﬁz

-—

Therefore, for all € € [L —=57200V™ 1] and k = 0,1, ..., /m we have
— — ———
$0(5%€)| = |60(5%€) — po(5)| < C5¥|¢ — 1] < ([5] 5200V

’_‘ —

Remind: Py (&) = [[rg #0(5%€). Therefore:

vm m vm
Pro©I <[] ¢ OI ] -1 <I1]] 20(5%€)
k=0 k=v/m+1 k=0
< CVM pl+24+/m (5—200\/E)$§/S 5—100m
S ~—r" (e e y-
Hence the set of small values includes the entire interval
[1 — 5-200v'm 1] in particular, it cannot be covered by 5™
intervals of length at most 57", 0 < ¢ < ¢3.
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8. Many directions without SSV property, L =5

The existence of one “bad” direction # = 0 does not automatically
make the SSV approach unviable. In fact, analysis of previous
lectures confirms that if ¢y satisfies the uniform SSV property for
all directions 6 except for an exceptional set ©,, of size

Om| < e”%™, then we can still get Fav(S,) S n P, p> 0.

Bu property fails on a set of angles O, of size

W Let 0 € [0,57200V™] then

V/m Vm
PLo(&) < | ] #6(5°€)l < [ (190(5%€) — ¢o(5°)| + |¢a(55€)1)-
k=0 k=0

The second term in each factor is at most C 5K 57200vVm  The first
term can be estimated by differentiating in # and using the mean

value theorem: |¢y(5%€) — ¢o(5K¢)| < C5K (0] < C 5k 5-200vm
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Hence each factor is at most C 5k 57200vm g4 again on the entire
interval [1 — 57209V™ 1] one has

|P1,9(€)’ S C\/m 51—|-2—|—---—|—\/E (5—200\/5)\/5 S 5—100m .

Fa ( /) 5(6'“——

ST -—=
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10. The real reason why the previous example holds

Consider polynomial with integer coefficients

A(x) =14 x> 4+ x* 4+ x% + x° EZ[X]\)/
O —————

27mi& 2mi

Then ¢o(€) = $A(e%2,), and ¢o(1) = 0 means that ez is its
root. This in its turm means that ('2 5) =1

'(\ '{untlj

- g r
;@\A in Z[x], (W(}J\.t‘“
where ®15(x) = 1 — x® + x* is the 12-th cyclotomic polynomial.
Its zeros are {ezWT}A A Where A= {5, 2>, 5 22} +7Z, and A is

invariant under multiplication by 5 as
(s,L)=(12,5)=1.

So we have zero of multiplicity m at £ = 1 (corresponding to order
2mi

12 primitive root of unity, root e 12 of ®15).
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11. Cyclotomic polynomials

, — &
Definition. ® s(x) = Hk<s/(k s)=1 (x—e s ) Easy: &, € Z[x].
Examples: &1 = —1 + x, b, =1 + X, CIDEZ/H_—’x_;l—_g , P9 =
%ﬁ—_\ P30 = T+ X =X = xP =@+ x5, Pros =
x¥ 4+ . \2}41 ... + 1. The first one with coefﬁaents not just
+1,0.
Properties: x" —1 = [1sjm ®s(x). If order s primitive root of

2mwik

~———
e s is a root of a polynomial G € Z[x| then &¢|G.
If A={0,a1,...} is a finite collection of integers we consider a
fewnomial A(x) = >, 4 x?. Above A(x) =1+ x>+ x* + x5+ x°.
Any such A with order s root of unity such that

(s, [A]) =1

will generate exactly the same type of example of Cantor set for
which the SSV propert does not hold. What to do?
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12. Rationally product Cantor sets

Let L = L1L,, L; integers > 2. Divide sides of unit square to LM
equal segments. Now choose integers A = {agp = 0, a1, ...} such
that |A| = L1 and (aj31 — a;) > M. Do the same with vertical side
and B = {bg =0, by, ...} such that |B| = L, and (bj+1 — b;) > M.
Then segments /; of length 1/L centered at segments numbered a;
are disjoint, the same for the segments J; of length 1/L centered
at segments numbered b;. Consider 1/L x 1/L squares that are
descartes products {/; X J;}i—o . |A|-1,j=0,..|B|-1- *

A B /AI‘—'LI@
Figure: ) )
1B1= Le g n l
This is the first generation of rationally product Cantor set. Repeat

picture inside each small square and iterate N times. Get [Cy.

A=toi2d
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13. Then SSV depends on the roots of A(x), B(x

Remind A(x) = 3,4 %%, B(x) = X e XP. oLy
¢t( ) A(e27rl£)B(e2l7r\lt§) — (1_|_ Z e27rla§ 1+ e27rlbt§>
- AF \ acA\0 beB\0

[Good rational phase roots| If all roots of A, B on T have form
es , (k,s) =1 and all of them are such that (s,L) #1, then SSV

,"

property holds for Py ; = HFO b+ (LIE) for any t.
Fav(Kyn) S N=P p > 0. / (12, 5)=1

Theorem (Irrational phase roots)

If all roots of A, B on T have either the form above or'eﬁ”_,&’,
where &y ¢ Q, then log-SSV property holds for Gc&fwl‘Ba[’m

Pre =TIo $:(LI€) for any t. Fav(Ky) S N Fsksi, p > 0.

v
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14. Bad cyclotomic divisors
@ | Alz) [sLl=1 ‘dod epehotoric roais

Theorem (One bad cyclotomic divisor)

2rik

If among the roots of A, B on T there ise s , (k,s) =1, and
(s,L) =1, but only one such bad s happens, then log-SSV

happens for Pyy = [[T.o 6:(15€). Fav(Kn) < N Reled, p > 0. If

J —
no root with irrational phase exists on T then SSV holds and

Fav(Kn) S N7P p > 0.

Theorem (Some general estimate)

2mik

If among the roots of A, B on T there are e s , (k,s) =1, and
(s, L) =1, then only quadratic-SSV property may hold for

Pt = Hjmzo cbt(Lf ). The following estimate always hold:

Fav(K <e_pm, > 0.
(N)N_‘P
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15. |A] < 6,|B| <6

:y, o w b L M P R tj’ii k%{/
: wl ti- mact
Ainesar m o oé;::b 1 $=lem ()
= Lampreys e 2 K/

Theorem (Small size of A, B)

If|A] <6,|B| <6, then log-SSV happens for P1+ = [ [, P (LIE).

p

Fav(KCpn) < N lesleeN  p > Q. If no root with irrational phase exists
on T then SSV holds and Fav(Kyn) S N=P.p > 0.

Our enimies are Lampreys
L
with (s,L)=1, whewe 3 = fCM(Se)L.z'
‘= deberminant of L“"")"")’ ) [_:#L@M/arey
= cardinatlity Lampey
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16. Proof by example of Theorem “one bad cyclotomic

divisor”

It turns out that one can work without SSV (structured set of small
values), which is definitely not good (only quadratic) in the case of

]_ i
A(x) = 13 4x* 300 |A = 5, 6(€) = ZA(e ), (12,5) =1.
L —— e ——— 5 —_—

One can use instead SLV (structured set of large values). SLV

ructure of Pp =[], P(L/€), means that: / gim
\____‘-—'——J

9 [0,1]: |Pulrr > 5™, || > G5 m 75 K
,__—‘s .,__g-====s

We first construct a set A disjoint from the set of small values of
¢. Let A = {12, 5 12, 1V 4 7, so that €™ for \ € A are exactly
the zeroes of @15 = 1 — x% + x4 We want A to avoid a

: T Low e <1 ’
neighborhood of A. The key observation is that all points of{z7Z
are at distance at least 1/12 from A, hence we may take At a
neighborhood of %Z. We are using here that 6 divides 12, but ¢
does not vanish at any 6-th root of unity. Only one cyclotomic
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16a. Why such structure ' — ' C SLV(low freq. P1)7

™ Hith freg. 1] 17
& dw i >nflr—r{ ‘\/r’;

3r c [0,1] : |P1\r P> LA N > GL UM > ekt

High frequency polynomial Px: w‘. K >i1-

Py(&) = L=~ m)z:e’o‘£

aEN

High frequency estimate| h := M ~11p « 1r| Then 0 < h <1,
h= 711> 0. So, S, Zem Arick with Bonr set

_ M /R Lary’
[/‘l } L / \P2|2ds>/ (5)!/32( ))Pd¢ =
s C-y g r—r - -
reys (w2 k(x-d’)) (™71l 2eK-L
VQ"‘\ L Al" -fO‘M - -
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17.

Let commolen Dohr, net &Tfﬁ find
» non ) r
7 _
Ao + ( 12712 —
for some n € (0,1). Then there is a constant ¢ = ¢(n) > 0 such
that

p(§)>cforeen, C(4)>0

—— ‘
By scaling, we also have

: | . Bo,"[ﬂ

£ PohpAet

I_et A — ﬂjn:_ol A_/! then .
1 12
e = s e en N
j=0 —— , ;'/r?(
£ —e 5%
with C; = ~log5 ~

2log(1/c)
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It remains to prove that we can choose an 77 € (0,1) and a set
[ C [0, 1] of size at least C25_(1_€)m sothat [ — T C A. We fix
n=1/2 and let 7 = (70,...,Tm-1) range over all sequences with 7.3

7 € {0,1,2,3}. Define | ‘ A2y |=T-g L =t
5‘)a/ TS:O' @

5= /i 5—J
rT:—(_J Z) (07—)7 = 717"'7 _]-7
ST e \a )T O ) m 6
m—1
ol =[0,11N0 () Try j 7t
i j=0

Thenl.;—T,; CAj sothat [ —1T, C A. Moreover, we have

LLMMQ O: 0,1] P.I‘_i?_g ' P"Q(Qrg
— re{0,1,2,3}" (A YRR
except for the zero measure set of interval endpoints. Hence there

is at least one 7 such that |[';]| 25’", which is greater than

1—e)m log 4
5—(1-¢) for0<e<1—|g§5
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19. More general results

A(z) = 142%2%232)

Let s = lcm(r : ®,|A, (r,|A|]) = 1}. g =2, (Al=S

o v \J/
Coee

Suppose that we can write sp = s1 AS2. A With 51,5 4 > 1 so that:
el 8,7 &
@ 554 < 5’/4‘ _ é
mnot divide A(x) for any@|51 A %7
Then there is a set T C [O 1] obey/ng

I c [0,1] : |Pi|r—r > |A=CG™, [T > G|A|~G—e)m,

It has precisely the same proof as in example above, where
s =12,51 4 = 6,5 4 = 2,|A| = 5. Technically more difficult, but

with the same idea is
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20. More general result

'M"" u/\fl))“’

Same s = lem(r - cp,@ (r,|A]) £1}.

la

Theorem (Good factorization of s)

Suppose that we can write sp = s1 AS2, A With 51 4,5 4 > 1 so that:

@ 554 < ‘A’,
o ®,(x) does not divide A(x) for any q|s;_a.
Then there is a set I C [0, 1] obeying -

r c [0,1] : |Pi|r—r > |A=CG™, T > G|A|~G—e)m,
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21. Study of Lampreys: Linear multi-polygon relationships

v\.éZ F:z» nJ fw/jrfun’lao.:o @ 7’
J

Given a fewnomial A as above and an order s primitive root of
unity e”s" such that A(e#) = 0, we get the example of a
Lamprey (Linear multi-polygon relationships, LMPR)), that is the
sum of roots of unity (of different order) with integer
coefficients such that this sum of those roots with those
coefficients = 0. Our Lamprey always contains {1}.

Lamprey has cardinality (weight) n=how many roots of unity it
contains (counting multiplicity). And it has denominator s=least

common multiple of rational phases of roots.
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22. General Lampreys. Decomposition. Cardinality

Theorem (Rédei—de Brujin—Schonberg—Mann)

Let Lamprey ‘T has determinant s. Then it is of the form
J = Zle nin;Tp., where n; are some roots of unity, nj € Z, pj|s.

Theorem (Lam—Leung: Cardinality)

Let Lamprey T has determinant s = p;* ...p7. Then cardinality n
can be only of the type n =3 k'jpj',(‘where k; are non-negative
integers. In particular n > min; p;.
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23. lIrreducible Lampreys

A Lamprey is irreducible if no proper subset of it is a Lamprey.
For example, any prime polygon 7, is irreducible. It is tempting to
think that all irreducible Lampreys have this form; this is not true.
Here is what Poonen—Rubinstein called Ls.3 an irreducible relation
between roots of unity of type R(5 : 3):

L3 = {e>™/5 e4mi/5 Oi/5 o8mifS oSTi/3 oTmi/31 o

4
0= ZC Z C+[e2w1/3+e47rl/3] Z C” Ze2wij/5_i_e57ri/3_|_e77ri/3

¢€Ts  ('€Ts ¢""eT? J=1
— _— r—

The number of such rapidly grows beyond this point, though
Poonen—Rubinstein classifies all such cases for sets havmg at most

12 points. [rreducille Lampreys
with L 1%
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25. Application of Theorem of Lam—Leung

We are going to prove Theorem (one bad cyclotomic divisor). We
want to prove that if

() =1+ ) x* (¢ |A, A(e™™), P—ch(ug

x€A\0

has only one bad cyclotomic divisor, meaning ®5|A: (s,L) =1,
then we have [ such that

I C[0,1]: |Prlr > [AI7A7, [F| = GAIZ0om

We want to gedwce to Theorem (Good factorization of

s = lem(r :(®,|Al (r,]|A]) =1 2

Consider first the case of s = p = prime. Then ®4(1) = p and
A(1) :_|/i\L—not divisible by p as (p, |A|) = (s,|A|) = 1. So s has
several ga"\me factors. Thus ®. cannot divide A, contradiction.
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Consider now a root ¢ of &5 and consider Ta = {(?}.ca. Itis a
Lamprey as ®;|A, and hence

4
,—/
1‘|‘Zga:0 S"PS
acA\0 J -l
~
Its cardinality isﬂand its determinant is s._ q( 5

By Theorem of Rédei—de Brujin—Schonberg it is the sum of 7, W’fA
with integer coefficients, where p;|s. And by Theorem Lam-Leung
|p1| < |A], where p; is the smallest prime divisor of s. But

(s,|A]) =1, hence (p1,|A]) = 1. Hence, p1 # |A], so |p1] < |A|.
,__‘_——' — —

— p—
Put s o = p1. Then sy 4 =5/p1. If g|s; 4 then g < s and &, is

the only cyclotomic poly that divides A. Hence ®, does not divide
A and we can apply Theorem (Good factorization of
s =lem(r: ®.|A, (r,|A]) = 1), using 5.4 = p1 < |A|.
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27. Now let us prove |A| = 6 case

p—
Suppose first that |A| = 6. We will show that the cyclotomic roots
of A can only be zeroes of &, for some s divisible by 2 or 3 SO
that in particular (s, L) # T'/ wie Ao nof lkcgye wy
Suppose that ¢, divides A, and consider the lamprey
As = {(°},ca. A 6-point lamprey can only take these forms:

@ A, can be a union of triangles

@ A can be a union of three line diameters (2-gons)

@ A, can be a rotation of L53 J -f |+ 2

_~30 VAR AA
5= o3 = {e271/5 g4mi/5 (omi/5_gBri/5 o5mi/3 7771/3}.

f—
But our Lampreys always contain {1}. So in the first case on of

triangles contains {1} and so the denominator s in the first case
should be divisible by 3. In the second case one diameter should
contain {1}. Hence, the denominator s in the second case should

be divisible by 2. So (s,|A|) = (s,6) # 1 in those cases.
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28. Now let us finish the proof for |A| = 6 case

t 1

We are left with the third case: rotated

L3 1= {e27rl/57 e47rl/57 e67rl/57 e87‘(‘l/5, e27‘(‘l-5/6’ e27r/-7/3}. It must be
rotated as again {1} should belong to it.

But if one rotates Ls5.3 to have {1} in it, the denominator of

rotated Lamprey obviously becomes divisible by 30 (in fact
s = 30gcm(A)). Thus again (s,|A|) = (s,6) # 1.

This is the situation when SSV for ¢ = £ A(e*™¢) holds.
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29. Algebra versus Geometry

Let A=1+4 ) ,ca X7 Let cyclotomic ®s|A. Then we can see the
Lamprey As = {e¥ ra € A}
We will be using repeatedly:

Lemma (Algebra versus Geometry)

If cyclotomic ®4|A and cyclotomic ®¢p|A, then the following
power relationship on Lampreys hold:

(Am)M = A, .

If we have Agy and it is DU T and (M,2) =1,(M,3) =1 then

27

we also have As (equivalently A(e’s ) =0).
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30. Now let us prove |A| =5 case

[ - /

It is more complicated and we reduce this to SLV case, not to SSV
case.

Let A be our Lampreys generated by set A, |A| =5, they all have
cardinality 5 and some denominators s which obviously has

27mia

(s,5) =1, they are As ={e s :ac A}l

As 1 € A and A has 5 points, it can be only consists of diameter
D and triangle T and at least one of those have {1} in it. Thus
every s is divisible by 2K(5)34(s) where k, ¢ are corresponding
maximal powers. Theorem of Rédei—de Brujin—Schonberg.

Let us show that all k(s) = ko, all ¢(s) = /.
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Take any s = 2K(9)3U) M, where M : (M,2) =1,(M,3) = 1.
Raise A(s)5e(s)p (corresponding to this s) to power M.

Raising to such power that M : (M,2) =1,(M,3) = 1 does not
change geometric picture of D and T (maybe rotate), so the
power of that Lamprey is again Lamprey.

27

Hence, we can see that primitive root e2¢)3!() is a root of A.
So we get Asks)ze(s)-

Therefore, we can consider only Lampreys built by polynomial A
such that s = 2¥3*M with M = 1. Call them for brevity A ;.
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32. Continuation of the proof for |[A| =5

Let us have s; = 2%3% and s, = 2734 among denominators of
primitive roots of unity on which A vanishes. In other words

(b2k3£ ‘A, (D2n3>\ |A, or

27 27

A(e2*3sf) =0, A(ezs*)=0.

Let (k,?) < (Kk,A), k =k+r,A=/¢+t. And we have
Aksrs+ts Ak -

If we act on Ak, ¢4t by raising to 273" then diameter collapses if
1 € D (if r > 0) or triangle collapses if 1 € T (t > 0).

But nothing can collapse as (using Lemma (Algebra versus
Geometry))

2r3t
(Ak+r,€—|—t) — «Ak,r

and the RHS still have diameter and triangle, nothing can collapse.
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Let (k,0),(k,A\), k=k—r,A=/{+t, r>0,t>0. Consider
(Ak—rere)® =T, (Ae)” =T,

where T is some Lamprey that might not have anything to do with
A. But we have

(Ak_rose)® = (Aro)? .

The LHS collapses triangle to one point and (maybe) rotates the
diameter (does not rotate if 1 € D). The RHS collapses diameter
and (maybe) rotates triangle.

Point and diameter cannot be qual to point and triangle (our
triangle cannot have diameter as one side, as all its degrees are
7/3). Contradiction.

Figure:
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34. SSV when Let s and L have a common divisor

Let s and L have a common divisor. Then ®(e*™"") has the SSV
property; equivalently, ¢(&) = e?™¢ — e2™k/s has the SSV property
for all (k,s) = 1.

V.

We need to prove that the set where
[Pi] = [T]Zo p)/E)| < L™™ is well-structured: it can be put to
L™ intervals each having very small length L™,

a3 = ac1) << . (ﬁlL) ¢i

Let s and L have a common divisor. Then s = MLy, where L1|L? /
for some a and (M, L) = 1. Let also

Fx) = [ (x — /1), 35V

ker

where  C [1,L? — 1] is chosen so that e*™/L’

primitive L1-th roots of unity.

Alexander Volberg i

runs through all



Notice that if F has SSV property and F = ® - H, where
|H| < C(L), then ® has SSV property! This is obvious.
The important thing to note is that

d(x)|F(xM), thatis F(xM) = o,(x)H(x), |H| < C(L).

Thus, it is enough to prove that F = [, .(x — e2mik/Ly  g2mik/L
runs through all primitive Li-th roots of unity has SSV property.

For that it is enough to find G such that
F - G has SSV and, |G| < C(L).

Consider the “complement” of F,

[7-1

G(X) _ H (X . eZwik/La)

k=1,kZk
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It follows that F(x) - G(x) = XL,

x—1

Now maybe just consicﬂer the case a = 1, then it is trivial to see
that polynomial p(x)X= has SSV property:

x—1
m Lm—l—l
J o\ __telescopic X —1
Jj=0
m—1 i+b i+b XLaerb —1
if a > 1 then H F(xLaj+ )G(xLé"+ ) = e
j=0 X
so the set of L=< —values of the RHS below
am—1 . _ a—1 XLam—l—b 1
I] F&MG6E) =] =5
=0 oo X5 1

lies in at most aL™*2 intervals of very small measure 2L~ 1™ and
we can choose ¢; >> 1.
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38. Poonen—Rubinstein: counting DISTINCT points of

intersections of diagonals of regular polygon

I(n) = (Z) for generic n-gon, and for regular polygon with n odd.
For regular polygon with n even see below.

Fact: Never 8 diagonal of any regular polygon can meet—except at
the center.

Let ém(n) =1if n=0 m|n, 0 otherwise.

Theorem

For n > 3,

I(n) = (Z) + (=50 +45n> —70n+24) /24 - 55(n) — (3n/2) - §44(n)

+....
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39. When 3 diagonals meet?

Let A, B, C, D, E, F be points as on Figure, dividing to arcs
u,x,v,y,w,z. If diagonals AD, BE, CF intersects in one point
then by similarity of triangles AF - BC - DE = AB - EF - CD,

LUV, w X,y . z (+)
SIN —SIN —SIN — = SIN —SIN — SIN — *
2 2 2 2 2 2
BJORN POONEN AND .\”(f%l(lfBlNSTHIN
B e 1 ey A
e

ebra: Cantor sets,
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40. Lamprey

But u+v+w+x+y+z=2m, putting u/2 =: U, ..., we have
U+V+ W+ X+Y+ Z=1. Multiplying (*) through we get 8
terms in LHS, 8 terms in RHS, but 2 terms in LHS cancel 2 terms
in RHS becauseof U+ V+ W =1—-(X+Y + 2).

_ei7T(V—i—W—U)_|__e—iw(V—l—W—U)_. — _ei7r(Y—|—Z—X)_|_e—i7r(Y—|—Z—X)_. N
Replace —1 = e~'™. Denote

a1 =V + W—U—]./2,Q{2:W—|—U—V—1/2,0z3:
UtV -W—1/2,a0a =Y +Z—-X+1/2,...05=.... Then

6 6

Z eiwaj 4+ Z eiwﬁj —0
j=1

Jj=1

B = —aj, 2?21QJZU+ V+W+X+Y+Z=1, and all ¢;

are rational, that is all terms above are roots of unity, maybe of
huge order.
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41. Minimal lampreys of different cardinality < 12

K
Z nin; = 0.
i=1

A relation: n; € Z., n; distinct roots of unity.

Prime roots are minimal relations: 14 (, + -+ + ¢Et =0 and
cannot have a subset with 0 sum.

Schoenberg proved that all relations (with possible negative coef.)
can be obtained as linear comb. with integer coef. by such R,
relations.

But as here only positive coef. are allowed this becomes false for
representing as R, with positive integer coef. Example:

o+l +G+@E+E+G=0.

There are 19 such primitive relations with 11 terms and 69 such
primitive relations with 12 terms. This is up to rotation.

Alexander Volberg i



42.

it
N Vi' A
\J 'f‘.«ﬂ.“i

Al
D S Sy &, AT
N e : - AN RS
LR\ ‘9-;.‘ 7

g "'

e ‘3 = - . . > - oo
"B 7L SIS ) gt AL U g A
AEPUARL AT AR

N
e X\

”

“ —a 2N
AT
&% sqy,
A
.

X

Vi
NG
=\
S

—r -
" >

. : : LA P o=
it ‘ ' Yawas o e i\,
i wtersets) ieycloto

A S
miic polynomials
Alexander Volberg

- W
Ny




