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1. SSV property: structured sets of small values

Definition

We say that ' has the SSV property with SSV function  if
there exist c1, c2, c3 > 0 with c3 � c2 such that SSV is contained
in Lc2m intervals of size L�c3m. In decreasing order of strength:

If  (m) = L�c1m, we say that ' has the SSV property.

If  (m) = L�c1m logm, we say that ' has the log-SSV
property.

If  (m) = L�c1m2
, we say that ' has the square-SSV

property.
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2. The SSV property holds for L = 3, 4

For L = 3 the SSV property turns out to be true for all angles.
Let us see why SSV property holds for any set of non-collinear 4
points and for any angle.
When L = 4, some normalizations are possible. In fact, three out of
four of the similarity centers zj can be mapped to arbitrary points
by an a�ne map, leaving only one truly free parameter z4 = r4e i✓4 .
Without loss of generality, then, z1 = 0, z2 = 1, z3 = i . Note that

�✓(⇠) =
1

4

4X

j=1

e irj cos(✓j�✓)⇠ =

1

4

⇥
1 + e i cos(✓)⇠ + e i cos(✓) tan(✓)⇠ + e ir4 cos(✓)[cos(✓4)+tan(✓) sin(✓4)]⇠

⇤
.

Alexander Volberg
Algebra: Cantor sets, cyclotomic polynomials and Linear Multi-Polygon Relations (Lampreys)

2 4



3.

By a change of variable tan(✓) ! t, cos(✓)⇠ ! ⇠, we can write

�t(⇠) :=
1

4
(1 + e i⇠ + e it⇠ + e ig(t)⇠) ,

where t 2 [�1, 1] and g(t) = t sin(✓4) + cos(✓4); of course other ✓
are handled by symmetry. So for this �t = �, we consider

mY

k=0

�(4k⇠) .

It will be convenient to argue with “pseudo” trigonometric
identities:

|e ix1 + e ix2 + e ix3 + e ix4 | &
Y

1j<k4

�� cos
�xj � xk

2

��� (1)

For us, x1 = 0, x2 = ⇠, x3 = t⇠, x4 = g(t)⇠. Letting
↵⇠ = 1

2(xj � xk), it is enough to prove the following claim.
Alexander Volberg
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4. Claim SSV always holds, L = 4

Claim: The function  (⇠) = cos(↵⇠) has the SSV property (with
L = 4) for any ↵ 2 R. One may take c3/c2 arbitrarily large
independent of ↵.

Consider the product of trigonometric functions. Repeating the
double angle formula, one gets

2m sin(x) ·
m�1Y

k=0

cos(2kx) = sin(2mx)

Using the substitution m ! 2m + 1,

2 · 4m sin(x) ·
2mY

k=0

cos(2kx) = sin(2 · 4mx)

Omitting even terms and reindexing,

��
mY

k=0

cos(4kx)
�� & 4�m

��sin(2 · 4
mx)

sin(x)

��
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5.

Now let x = ↵⇠, where ⇠ 2 [0, 1]. Then

4�Cm �
��

mY

k=0

cos(4k↵⇠)
�� & 4�m

��sin(2 · 4
m↵⇠)

sin(↵⇠)

�� .

The SSV of the right hand side are readily understood. Such ⇠ 2 R
are contained in this set:

(�cm4�m↵�1, cm4�m↵�1) + ⇡
⇥
2�14�m↵�1Z \ ↵�1Z

⇤
.

These intervals are exponentially small, and of the appropriate
number. Their SSV property is achieved by making C large and,
hence, c very small. This means that c3/c2 can be made arbitrarily
large by making c1 large and so c small.
This proves the claim.
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6. The SSV property can fail for L = 5 on a large set of
angles

The self-similar set with L = 5 and z1 = 2⇡(0� i/3),
z2 = 2⇡(3/12 + i/3), z3 = 2⇡(4/12� i/3), z4 = 2⇡(8/12 + i/3),
z5 = 2⇡(9/12� i/3). (The imaginary coordinates do not matter in
this example other than to avoid collinearity.) Then � function for
the projection on the line with angle ✓ = 0 will be

�0(⇠) =
1

5
(1 + e i

⇡
2 ⇠ + e i

2⇡
3 ⇠ + e i

4⇡
3 ⇠ + e i

3⇡
2 ⇠) .

And for a fixed m,

P1,0(⇠) =
mY

k=1

�0(5
k⇠) .

We will see now that its set of small values (SSV) is not structured
correctly, and that it does not satisfy SSV property. Moreover,
this holds for all angles ✓ 2 [�5�200

p
m, 5�200

p
m].
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7. The reason for the SSV failure

The reason for the SSV failure is that �0(5k⇠) has a recurring zero
at ⇠ = 1:

�0(1) = �0(5
k) = 0, k = 1, .... .

Therefore, for all ⇠ 2 [1� 5�200
p
m, 1] and k = 0, 1, ...,

p
m we have

|�0(5k⇠)| = |�0(5k⇠)� �0(5
k)|  C 5k |⇠ � 1|  C 5k 5�200

p
m .

Remind: P1,0(⇠) =
Qm

k=0 �0(5
k⇠). Therefore:

|P1,0(⇠)|  |

p
mY

k=0

�0(5
k⇠)||

mY

k=
p
m+1

...|  |

p
mY

k=0

�0(5
k⇠)|

 C
p
m 51+2+···+

p
m (5�200

p
m)

p
m  5�100m .

Hence the set of small values includes the entire interval
[1� 5�200

p
m, 1]; in particular, it cannot be covered by 5c2m

intervals of length at most 5�c3m, 0 < c2 < c3.
Alexander Volberg
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8. Many directions without SSV property, L = 5

The existence of one “bad” direction ✓ = 0 does not automatically
make the SSV approach unviable. In fact, analysis of previous
lectures confirms that if �✓ satisfies the uniform SSV property for
all directions ✓ except for an exceptional set ⇥m of size
|⇥m| . e�c4m, then we can still get Fav(Sn) . n�p, p > 0.

But SSV property fails on a set of angles ⇥m of size
& 5�c

p
m. Let ✓ 2 [0, 5�200

p
m], then

|P1,✓(⇠)|  |

p
mY

k=0

�✓(5
k⇠)| 

p
mY

k=0

(|�✓(5k⇠)� �0(5
k⇠)|+ |�0(5k⇠)|) .

The second term in each factor is at most C 5k 5�200
p
m. The first

term can be estimated by di↵erentiating in ✓ and using the mean
value theorem: |�✓(5k⇠)� �0(5k⇠)|  C 5k |✓|  C 5k 5�200

p
m.
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9.

Hence each factor is at most C 5k 5�200
p
m, so again on the entire

interval [1� 5�200
p
m, 1] one has

|P1,✓(⇠)|  C
p
m 51+2+···+

p
m (5�200

p
m)

p
m  5�100m .
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10. The real reason why the previous example holds

Consider polynomial with integer coe�cients

A(x) = 1 + x3 + x4 + x8 + x9 2 Z[x ] .

Then �0(⇠) =
1
5A(e

2⇡i⇠
12 ), and �0(1) = 0 means that e

2⇡i
12 is its

root. This in its turn means that

�12|A in Z[x ] ,

where �12(x) = 1� x2 + x4 is the 12-th cyclotomic polynomial.
Its zeros are {e2⇡i�}�2⇤, where ⇤ := { 1

12 ,
5
12 ,

7
12 ,

11
12}+ Z, and ⇤ is

invariant under multiplication by 5 as

(s, L) = (12, 5) = 1 .

So we have zero of multiplicity m at ⇠ = 1 (corresponding to order

12 primitive root of unity, root e
2⇡i
12 of �12).
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11. Cyclotomic polynomials

Definition. �s(x) =
Q

ks,(k,s)=1

�
x � e

2⇡ik
s
�
. Easy: �s 2 Z[x ].

Examples: �1 = �1 + x ,�2 = 1 + x ,�3 = 1 + x + x2, ...,�9 =
1 + x3 + x6, ...,�30 = 1 + x � x3 � x4 � x5 + x7 + x8, ...,�105 =
x48 + ....� 2x41 � ...+ 1. The first one with coe�cients not just
±1, 0.
Properties: xM � 1 =

Q
s|M �s(x). If order s primitive root of

e
2⇡ik
s is a root of a polynomial G 2 Z[x ] then �s |G .

If A = {0, a1, ...} is a finite collection of integers we consider a
fewnomial A(x) =

P
a2A xa. Above A(x) = 1+ x3+ x4+ x8+ x9.

Any such A with order s root of unity such that

(s, |A|) = 1

will generate exactly the same type of example of Cantor set for
which the SSV propert does not hold. What to do?
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12. Rationally product Cantor sets

Let L = L1L2, Li integers � 2. Divide sides of unit square to LM
equal segments. Now choose integers A = {a0 = 0, a1, ...} such
that |A| = L1 and (ai+1 � ai ) > M. Do the same with vertical side
and B = {b0 = 0, b1, ...} such that |B | = L2 and (bi+1 � bi ) > M.
Then segments Ii of length 1/L centered at segments numbered ai
are disjoint, the same for the segments Ji of length 1/L centered
at segments numbered bi . Consider 1/L⇥ 1/L squares that are
descartes products {Ii ⇥ Jj}i=0,...,|A|�1,j=0,...,|B|�1.

Figure:

This is the first generation of rationally product Cantor set. Repeat
picture inside each small square and iterate N times. Get KN .
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13. Then SSV depends on the roots of A(x),B(x)

Remind A(x) =
P

a2A xa,B(x) =
P

x2B xb.

�t(⇠) = A(e2⇡i⇠)B(e2⇡it⇠) =
⇣
1+

X

a2A\0

e2⇡ia⇠
⌘⇣

1+
X

b2B\0

e2⇡ibt⇠
⌘
.

Theorem

[Good rational phase roots] If all roots of A,B on T have form

e
2⇡ik
s , (k , s) = 1 and all of them are such that (s, L) 6= 1, then SSV

property holds for P1,t =
Qm

j=0 �t(L
j⇠) for any t.

Fav(KN) . N�p, p > 0.

Theorem (Irrational phase roots)

If all roots of A,B on T have either the form above or e2⇡i⇠0 ,
where ⇠0 /2 Q, then log-SSV property holds for

P1,t =
Qm

j=0 �t(L
j⇠) for any t. Fav(KN) . N� p

log log N , p > 0.
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14. Bad cyclotomic divisors

Theorem (One bad cyclotomic divisor)

If among the roots of A,B on T there is e
2⇡ik
s , (k , s) = 1, and

(s, L) = 1, but only one such bad s happens, then log-SSV

happens for P1,t =
Qm

j=0 �t(L
j⇠). Fav(KN) . N� p

log log N , p > 0. If
no root with irrational phase exists on T then SSV holds and
Fav(KN) . N�p, p > 0.

Theorem (Some general estimate)

If among the roots of A,B on T there are e
2⇡ik
s , (k , s) = 1, and

(s, L) = 1, then only quadratic-SSV property may hold for
P1,t =

Qm
j=0 �t(L

j⇠). The following estimate always hold:

Fav(KN) . e�p
p
N , p > 0.
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15. |A|  6, |B |  6

Theorem (Small size of A, B)

If |A|  6, |B |  6, then log-SSV happens for P1,t =
Qm

j=0 �t(L
j⇠).

Fav(KN) . N� p
log log N , p > 0. If no root with irrational phase exists

on T then SSV holds and Fav(KN) . N�p, p > 0.
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16. Proof by example of Theorem “one bad cyclotomic
divisor”

It turns out that one can work without SSV (structured set of small
values), which is definitely not good (only quadratic) in the case of

A(x) = 1+x3+x4+x8+x9; |A| = 5, �(⇠) =
1

5
A(e

2⇡i⇠
12 ), (12, 5) = 1 .

One can use instead SLV (structured set of large values). SLV
structure of P1 :=

Qm
j=0 �(L

j⇠) means that:

9� ⇢ [0, 1] : |P1|��� � 5�C1m, |�| � C25
�(1�")m .

We first construct a set � disjoint from the set of small values of
�. Let ⇤ = { 1

12 ,
5
12 ,

7
12 ,

11
12}+ Z, so that e2⇡i� for � 2 ⇤ are exactly

the zeroes of �12 = 1� x2 + x4. We want � to avoid a
neighborhood of ⇤. The key observation is that all points of 1

6Z
are at distance at least 1/12 from ⇤, hence we may take � to be a
neighborhood of 1

6Z. We are using here that 6 divides 12, but �
does not vanish at any 6-th root of unity. Only one cyclotomic
divisor.
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16a. Why such structure �� � ⇢ SLV(low freq. P1)?

9� ⇢ [0, 1] : |P1|��� � L�C1m, |�| � C2L
�(1�")m � CKLm.

High frequency polynomial P2:

P2(⇠) = L�(n�m)
X

↵2⇤
e i↵⇠, |⇤| = Ln�m .

High frequency estimate: h := |�|�11� ⇤ 1�. Then 0  h  1,
ĥ = |�|�1|1̂�|2 > 0. So,

Z

���
|P2|2d⇠ �

Z

���
h(⇠)|P2(⇠)|2d⇠ =

Alexander Volberg
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17.

Let

�0 =
1

6
Z+

⇣
� ⌘

12
,
⌘

12

⌘

for some ⌘ 2 (0, 1). Then there is a constant c = c(⌘) > 0 such
that

�(⇠) � c for ⇠ 2 �0.

By scaling, we also have

�(5j⇠) � c for ⇠ 2 �j :=
5�j

6
Z+

⇣
� 5�j⌘

12
,
5�j⌘

12

⌘
.

Let � =
Tm�1

j=0 �j , then

m�1Y

j=0

|�0(Lj⇠)|2 � c2m = 5�C1m for ⇠ 2 �

with C1 =
log 5

2 log(1/c) .
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18.

It remains to prove that we can choose an ⌘ 2 (0, 1) and a set
� ⇢ [0, 1] of size at least C25�(1�✏)m so that �� � ⇢ �. We fix
⌘ = 1/2, and let ⌧ = (⌧0, . . . , ⌧m�1) range over all sequences with
⌧j 2 {0, 1, 2, 3}. Define

�⌧,j =
5�j

6

⇣⌧j
4
+ Z

⌘
+
⇣
0,

5�j

24

⌘
, j = 0, 1, . . . ,m � 1,

�⌧ := [0, 1] \
m�1\

j=0

�⌧,j

Then �⌧,j � �⌧,j ⇢ �j , so that �⌧ � �⌧ ⇢ �. Moreover, we have
[

⌧2{0,1,2,3}m
�⌧ = [0, 1]

except for the zero measure set of interval endpoints. Hence there
is at least one ⌧ such that |�⌧ | � 4�m, which is greater than
5�(1�✏)m for 0 < ✏ < 1� log 4

log 5 .
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19. More general results

Let s = lcm(r : �r |A, (r , |A|) = 1}.

Theorem

Suppose that we can write sA = s1,As2,A with s1,A, s2,A > 1 so that:

s2,A < 1
2 |A|,

�q(x) does not divide A(x) for any q|s1,A.
Then there is a set � ⇢ [0, 1] obeying

9� ⇢ [0, 1] : |P1|��� � |A|�C1m, |�| � C2|A|�(1�")m .

It has precisely the same proof as in example above, where
s = 12, s1,A = 6, s2,A = 2, |A| = 5. Technically more di�cult, but
with the same idea is

Alexander Volberg
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20. More general result

Same s = lcm(r : �r |A, (r , |A|) = 1}.

Theorem (Good factorization of s)

Suppose that we can write sA = s1,As2,A with s1,A, s2,A > 1 so that:

s2,A < |A|,
�q(x) does not divide A(x) for any q|s1,A.

Then there is a set � ⇢ [0, 1] obeying

9� ⇢ [0, 1] : |P1|��� � |A|�C1m, |�| � C2|A|�(1�")m .

Alexander Volberg
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21. Study of Lampreys: Linear multi-polygon relationships

Given a fewnomial A as above and an order s primitive root of

unity e
2⇡ik
s such that A(e

2⇡ik
s ) = 0, we get the example of a

Lamprey (Linear multi-polygon relationships, LMPR)), that is the
sum of roots of unity (of di↵erent order) with integer
coe�cients such that this sum of those roots with those
coe�cients = 0. Our Lamprey always contains {1}.
Lamprey has cardinality (weight) n=how many roots of unity it
contains (counting multiplicity). And it has denominator s=least
common multiple of rational phases of roots.

Alexander Volberg
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22. General Lampreys. Decomposition. Cardinality

Theorem (Rédei–de Brujin–Schönberg–Mann)

Let Lamprey T has determinant s. Then it is of the form
T =

PJ
j=1 nj⌘jTpj , where ⌘j are some roots of unity, nj 2 Z, pj |s.

Theorem (Lam–Leung: Cardinality)

Let Lamprey T has determinant s = pr11 . . . prJJ . Then cardinality n
can be only of the type n =

P
j kjpj , where kj are non-negative

integers. In particular n � minj pj .

Alexander Volberg
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23. Irreducible Lampreys

A Lamprey is irreducible if no proper subset of it is a Lamprey.
For example, any prime polygon Tp is irreducible. It is tempting to
think that all irreducible Lampreys have this form; this is not true.
Here is what Poonen–Rubinstein called L5:3 an irreducible relation
between roots of unity of type R(5 : 3):

L5:3 := {e2⇡i/5, e4⇡i/5, e6⇡i/5, e8⇡i/5, e5⇡i/3, e7⇡i/3}.

0 =
X

⇣2T5

⇣�
X

⇣02T3

⇣ 0+[e2⇡i/3+e4⇡i/3]
X

⇣002T2

⇣ 00 =
4X

j=1

e2⇡ij/5+e5⇡i/3+e7⇡i/3

The number of such rapidly grows beyond this point, though
Poonen–Rubinstein classifies all such cases for sets having at most
12 points.

Alexander Volberg
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24.
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25. Application of Theorem of Lam–Leung

We are going to prove Theorem (one bad cyclotomic divisor). We
want to prove that if

A(x) = 1 +
X

x2A\0

xa, �(⇠) =
1

|A|A(e
2ıi⇠), P1 =

mY

j=0

�(Lj⇠) .

has only one bad cyclotomic divisor, meaning �s |A : (s, L) = 1,
then we have � such that

9� ⇢ [0, 1] : |P1|�\� � |A|�C1m, |�| � C2|A|�(1�")m .

We want to reduce to Theorem (Good factorization of
s = lcm(r : �r |A, (r , |A|) = 1).
Consider first the case of s = p = prime. Then �s(1) = p and
A(1) = |A|–not divisible by p as (p, |A|) = (s, |A|) = 1. So s has
several prime factors. Thus �s cannot divide A, contradiction.

Alexander Volberg
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26.

Consider now a root ⇣ of �s and consider TA = {⇣a}a2A. It is a
Lamprey as �s |A, and hence

1 +
X

a2A\0

⇣a = 0.

Its cardinality is |A| and its determinant is s.

By Theorem of Rédei–de Brujin–Schönberg it is the sum of Tpi
with integer coe�cients, where pi |s. And by Theorem Lam–Leung
|p1|  |A|, where p1 is the smallest prime divisor of s. But
(s, |A|) = 1, hence (p1, |A|) = 1. Hence, p1 6= |A|, so |p1| < |A|.

Put s2,A = p1. Then s1,A = s/p1. If q|s1,A then q < s and �s is
the only cyclotomic poly that divides A. Hence �q does not divide
A and we can apply Theorem (Good factorization of
s = lcm(r : �r |A, (r , |A|) = 1), using s2,A = p1 < |A|.

Alexander Volberg
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27. Now let us prove |A| = 6 case

Suppose first that |A| = 6. We will show that the cyclotomic roots
of A can only be zeroes of �s for some s divisible by 2 or 3, so
that in particular (s, L) 6= 1.
Suppose that �s divides A, and consider the lamprey
As := {⇣a}a2A. A 6-point lamprey can only take these forms:

As can be a union of triangles

As can be a union of three line diameters (2-gons)

As can be a rotation of L5:3

L5:3 := {e2⇡i/5, e4⇡i/5, e6⇡i/5, e8⇡i/5, e5⇡i/3, e7⇡i/3}.

But our Lampreys always contain {1}. So in the first case on of
triangles contains {1} and so the denominator s in the first case
should be divisible by 3. In the second case one diameter should
contain {1}. Hence, the denominator s in the second case should
be divisible by 2. So (s, |A|) = (s, 6) 6= 1 in those cases.

Alexander Volberg
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28. Now let us finish the proof for |A| = 6 case

We are left with the third case: rotated
L5:3 := {e2⇡i/5, e4⇡i/5, e6⇡i/5, e8⇡i/5, e2⇡i ·5/6, e2⇡i ·7/3}. It must be
rotated as again {1} should belong to it.
But if one rotates L5:3 to have {1} in it, the denominator of
rotated Lamprey obviously becomes divisible by 30 (in fact
s = 30ġ cm(A)). Thus again (s, |A|) = (s, 6) 6= 1.

This is the situation when SSV for � = 1
6A(e

2⇡i⇠) holds.
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29. Algebra versus Geometry

Let A = 1 +
P

a2A\ x
a. Let cyclotomic �s |A. Then we can see the

Lamprey As = {e
2⇡ia
s : a 2 A}.

We will be using repeatedly:

Lemma (Algebra versus Geometry)

If cyclotomic �s |A and cyclotomic �sM |A, then the following
power relationship on Lampreys hold:

(AsM)M = As .

Lemma

If we have AsM and it is D [ T and (M, 2) = 1, (M, 3) = 1 then

we also have As (equivalently A(e
2⇡i
s ) = 0).
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30. Now let us prove |A| = 5 case

It is more complicated and we reduce this to SLV case, not to SSV
case.

Let A be our Lampreys generated by set A, |A| = 5, they all have
cardinality 5 and some denominators s which obviously has

(s, 5) = 1, they are As = {e
2⇡ia
s : a 2 A}.

As 1 2 A and A has 5 points, it can be only consists of diameter
D and triangle T and at least one of those have {1} in it. Thus
every s is divisible by 2k(s)3`(s), where k , ` are corresponding
maximal powers. Theorem of Rédei–de Brujin–Schönberg.

Let us show that all k(s) = k0, all `(s) = `0.
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Take any s = 2k(s)3`(s)M, where M : (M, 2) = 1, (M, 3) = 1.
Raise A2k(s)3`(s)M (corresponding to this s) to power M.

Raising to such power that M : (M, 2) = 1, (M, 3) = 1 does not
change geometric picture of D and T (maybe rotate), so the
power of that Lamprey is again Lamprey.

Hence, we can see that primitive root e
2⇡i

2k(s)3`(s) is a root of A.
So we get A2k(s)3`(s) .

Therefore, we can consider only Lampreys built by polynomial A
such that s = 2k3`M with M = 1. Call them for brevity Ak,`.
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32. Continuation of the proof for |A| = 5

Let us have s1 = 2k3` and s2 = 23� among denominators of
primitive roots of unity on which A vanishes. In other words
�2k3` |A, �23� |A, or

A(e
2⇡i
2k 3` ) = 0, A(e

2⇡i
23� ) = 0 .

Let (k , `)  (,�),  = k + r ,� = `+ t. And we have
Ak+r ,s+t ,Ak,`.

If we act on Ak+r ,`+t by raising to 2r3t then diameter collapses if
1 2 D (if r > 0) or triangle collapses if 1 2 T (t > 0).
But nothing can collapse as (using Lemma (Algebra versus
Geometry))

(Ak+r ,`+t)
2r3t = Ak,r

and the RHS still have diameter and triangle, nothing can collapse.
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33.

Let (k , `), (,�),  = k � r ,� = `+ t, r > 0, t > 0. Consider

(Ak�r ,`+t)
3t = T , (Ak,`)

2r = T ,

where T is some Lamprey that might not have anything to do with
A. But we have

(Ak�r ,`+t)
3t = (Ak,`)

2r .

The LHS collapses triangle to one point and (maybe) rotates the
diameter (does not rotate if 1 2 D). The RHS collapses diameter
and (maybe) rotates triangle.

Point and diameter cannot be qual to point and triangle (our
triangle cannot have diameter as one side, as all its degrees are
⇡/3). Contradiction.

Figure:

Alexander Volberg
Algebra: Cantor sets, cyclotomic polynomials and Linear Multi-Polygon Relations (Lampreys)



34. SSV when Let s and L have a common divisor

Theorem

Let s and L have a common divisor. Then �s(e2⇡i ·) has the SSV
property; equivalently, '(⇠) = e2⇡i⇠ � e2⇡ik/s has the SSV property
for all (k , s) = 1.

We need to prove that the set where
|P1| := |

Qm
j=0 ')L

j⇠)|  L�c1m is well-structured: it can be put to
Lc2m intervals each having very small length L�c3m,
c3 = c3(c1) << c2.

Let s and L have a common divisor. Then s = ML1, where L1|La
for some a and (M, L) = 1. Let also

F (x) =
Y

k2
(x � e2⇡ik/L

a
),

where  ⇢ [1, La � 1] is chosen so that e2⇡ik/L
a
runs through all

primitive L1-th roots of unity.
Alexander Volberg
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35.

Notice that if F has SSV property and F = � · H, where
|H|  C (L), then � has SSV property! This is obvious.
The important thing to note is that

�s(x)|F (xM), that is F (xM) = �s(x)H(x), |H|  C (L) .

Thus, it is enough to prove that F =
Q

k2(x � e2⇡ik/L), e2⇡ik/L

runs through all primitive L1-th roots of unity has SSV property.

For that it is enough to find G such that

F · G has SSV and, |G |  C (L) .

Consider the “complement” of F ,

G (x) =
La�1Y

k=1,k 62
(x � e2⇡ik/L

a
)
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It follows that F (x) · G (x) = xL
a�1

x�1 .

Now maybe just consider the case a = 1, then it is trivial to see
that polynomial p(x) x

L�1
x�1 has SSV property:

mY

j=0

p(Ljx) =telescopic xL
m+1 � 1

x � 1
.

if a > 1 then
m�1Y

j=0

F (xL
aj+b

)G (xL
aj+b

) =
xL

am+b � 1

xLb � 1
,

so the set of L�c1m -values of the RHS below

am�1Y

j=0

F (xL
j
)G (xL

j
) =

a�1Y

b=0

xL
am+b � 1

xLb � 1

lies in at most aLm+a intervals of very small measure 2L�c1m, and
we can choose c1 >> 1.
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38. Poonen–Rubinstein: counting DISTINCT points of
intersections of diagonals of regular polygon

I (n) =
�n
4

�
for generic n-gon, and for regular polygon with n odd.

For regular polygon with n even see below.
Fact: Never 8 diagonal of any regular polygon can meet–except at
the center.

Let �m(n) = 1 if n = 0 m|n, 0 otherwise .

Theorem

For n � 3,

I (n) =

✓
n

4

◆
+(�5n3+45n2�70n+24)/24 · �2(n)� (3n/2) · �44(n)

+ . . . .
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39. When 3 diagonals meet?

Let A,B ,C ,D,E ,F be points as on Figure, dividing to arcs
u, x , v , y ,w , z . If diagonals AD, BE , CF intersects in one point
then by similarity of triangles AF · BC · DE = AB · EF · CD,

sin
u

2
sin

v

2
sin

w

2
= sin

x

2
sin

y

2
sin

z

2
(⇤)
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40. Lamprey

But u + v + w + x + y + z = 2⇡, putting u/2 =: ⇡U, . . . , we have
U + V +W + X + Y + Z = 1. Multiplying (*) through we get 8
terms in LHS, 8 terms in RHS, but 2 terms in LHS cancel 2 terms
in RHS because of U + V +W = 1� (X + Y + Z ).

�e i⇡(V+W�U)+�e�i⇡(V+W�U)�· · · = �e i⇡(Y+Z�X )+e�i⇡(Y+Z�X )�. . . .

Replace �1 = e�i⇡. Denote
↵1 = V +W � U � 1/2,↵2 = W + U � V � 1/2,↵3 =
U + V �W � 1/2,↵4 = Y + Z � X + 1/2, . . .↵6 = . . . . Then

6X

j=1

e i⇡↵j +
6X

j=1

e i⇡�j = 0

�j = �↵j ,
P6

j=1 ↵j = U + V +W + X + Y + Z = 1, and all ↵j

are rational, that is all terms above are roots of unity, maybe of
huge order.
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41. Minimal lampreys of di↵erent cardinality  12

kX

i=1

ni⌘i = 0 .

A relation: ni 2 Z+, ⌘i distinct roots of unity.
Prime roots are minimal relations: 1 + ⇣p + · · ·+ ⇣p�1

p = 0 and
cannot have a subset with 0 sum.
Schoenberg proved that all relations (with possible negative coef.)
can be obtained as linear comb. with integer coef. by such Rp

relations.
But as here only positive coef. are allowed this becomes false for
representing as Rp with positive integer coef. Example:

⇣6 + ⇣�1
6 + ⇣5 + ⇣25 + ⇣35 + ⇣45 = 0 .

There are 19 such primitive relations with 11 terms and 69 such
primitive relations with 12 terms. This is up to rotation.
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