Теория представлений симметрических групп

Лекция 14. Асимптотическая теория представлений. Бесконечная симметрическая группа. Теорема Тома

Н. В. Цилевич

3 декабря 2021 г.

- Два (связанных между собой) типа вопросов:
 - ightharpoonup асимптотическое поведение групп, когда ранг группы $ightarrow \infty$;
 - свойства бесконечномерных аналогов классических групп.

- ▶ Два (связанных между собой) типа вопросов:
 - ightharpoonup асимптотическое поведение групп, когда ранг группы $ightarrow \infty$;
 - свойства бесконечномерных аналогов классических групп.
- ▶ Систематически начата в работах А. М. Вершика и С. В. Керова в 1970-х гг.

- ▶ Два (связанных между собой) типа вопросов:
 - ightharpoonup асимптотическое поведение групп, когда ранг группы $ightarrow \infty$;
 - свойства бесконечномерных аналогов классических групп.
- Систематически начата в работах А. М. Вершика и С. В. Керова в 1970-х гг.
- Трудность: предельная группа обычно "дикая", т.е. неприводимые представления не имеют разумной параметризации.

- ▶ Два (связанных между собой) типа вопросов:
 - ightharpoonup асимптотическое поведение групп, когда ранг группы $ightarrow \infty$;
 - свойства бесконечномерных аналогов классических групп.
- Систематически начата в работах А. М. Вершика и С. В. Керова в 1970-х гг.
- Трудность: предельная группа обычно "дикая", т.е. неприводимые представления не имеют разумной параметризации.
- Выход: рассматривать фактор-представления или характеры.

Характеры

- lacktriangle Характер дискретной группы G функция $\chi\colon G o \mathbb{C}$:
 - ho $\sum\limits_{i,j=1}^n \chi(g_ig_j^{-1})z_iar{z}_j \geq 0$ (положительная определённость),
 - $\chi(gh) = \chi(hg)$ (центральность),
 - $\chi(e) = 1$ (нормированность).

Характеры

- ightharpoonup Характер дискретной группы G функция $\chi\colon G o \mathbb{C}$:
 - $\sum_{i,j=1}^n \chi(g_ig_j^{-1})z_iar{z}_j \geq 0$ (положительная определённость),
 - $\chi(gh) = \chi(hg)$ (центральность),
 - $\chi(e) = 1$ (нормированность).
- ► Char(G) пространство характеров G (с топологией поточечной сходимости).
- ightharpoonup Это выпуклый компакт \implies можно рассмотреть его экстремальные точки = экстремальные характеры.
- $\mathcal{E}(G) := \exp \mathsf{Char}(G)$ множество экстремальных характеров. Это аналог (нормированных) неприводимых характеров конечных групп.

Бесконечная симметрическая группа

- ▶ Бесконечная симметрическая группа $\mathfrak{S}_{\infty} :=$ группа финитных перестановок $\mathbb{N} =$ индуктивный предел (объединение) цепочки $\mathfrak{S}_1 \subset \mathfrak{S}_2 \subset \dots$
- > Это
 - счётная дискретная группа,
 - аналог бесконечномерных классических групп,
 - "дикая" группа, т.е. неприводимые представления не допускают разумной параметризации.

Бесконечная симметрическая группа

- ▶ Бесконечная симметрическая группа $\mathfrak{S}_{\infty} :=$ группа финитных перестановок $\mathbb{N} =$ индуктивный предел (объединение) цепочки $\mathfrak{S}_1 \subset \mathfrak{S}_2 \subset \dots$
- ▶ Это
 - счётная дискретная группа,
 - аналог бесконечномерных классических групп,
 - "дикая" группа, т.е. неприводимые представления не допускают разумной параметризации.

Лемма

Классы сопряжённости в \mathfrak{S}_{∞} параметризуются диаграммами Юнга ν без частей равных 1.

Доказательство: очевидно (почему?).

Бесконечная симметрическая группа

- ▶ Бесконечная симметрическая группа \mathfrak{S}_{∞} := группа финитных перестановок $\mathbb{N}=$ индуктивный предел (объединение) цепочки $\mathfrak{S}_1\subset\mathfrak{S}_2\subset\ldots$
- Это
 - счётная дискретная группа,
 - аналог бесконечномерных классических групп,
 - "дикая" группа, т.е. неприводимые представления не допускают разумной параметризации.

Лемма

Классы сопряжённости в \mathfrak{S}_{∞} параметризуются диаграммами Юнга ν без частей равных 1.

Доказательство: очевидно (почему?).

 $ightharpoonup \mathfrak{S}_{\infty}
ightharpoonup w
ightharpoonup \mu$ цикловый тип $u(w) = (2^{m_2}3^{m_3}\ldots).$

- lacktriangle Задача: найти все экстремальные характеры $\mathfrak{S}_{\infty}.$
- ▶ Решение: Элмар Тома (Elmar Thoma), 1964; чисто аналитическая техника, неясен смысл параметров.
- Доказательство Вершика–Керова (1981): аппроксимативный подход, "эргодический метод", наглядный смысл параметров.
- Впоследствии ещё много доказательств.

Теорема Тома: подготовка

Симплекс Тома:

$$\Omega = \{(\alpha, \beta) : \alpha_1 \geq \alpha_2 \geq \ldots \geq 0, \beta_1 \geq \beta_2 \geq \ldots \geq 0, \sum_i (\alpha_i + \beta_i) \leq 1\}.$$

Это компактное метризуемое сепарабельное пространство (как замкнутое подмножество $[0,1]^{\infty} \times [0,1]^{\infty}$).

Теорема Тома: подготовка

Симплекс Тома:

$$\Omega = \{(\alpha, \beta) : \alpha_1 \geq \alpha_2 \geq \ldots \geq 0, \beta_1 \geq \beta_2 \geq \ldots \geq 0, \sum_i (\alpha_i + \beta_i) \leq 1\}.$$

Это компактное метризуемое сепарабельное пространство (как замкнутое подмножество $[0,1]^{\infty} \times [0,1]^{\infty}$).

ightharpoonup Иногда удобно считать, что $\Omega=\{(lpha,eta,\gamma)\}$, где $\gamma=1-\sum\limits_i(lpha_i+eta_i)\geq 0$, т.е. $\sum\limits_ilpha_i+\sum\limits_ieta_i+\gamma=1$.

Теорема Тома: подготовка

Симплекс Тома:

$$\Omega = \{(\alpha, \beta) : \alpha_1 \geq \alpha_2 \geq \ldots \geq 0, \beta_1 \geq \beta_2 \geq \ldots \geq 0, \sum_i (\alpha_i + \beta_i) \leq 1\}.$$

Это компактное метризуемое сепарабельное пространство (как замкнутое подмножество $[0,1]^{\infty} \times [0,1]^{\infty}$).

- ightharpoonup Иногда удобно считать, что $\Omega = \{(\alpha, \beta, \gamma)\}$, где $\gamma = 1 \sum_i (\alpha_i + \beta_i) \geq 0$, т.е. $\sum_i \alpha_i + \sum_i \beta_i + \gamma = 1$.
- Суперсимметрические степенные суммы от двух наборов переменных:
 - $p_n^{\circ}(x,y) := \sum_i x_i^n + (-1)^{n+1} \sum_i y_i^n, \ n \ge 2;$
 - $ho_{\nu}^{\circ}(x,y) := \prod_{i>2} (\rho_{i}^{\circ}(x,y))^{m_{i}}$ для $\nu = (2^{m_{2}}3^{m_{3}}\ldots).$

Теорема Тома

Теорема (теорема Тома)

Множество экстремальных характеров $\mathcal{E}(\mathfrak{S}_{\infty})$ гомеоморфно Ω . Для $\chi_{\alpha,\beta} \in \mathcal{E}(\mathfrak{S}_{\infty})$ и $w \in \mathfrak{S}_{\infty}$ с цикловым типом $\nu = (2^{m_2}3^{m_3}\dots)$ имеем

$$\chi_{\alpha,\beta}(w) = p_{\nu}^{\circ}(\alpha,\beta) = \prod_{i\geq 2} \left(\sum_{i} x_{i}^{n} + (-1)^{n+1} \sum_{i} y_{i}^{n}\right)^{m_{i}}.$$

 $ightharpoonup \alpha, \beta$ – параметры Тома.

Теорема Тома

Теорема (теорема Тома)

Множество экстремальных характеров $\mathcal{E}(\mathfrak{S}_{\infty})$ гомеоморфно Ω . Для $\chi_{\alpha,\beta} \in \mathcal{E}(\mathfrak{S}_{\infty})$ и $w \in \mathfrak{S}_{\infty}$ с цикловым типом $\nu = (2^{m_2}3^{m_3}\dots)$ имеем

$$\chi_{\alpha,\beta}(w) = p_{\nu}^{\circ}(\alpha,\beta) = \prod_{i\geq 2} \left(\sum_{i} x_{i}^{n} + (-1)^{n+1} \sum_{i} y_{i}^{n}\right)^{m_{i}}.$$

 $\triangleright \alpha, \beta$ – параметры Тома.

Таким образом, по сравнению с конечными группами ответ

- ► сложнее, так как диаграммы Юнга ~ точки бесконечномерного симплекса;
- проще, так как характер задаётся простой мультипликативной формулой.

Схема доказательства Тома: вполне положительность

- lacktriangle Матрица вполне положительна \iff все конечные миноры ≥ 0 .
- ightharpoonup Последовательность $(h_n)_{n\geq 0}$ вполне положительна \iff тёплицева матрица

$$\begin{pmatrix} h_0 & h_1 & h_2 & h_3 & \dots \\ 0 & h_0 & h_1 & h_2 & \dots \\ 0 & 0 & h_0 & h_1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

вполне положительна.

• Формальный ряд $H(z) = \sum_{n=0}^{\infty} h_n z^n$ вполне положителен \iff последовательность $(h_n)_{n \geq 0}$ вполне положительна.

Схема доказательства Тома: вполне положительность

- lacktriangle Матрица вполне положительна \iff все конечные миноры ≥ 0 .
- ightharpoonup Последовательность $(h_n)_{n\geq 0}$ вполне положительна \iff тёплицева матрица

$$\begin{pmatrix} h_0 & h_1 & h_2 & h_3 & \dots \\ 0 & h_0 & h_1 & h_2 & \dots \\ 0 & 0 & h_0 & h_1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

вполне положительна.

- Формальный ряд $H(z) = \sum_{n=0}^{\infty} h_n z^n$ вполне положителен \iff последовательность $(h_n)_{n>0}$ вполне положительна.
- Теорема Шёнберга—Эдреи: {вполне положительные ряды с H(0) = 1} = ряды Тейлора мероморфных функций вида

$$H(z) = e^{\gamma z} \prod_{i} \frac{1 + \beta_{i} z}{1 - \alpha_{i} z}, \qquad (\alpha, \beta) \in \Omega.$$

- ▶ Теорема мультипликативности: характер $\chi \in \operatorname{Char}(\mathfrak{S}_{\infty})$ экстремален \iff он мультипликативен: если $w = w_1 w_2 \dots$ разложение на перестановки с дизъюнктными носителями, то $\chi(w) = \chi(w_1)\chi(w_2)\dots$
- Таким образом, экстремальные характеры задаются значениями $p_n := \chi((12\dots n))$ на одноцикловых перестановках.

- ▶ Теорема мультипликативности: характер $\chi \in \text{Char}(\mathfrak{S}_{\infty})$ экстремален \iff он мультипликативен: если $w = w_1 w_2 \dots$ разложение на перестановки с дизъюнктными носителями, то $\chi(w) = \chi(w_1)\chi(w_2)\dots$
- Таким образом, экстремальные характеры задаются значениями $p_n := \chi((12\dots n))$ на одноцикловых перестановках.
- ▶ Положим $R(z) := \sum_{n=1}^n \frac{p_n z^n}{n}$, $H(z) = e^{R(z)}$ (слушатели курса по симметрическим функциям, узнаёте?).

- ▶ Теорема мультипликативности: характер $\chi \in \text{Char}(\mathfrak{S}_{\infty})$ экстремален \iff он мультипликативен: если $w = w_1 w_2 \dots$ разложение на перестановки с дизъюнктными носителями, то $\chi(w) = \chi(w_1)\chi(w_2)\dots$
- Таким образом, экстремальные характеры задаются значениями $p_n := \chi((12 \dots n))$ на одноцикловых перестановках.
- ▶ Положим $R(z) := \sum_{n=1}^{n} \frac{p_n z^n}{n}, \ H(z) = e^{R(z)}$.
- ▶ Теорема вполне положительности: ряд R(z) задаёт экстремальный характер \iff ряд H(z) вполне положителен.

- ▶ Теорема мультипликативности: характер $\chi \in \text{Char}(\mathfrak{S}_{\infty})$ экстремален \iff он мультипликативен: если $w = w_1 w_2 \dots$ разложение на перестановки с дизъюнктными носителями, то $\chi(w) = \chi(w_1)\chi(w_2)\dots$
- Таким образом, экстремальные характеры задаются значениями $p_n := \chi((12\dots n))$ на одноцикловых перестановках.
- ▶ Положим $R(z) := \sum_{n=1}^{n} \frac{p_n z^n}{n}, \ H(z) = e^{R(z)}$.
- ▶ Теорема вполне положительности: ряд R(z) задаёт экстремальный характер \iff ряд H(z) вполне положителен.
- ▶ Теорема Шёнберга—Эдреи \implies $H(z) = e^{\gamma z} \prod_i \frac{1+\beta_i z}{1-\alpha_i z}$, $(\alpha,\beta) \in \Omega$.

- ▶ Теорема мультипликативности: характер $\chi \in \operatorname{Char}(\mathfrak{S}_{\infty})$ экстремален \iff он мультипликативен: если $w = w_1 w_2 \dots$ разложение на перестановки с дизъюнктными носителями, то $\chi(w) = \chi(w_1)\chi(w_2)\dots$
- Таким образом, экстремальные характеры задаются значениями $p_n := \chi((12\dots n))$ на одноцикловых перестановках.
- ▶ Положим $R(z) := \sum_{n=1}^{n} \frac{p_n z^n}{n}, \ H(z) = e^{R(z)}$.
- ▶ Теорема вполне положительности: ряд R(z) задаёт экстремальный характер \iff ряд H(z) вполне положителен.
- ► Теорема Шёнберга—Эдреи \implies $H(z)=e^{\gamma z}\prod\limits_{j}rac{1+eta_{j}z}{1-lpha_{j}z},\;(lpha,eta)\in\Omega.$
- $P(z) = \ln H(z) = \gamma z \sum_{i} \ln(1 \alpha_{i}z) + \sum_{i} \ln(1 + \beta_{i}z) \implies$ $p_{n} = p_{n}^{\circ}(\alpha, \beta).$

- ► Теорема мультипликативности: характер $\chi \in \text{Char}(\mathfrak{S}_{\infty})$ экстремален \iff он мультипликативен: если $w = w_1 w_2 \dots$ разложение на перестановки с дизъюнктными носителями, то $\chi(w) = \chi(w_1)\chi(w_2)\dots$
- Таким образом, экстремальные характеры задаются значениями $p_n := \chi((12\dots n))$ на одноцикловых перестановках.
- ▶ Положим $R(z) := \sum_{n=1}^{n} \frac{p_n z^n}{n}$, $H(z) = e^{R(z)}$.
- ► Теорема вполне положительности: ряд R(z) задаёт экстремальный характер \iff ряд H(z) вполне положителен.
- ▶ Теорема Шёнберга—Эдреи $\implies H(z) = \mathrm{e}^{\gamma z} \prod_{1-\alpha_i z}^{1+\beta_i z}, \ (\alpha,\beta) \in \Omega.$
- $P(z) = \ln H(z) = \gamma z \sum_{i} \ln(1 \alpha_{i}z) + \sum_{i} \ln(1 + \beta_{i}z) \implies$ $p_{n} = p_{n}^{\circ}(\alpha, \beta).$

Таким образом, смысл параметров Тома α, β – нули и полюса какой-то мероморфной функции... Непонятно...

 $\phi: \mathbb{Y} o \mathbb{C}$ — гармоническая $\iff \phi(\lambda) = \sum_{\Lambda: \lambda
earrow \Lambda} \phi(\Lambda)$ для любой $\lambda \in \mathbb{Y}$.

- $\phi: \mathbb{Y} o \mathbb{C}$ гармоническая $\iff \phi(\lambda) = \sum_{\Lambda: \lambda
 earrow \Lambda} \phi(\Lambda)$ для любой $\lambda \in \mathbb{Y}$.
- ▶ Нормированный характер \mathfrak{S}_n нормируем на размерность, т.е. нормировка $\chi(e) = 1$.

- $\phi: \mathbb{Y} o \mathbb{C}$ гармоническая $\iff \phi(\lambda) = \sum_{\Lambda: \lambda
 earrow \Lambda} \phi(\Lambda)$ для любой $\lambda \in \mathbb{Y}$.
- Нормированный характер \mathfrak{S}_n нормируем на размерность, т.е. нормировка $\chi(e)=1$.
- $ightharpoonup \chi \in \mathsf{Char}(\mathfrak{S}_\infty) \implies \chi_{\it n} := \chi|_{\mathfrak{S}_n}$ нормированный характер \mathfrak{S}_n .

 $\phi: \mathbb{Y} o \mathbb{C}$ — гармоническая $\iff \overline{\phi(\lambda) = \sum_{\Lambda: \lambda
earrow \Lambda} \phi(\Lambda)}$ для любой $\lambda \in \mathbb{Y}$.

- Нормированный характер \mathfrak{S}_n нормируем на размерность, т.е. нормировка $\chi(e) = 1$.
- $\triangleright \chi \in \mathsf{Char}(\mathfrak{S}_{\infty}) \implies \chi_n := \chi|_{\mathfrak{S}_n} \mathsf{нормированный характер } \mathfrak{S}_n.$

Теорема

Характеры $\mathfrak{S}_{\infty} \iff$ гармонические функции на \mathbb{Y} с $\phi(\emptyset)=1$:

$$\boxed{\chi_n = \sum_{\lambda \vdash n} \phi(\lambda) \chi^{\lambda}}.$$

► $\mathsf{Harm}(\mathbb{Y})$ – пространство гармонических функций с $\phi(\emptyset)=1$.

Доказательство

 $\chi \in \operatorname{Char}(\mathfrak{S}_{\infty}) \Longrightarrow \chi_n$ — нормированный характер \Longrightarrow раскладывается по нормированным неприводимым характерам: $\chi_n = \sum_{\lambda \vdash n} c_\lambda \frac{\chi^\lambda}{\dim \lambda} = \sum_{\lambda \vdash n} \phi(\lambda) \chi^\lambda$, где $\phi(\lambda) = \frac{c_\lambda}{\dim \lambda}$.

Доказательство

 $\chi \in \mathsf{Char}(\mathfrak{S}_\infty) \implies \chi_n$ — нормированный характер \Longrightarrow раскладывается по нормированным неприводимым характерам: $\chi_n = \sum_{\lambda \vdash n} c_\lambda \frac{\chi^\lambda}{\dim \lambda} = \sum_{\lambda \vdash n} \phi(\lambda) \chi^\lambda$, где $\phi(\lambda) = \frac{c_\lambda}{\dim \lambda}$.

$$\sum_{\lambda \vdash n} \phi(\lambda) \chi^{\lambda} = \chi_n = \chi_{n+1}|_{\mathfrak{S}_n} = \sum_{\Lambda \vdash n+1} \phi(\Lambda) \chi^{\Lambda}|_{\mathfrak{S}_n} =$$

$$= \sum_{\Lambda \vdash n+1} \phi(\Lambda) \sum_{\lambda : \lambda \nearrow \Lambda} \chi^{\lambda} = \sum_{\lambda \vdash n} \chi^{\lambda} \sum_{\Lambda : \lambda \nearrow \Lambda} \phi(\Lambda) \implies \phi - \mathsf{гармоническая}.$$

Доказательство

- $\chi \in \mathsf{Char}(\mathfrak{S}_\infty) \implies \chi_n$ нормированный характер \Longrightarrow раскладывается по нормированным неприводимым характерам: $\chi_n = \sum\limits_{\lambda \vdash n} c_\lambda \frac{\chi^\lambda}{\dim \lambda} = \sum\limits_{\lambda \vdash n} \phi(\lambda) \chi^\lambda$, где $\phi(\lambda) = \frac{c_\lambda}{\dim \lambda}$.
- $\sum_{\lambda \vdash n} \phi(\lambda) \chi^{\lambda} = \chi_n = \chi_{n+1}|_{\mathfrak{S}_n} = \sum_{\Lambda \vdash n+1} \phi(\Lambda) \chi^{\Lambda}|_{\mathfrak{S}_n} =$ $= \sum_{\Lambda \vdash n+1} \phi(\Lambda) \sum_{\lambda : \lambda \nearrow \Lambda} \chi^{\lambda} = \sum_{\lambda \vdash n} \chi^{\lambda} \sum_{\Lambda : \lambda \nearrow \Lambda} \phi(\Lambda) \implies \phi \mathsf{гармоническая}.$
- ▶ В обратную сторону аналогично (★) .

- Arr Arr
- lacktriangle Будем рассматривать вероятностные (борелевские) меры на $\mathbb{T}(\mathbb{Y}).$

- Arr Arr
- ightharpoonup Будем рассматривать вероятностные (борелевские) меры на $\mathbb{T}(\mathbb{Y}).$
- $[t]_n :=$ начальный кусок пути t до n-го этажа.
- ullet $u\in\mathbb{T}_n(\mathbb{Y})\leadsto$ цилиндрическое множество $C_u:=\{t\in\mathbb{T}(\mathbb{Y}):[t]_n=u\}.$

- Arr Arr
- lacktriangle Будем рассматривать вероятностные (борелевские) меры на $\mathbb{T}(\mathbb{Y}).$
- $[t]_n :=$ начальный кусок пути t до n-го этажа.
- ullet $u \in \mathbb{T}_n(\mathbb{Y}) \leadsto$ цилиндрическое множество $C_u := \{t \in \mathbb{T}(\mathbb{Y}) : [t]_n = u\}.$
- lacktriangle Мера M на $\mathbb{T}(\mathbb{Y}) \leadsto$ цилиндрические распределения M_n на $\mathbb{T}_n(\mathbb{Y})$: $M_n(u) := M(C_u)$ для $u \in \mathbb{T}_n(\mathbb{Y})$.

- Arr Arr
- lacktriangle Будем рассматривать вероятностные (борелевские) меры на $\mathbb{T}(\mathbb{Y}).$
- $[t]_n :=$ начальный кусок пути t до n-го этажа.
- ullet $u\in\mathbb{T}_n(\mathbb{Y})\leadsto$ цилиндрическое множество $C_u:=\{t\in\mathbb{T}(\mathbb{Y}):[t]_n=u\}.$
- lacktriangle Мера M на $\mathbb{T}(\mathbb{Y}) \leadsto$ цилиндрические распределения M_n на $\mathbb{T}_n(\mathbb{Y})$: $M_n(u) := M(C_u)$ для $u \in \mathbb{T}_n(\mathbb{Y})$.
- ▶ Мера на $\mathbb{T}(\mathbb{Y})$ центральна $\iff M_n(u) = M_n(v)$ для любых двух путей u, v от \emptyset до одной и той же вершины $\lambda \in \mathbb{Y}_n$.
- ightharpoonup Cent($\mathbb Y$) пространство вероятностных центральных мер на $\mathbb T(\mathbb Y)$.

Теорема

 $\mathsf{Harm}(\mathbb{Y}) \simeq \mathsf{Cent}(\mathbb{Y}).$

Теорема

 $\mathsf{Harm}(\mathbb{Y}) \simeq \mathsf{Cent}(\mathbb{Y}).$

Доказательство.

 $M \in \operatorname{Cent}(\mathbb{Y}) \leadsto \phi(\lambda) := M_n(u)$, где $\operatorname{sh}(u) = \lambda$. Это гармоническая функция (почему?).

Теорема

 $\mathsf{Harm}(\mathbb{Y}) \simeq \mathsf{Cent}(\mathbb{Y}).$

Доказательство.

- $M \in \operatorname{Cent}(\mathbb{Y}) \leadsto \phi(\lambda) := M_n(u)$, где $\operatorname{sh}(u) = \lambda$. Это гармоническая функция (почему?).
- $\phi \in \mathsf{Harm}(\mathbb{Y}) \leadsto M_n(u) := \phi(\mathsf{sh}(u)).$
 - ▶ Согласованность цилиндрических мер по гармоничности.
 - ▶ Далее версия теоремы Колмогорова.
 - Центральность по определению.

Теорема

 $\mathsf{Harm}(\mathbb{Y}) \simeq \mathsf{Cent}(\mathbb{Y}).$

- lacktriangle Хвостовое отношение эквивалентности ξ на $\mathbb{T}(\mathbb{Y})$: $u\sim_{\xi}v\iff$ пути совпадают с некоторого места.
- ▶ Мера M эргодична относительно $\xi \iff$ для любого $A \subset \mathbb{T}(\mathbb{Y})$, состоящего из целых классов ξ , мера A равна 0 или 1.
- ightharpoonup Экстремальные точки $\mathsf{Cent}(\mathbb{Y}) = \mathsf{эргодические}$ меры относительно хвостового отношения эквивалентности.

Итак, мы имеем три эквивалентных множества:

- ightharpoonup множество характеров Char (\mathfrak{S}_{∞}) ,
- ightharpoonup множество гармонических функций $\mathsf{Harm}(\mathbb{Y})$,
- ightharpoonup множество центральных мер Cent(\mathbb{Y}).

Это выпуклые компакты. Хотим описать их экстремальные точки.