Generalized limit theorems for $U - \max$ statistics with kernels defined on a plane

Ekaterina Simarova

SPbSU, EIMI

2021

The functional Θ on a certain class of distributions $\{P\}$ on a measurable space (X, \mathfrak{A}) is called *regular* if it can be written in the form

$$\Theta(P) = \int_X \cdots \int_X h(x_1, \ldots, x_m) P(dx_1) \ldots P(dx_m).$$

Symmetric function *h* is called a *kernel*, and the natural number *m* is the *degree* of the functional Θ .

U-statistics are unbiased estimates of $\Theta(P)$ which are defined as follows. Let $\xi_1, \xi_2, \ldots, \xi_n$ be i.i.d random variables with common distribution *P* and let $h(x_1, \ldots, x_m)$ be the kernel of Θ . Then the U-statistic of degree *m* is defined as

$$U_n = \binom{n}{m}^{-1} \sum_J h(\xi_{i_1}, \ldots, \xi_{i_m}).$$

Here $n \ge m$ and $J = \{(i_1, \ldots, i_m) : 1 \le i_1 < \ldots < i_m \le n\}$ is a set of increasing permutations of indices i_1, \ldots, i_m . *U*-statistics were first introduced and studied in 1946 -1948 by Halmos and Hoeffding.

$U - \max$ statistics

We are interested in the following "extremal" counterpart of U-statistics, which was first studied by Lao and Mayer in 2008.

Definition of $U - \max$ statistics

$$H_n = \max_l h(\xi_{i_1}, \ldots, \xi_{i_m}).$$

$U - \max$ statistics

We are interested in the following "extremal" counterpart of *U*-statistics, which was first studied by Lao and Mayer in 2008.

Definition of $U - \max$ statistics

$$H_n = \max_I h(\xi_{i_1}, \ldots, \xi_{i_m}).$$

Examples

1 Largest interpoint distance $\max_{1 \le i < j \le n} |\xi_i - \xi_j|$, where $\xi_1, \xi_2, \ldots, \xi_n$ are i.i.d. points in the d-dimensional unit ball $B^d, d \ge 2$.

$U - \max$ statistics

We are interested in the following "extremal" counterpart of *U*-statistics, which was first studied by Lao and Mayer in 2008.

Definition of $U - \max$ statistics

$$H_n = \max_J h(\xi_{i_1}, \ldots, \xi_{i_m}).$$

Examples

- **1** Largest interpoint distance $\max_{1 \le i < j \le n} |\xi_i \xi_j|$, where $\xi_1, \xi_2, \ldots, \xi_n$ are i.i.d. points in the d-dimensional unit ball $B^d, d \ge 2$.
- ② Largest perimeter max_{1≤i<j<l≤n} peri(U_i, U_j, U_l) and largest area max_{1≤i<j<l≤n} area(U_i, U_j, U_l) among all inscribed triangles whose vertices are formed by triplets of points taken from the sample U₁,..., U_n of independent and uniformly distributed points on the unit circle S.

Limiting behavior of the perimeter of inscribed triangle

Let U_1, U_2, \ldots, U_n be independent and uniformly distributed points on the unit circle S and set

$$H_n = \max_{1 \le i < j < l \le n} \operatorname{peri}(U_i, U_j, U_l).$$

Then for each t > 0

$$\lim_{n\to\infty}\mathbb{P}\{n^3(3\sqrt{3}-H_n)\leq t\}=1-\exp\left(-\frac{2t}{9\pi}\right).$$

Previous results

- W. Lao, M. Mayer, *U*-max-statistics, J. Multivariate Anal. 99(2008), 2039–2052.
- M. Mayer, Random Diameters and Other *U*-max-Statistics. Ph.D. Thesis, Bern University, 2008.
- W. Lao, Some weak limit laws for the diameter of random point sets in bounded regions. Ph.D. Thesis, Karlsruhe, 2010.

Previous results

- W. Lao, M. Mayer, *U*-max-statistics, J. Multivariate Anal. 99(2008), 2039–2052.
- M. Mayer, Random Diameters and Other *U*-max-Statistics. Ph.D. Thesis, Bern University, 2008.
- W. Lao, Some weak limit laws for the diameter of random point sets in bounded regions. Ph.D. Thesis, Karlsruhe, 2010.
- E.V.Koroleva, Ya. Yu. Nikitin, *U*-max-statistics and limit theorems for perimeters and areas of random polygons, J. Multivariate Anal. 127(2014), 99–111.
- Ya. Yu. Nikitin, T. A. Polevaya. Limit theorems for areas and perimeters of random inscribed and circumscribed polygons. Zap. Nauchn. Sem. POMI (in Russian), 486(2019), 200–213.

Previous results

- W. Lao, M. Mayer, *U*-max-statistics, J. Multivariate Anal. 99(2008), 2039–2052.
- M. Mayer, Random Diameters and Other *U*-max-Statistics. Ph.D. Thesis, Bern University, 2008.
- W. Lao, Some weak limit laws for the diameter of random point sets in bounded regions. Ph.D. Thesis, Karlsruhe, 2010.
- E.V.Koroleva, Ya. Yu. Nikitin, *U*-max-statistics and limit theorems for perimeters and areas of random polygons, J. Multivariate Anal. 127(2014), 99–111.
- Ya. Yu. Nikitin, T. A. Polevaya. Limit theorems for areas and perimeters of random inscribed and circumscribed polygons. Zap. Nauchn. Sem. POMI (in Russian), 486(2019), 200–213.
- Ya. Yu. Nikitin, E. N. Simarova, Generalized Limit Theorems For U-max Statistics, preprint 2010.04460.
- E. N. Simarova, Extremal random beta polytopes, preprint 2108.10951

Parametrization

Conditions on kernel f

• Function *f* is symmetrical;

Conditions on kernel f

- Function *f* is symmetrical;
- Function *h* is continuous and can be continuously extended to a function $h : [0, 2\pi]^{m-1} \to \mathbb{R}$.

Conditions on kernel f

- Function *f* is symmetrical;
- Function *h* is continuous and can be continuously extended to a function $h : [0, 2\pi]^{m-1} \to \mathbb{R}$.
- Function *h* attains its maximal value *M* and this maximum is realized only at a finite number of points

 $V_1,\ldots,V_k\in [0,2\pi]^{m-1}.$ It is assumed that all $V_1,\ldots,V_k\in (0,2\pi)^{m-1}.$

- Function *f* is symmetrical;
- Function *h* is continuous and can be continuously extended to a function $h : [0, 2\pi]^{m-1} \to \mathbb{R}$.
- Function h attains its maximal value M and this maximum is realized only at a finite number of points
 V₁,..., V_k ∈ [0, 2π]^{m-1}. It is assumed that all
 V₁,..., V_k ∈ (0, 2π)^{m-1}.
- There exists δ > 0 such that function h is three times continuously differentiable in the δ-neighborhood of any maximum point V_i, i ∈ {1,...,k}.

- Function *f* is symmetrical;
- Function *h* is continuous and can be continuously extended to a function $h : [0, 2\pi]^{m-1} \to \mathbb{R}$.
- Function h attains its maximal value M and this maximum is realized only at a finite number of points
 V₁,..., V_k ∈ [0, 2π]^{m-1}. It is assumed that all
 V₁,..., V_k ∈ (0, 2π)^{m-1}.
- There exists δ > 0 such that function h is three times continuously differentiable in the δ-neighborhood of any maximum point V_i, i ∈ {1,...,k}.
- Denote by G_i the Hessian matrix of function h at the point V_i Then

 $\det(G_i) \neq 0 \text{ for all } i \in \{1, \ldots, k\}.$

Conditions on the distribution

- The random points U₁,..., U_n are independently distributed on the unit circle S¹ with the same probability density function p(x).
- The density function p is continuous (therefore, we may think of it as of non-negative continuous 2π -periodic function $p: \mathbb{R} \to \mathbb{R}_+$ such that $\int_{0}^{2\pi} p(x) dx = 1$).
- There exists at least one maximal point of the kernel (which we denote by V_*) such that

$$\int_{0}^{2\pi} \left[p(x) \prod_{l=1}^{m-1} p(x+V'_*) \right] dx \neq 0.$$

The general form of limit distribution on a circle

Under previous conditions on f and p the following equality holds for every t > 0:

$$\lim_{n\to\infty}\mathbb{P}\{n^{\frac{2m}{m-1}}(M-H_n)\leq t\}=1-e^{-t^{\frac{m-1}{2}}\cdot K},$$

where

$$K = \frac{(2\pi)^{\frac{m-1}{2}}}{m! \Gamma\left(\frac{m+1}{2}\right)} \sum_{i=1}^{k} \left(\frac{1}{\sqrt{\det(-G_i)}} \int_{0}^{2\pi} p(x) \prod_{l=1}^{m-1} p(x+V_i^l) \, dx \right).$$

10/29

Special cases

Let $g : [0, 2\pi] \to \mathbb{R}$ be smooth enough and $g''(\frac{2\pi}{m}) \neq 0$. Define symmetric functions f and h as follows:

$$f(U_1, \dots, U_m) = h(\beta_1, \dots, \beta_{m-1}) = \sum_{i=1}^m g(\beta_i - \beta_{i-1}),$$

where $0 = \beta_0 \le \beta_1 \le \dots \le \beta_{m-1} \le \beta_m = 2\pi.$

Theorem

Consider the *U*-max statistics H_n with kernel f. Suppose that this kernel attains its maximum only at the vertices of a regular *m*-gon. Then the previous theorem holds and constant K looks as follows:

$$\mathcal{K} = \frac{\left(2\pi\right)^{\frac{m-1}{2}} \left[\int_0^{2\pi} \prod_{l=0}^{m-1} p\left(x + \frac{2\pi l}{m}\right) dx\right]}{m\left(-g''\left(\frac{2\pi}{m}\right)\right)^{\frac{m-1}{2}} \Gamma\left(\frac{m+1}{2}\right) \sqrt{m}}.$$

Determinant

Determinant

Recall the definition $h(\beta_1, \ldots, \beta_{m-1}) = \sum_{i=1}^m g(\beta_i - \beta_{i-1})$. The Hessian matrix at the point $V^* = (\frac{2\pi}{m}, \frac{4\pi}{m}, \ldots, \frac{2(m-1)}{m})$ is

$$G(V^*) = g''\left(\frac{2\pi}{m}\right) \begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 \end{pmatrix}$$

Therefore,

$$\det(-G(V^*)) = \left(-g''\left(\frac{2\pi}{m}\right)\right)^{m-1} \cdot m.$$

Generalised perimeter

• Strictly concave functions g :

$$f(U_1, \dots, U_m) = \sum_{i=1}^m g\left(\beta_i - \beta_{i-1}\right) \le mg\left(\frac{\beta_m - \beta_0}{m}\right)$$
$$= mg\left(\frac{2\pi}{m}\right)$$

Generalised perimeter

• Strictly concave functions g :

$$f(U_1, \dots, U_m) = \sum_{i=1}^m g(\beta_i - \beta_{i-1}) \le mg\left(\frac{\beta_m - \beta_0}{m}\right)$$
$$= mg\left(\frac{2\pi}{m}\right)$$

• Perimeter of an inscribed convex *m*-gon: $g(x) = 2 \sin(\frac{x}{2})$.

Generalised perimeter

• Strictly concave functions g :

$$f(U_1, \dots, U_m) = \sum_{i=1}^m g(\beta_i - \beta_{i-1}) \le mg\left(\frac{\beta_m - \beta_0}{m}\right)$$
$$= mg\left(\frac{2\pi}{m}\right)$$

- Perimeter of an inscribed convex *m*-gon: $g(x) = 2\sin(\frac{x}{2})$.
- Area of an inscribed convex *m*-gon: $g(x) = \frac{1}{2} \sin x$.

Examples

Generalised perimeter

• Generalized perimeter $f(U_1, ..., U_m) = \sum_{i=1}^m r(|U_i U_{i+1}|)$ when r is strictly concave, increasing function: $g(x) = r(2 \sin \frac{x}{2}).$

Examples

Generalised perimeter

- Generalized perimeter $f(U_1, ..., U_m) = \sum_{i=1}^m r(|U_i U_{i+1}|)$ when r is strictly concave, increasing function: $g(x) = r(2 \sin \frac{x}{2}).$
- Function $r(x) = e^{-ax}x^b(\ln(\frac{x}{2}))^c$. Denote by $\tau(a, b, c)$ the function which is equal to 1 if function r is strictly concave and increasing, and is equal to -1 if function r is strictly convex and decreasing:

$$au(a,b,c) = egin{cases} (-1)^c, & ext{if } a \geq 0, b \leq 0, c \in \mathbb{N}, \ -1, & ext{if } a \geq 0, b \leq 0, c = 0, a^2 + b^2
eq 0, \ 1, & ext{if } a = 0, 0 < b \leq 1, c = 0. \end{cases}$$

Lao–Mayer theorem

For any real number z define the following functions

•
$$p_{n,z} = \mathbb{P}\{h(\xi_1, \dots, \xi_m) > z\}.$$

• $\lambda_{n,z} = {n \choose m} p_{n,z}.$
• $\tau_{n,z}(r) = \frac{\mathbb{P}\{h(\xi_1, \dots, \xi_m) > z, h(\xi_{1+m-r}, \xi_{2+m-r}, \dots, \xi_{2m-r}) > z\}}{p_{n,z}}$

Then the following inequality holds:

$$|\mathbb{P}\{H_n \leq z\} - e^{-\lambda_{n,z}}| \leq (1 - e^{-\lambda_{n,z}}) \times \\ \times \Big[p_{n,z}\Big(\binom{n}{m} - \binom{n-m}{m}\Big) + \sum_{r=1}^{m-1} \binom{m}{r} \binom{n-m}{m-r} \tau_{n,z}(r)\Big].$$

The ideas of the proof

Corollary

Suppose that for some sequence of transformations $z_n : T \to \mathbb{R}, T \subset \mathbb{R}$, the following conditions hold:

•
$$\lim_{n\to\infty} \lambda_{n,z_n(t)} = \lambda_t > 0.$$

• $\lim_{n\to\infty} n^{2m-r}p_{n,z}\tau_{n,z}(r) = 0$ for all $r \in \{1,\ldots,m-1\}$.

Then for any $t \in T$

$$\lim_{n\to\infty}\mathbb{P}(H_n\leq z_n(t))=e^{-\lambda_t}.$$

The limiting relation $\lim_{n\to\infty} \lambda_{n,z_n(t)} = \lambda_t > 0$ implies that $p_{n,z} = O(n^{-m})$. Therefore the right-hand side is equal to

$$O\left(n^{-1} + \sum_{r=1}^{m-1} n^{2m-r} \rho_{n,z} \tau_{n,z}(r)\right).$$

16 / 29

Proposition 1

Under previous conditions when $\varepsilon \to 0+$ the following relation holds true :

$$\mathbb{P}\{f(U_1,\ldots,U_m)\geq M-\varepsilon\}=\varepsilon^{\frac{m-1}{2}}\cdot m!\cdot K(1+O(\varepsilon)),$$

where

$$K = \frac{(2\pi)^{\frac{m-1}{2}}}{m!\Gamma\left(\frac{m+1}{2}\right)} \sum_{i=1}^{k} \left(\frac{1}{\sqrt{\det(G_i)}} \int_{0}^{2\pi} p(x) \prod_{l=1}^{m-1} p(x+V_i^l) \, dx\right).$$

The ideas of the proof

Checking conditions

Consider the sequence of transformations

$$z_n(t) = M - tn^{-\frac{2m}{m-1}} = M - \varepsilon.$$

Then

$$n^m \varepsilon^{\frac{m-1}{2}} = t^{\frac{m-1}{2}}$$

$$\lim_{n \to \infty} \lambda_{n, z_n(t)} = \lim_{n \to \infty} \frac{n!}{m!(n-m)!} \mathbb{P}\{f(U_1, \dots, U_m) > z_n(t)\} =$$
$$= \frac{1}{m!} \lim_{n \to \infty} \frac{n!}{n^m(n-m)!} n^m \varepsilon^{\frac{m-1}{2}} \varepsilon^{-\frac{m-1}{2}} \mathbb{P}\{H_m > M - \varepsilon\} =$$
$$= \frac{1}{m!} t^{\frac{m-1}{2}} m! K = t^{\frac{m-1}{2}} K =: \lambda_t$$

We obtain that

$$\lim_{n\to\infty}\mathbb{P}\left(H_n\leq z_n(t)\right)=e^{-\lambda_t}$$

for any t > 0. Hence,

$$\lim_{n\to\infty}\mathbb{P}\left(H_n\leq M-tn^{-\frac{2m}{m-1}}\right)=e^{-\lambda_t}.$$

Therefore, for any t > 0 the following relation is valid:

$$\lim_{n\to\infty}\mathbb{P}\{n^{\frac{2m}{m-1}}(M-H_n)\leq t)\}=1-e^{-\lambda_t}.$$

19/29

Proposition 2

For each $r \in \{1, \ldots, m-1\}$ we have the following relation:

 $n^{2m-r}\mathbb{P}\{f(U_1,\ldots,U_m)>z_n(t),f(U_{1+m-r},\ldots,U_{2m-r})>z_n(t)\}\to 0,$

when $n \to +\infty$.

Conditions on the kernel f

$$f(U_1,\ldots,U_m)=h(\beta_1,\ldots,\beta_{m-1},r_1,\ldots,r_m);$$

Conditions on the kernel f

• Denote by $\beta_i = \angle U_1 O U_{i+1}, r_i = ||OU_i||$. Consider a function h such that

$$f(U_1,\ldots,U_m)=h(\beta_1,\ldots,\beta_{m-1},r_1,\ldots,r_m);$$

h is continuous and can be continuously extended to a function *h*: [0, 2π]^{n−1} × [0, 1]ⁿ → ℝ;

Conditions on the kernel f

$$f(U_1,\ldots,U_m)=h(\beta_1,\ldots,\beta_{m-1},r_1,\ldots,r_m);$$

- *h* is continuous and can be continuously extended to a function $h: [0, 2\pi]^{n-1} \times [0, 1]^n \to \mathbb{R}$;
- h attains its maximal value M only at a finite number of points V₁,..., V_k and also we assume that these points satisfy V₁,..., V_k ∈ (0, 2π)^{m-1} × {1}^m

Conditions on the kernel f

$$f(U_1,\ldots,U_m)=h(\beta_1,\ldots,\beta_{m-1},r_1,\ldots,r_m);$$

- h is continuous and can be continuously extended to a function h : [0, 2π]ⁿ⁻¹ × [0, 1]ⁿ → ℝ;
- h attains its maximal value M only at a finite number of points V₁,..., V_k and also we assume that these points satisfy V₁,..., V_k ∈ (0,2π)^{m-1} × {1}^m
- for any i ∈ {1,...,k}, the sub-hessian of h at V_i corresponding to the first m − 1 arguments is non-degenerate: det G_i ≠ 0;

Conditions on the kernel f

$$f(U_1,\ldots,U_m)=h(\beta_1,\ldots,\beta_{m-1},r_1,\ldots,r_m);$$

- *h* is continuous and can be continuously extended to a function $h: [0, 2\pi]^{n-1} \times [0, 1]^n \to \mathbb{R}$;
- h attains its maximal value M only at a finite number of points V₁,..., V_k and also we assume that these points satisfy V₁,..., V_k ∈ (0, 2π)^{m-1} × {1}^m
- for any i ∈ {1,...,k}, the sub-hessian of h at V_i corresponding to the first m − 1 arguments is non-degenerate: det G_i ≠ 0;

• for any
$$i \in \{1, \ldots, k\}$$
 $\frac{\partial h(V_i)}{\partial x_j} \neq 0$ for $j = m, \ldots, 2m - 1$.

Conditions on the density

We consider beta distribution with density

$$p(x) = rac{eta+1}{\pi} \cdot (1-\|x\|^2)^eta \cdot \mathbf{1}_{\mathbb{B}^2}(x).$$

Distributions in the ball

Limit distribution in the ball

Under the previous conditions on f and p for every t > 0 as $n \to \infty$,

$$\mathbb{P}\left[n^{\frac{m}{m(\beta+3/2)-1/2}}\left(M-H_{n}\right)\leq t\right]=\left(1+O(n^{-\frac{1}{(2\beta+3)m-1}})\right)$$
$$\times\left(1-\exp\left[-K_{m}\cdot I[V_{1},\ldots,V_{k}]\cdot t^{m(\beta+3/2)-1/2}\right]\right),$$

where

$$I[V_1, \dots, V_k] := \sum_{i=1}^k \frac{1}{\sqrt{\det(-G_i)} \prod_{j=1}^m \left(\frac{\partial h(V_i)}{\partial x_{m-1+j}}\right)^{\beta+1}},$$

$$K_m = \frac{2^{(\beta+1/2)m+1/2} \Gamma\left((\beta+\frac{3}{2})m+\frac{1}{2}\right) (\Gamma(\beta+2))^m}{\pi^{\frac{m-1}{2}} m! \Gamma\left(\frac{m+1}{2}\right) \Gamma\left((\beta+\frac{3}{2})m+\beta+\frac{3}{2}\right)}.$$
23

Proposition 1

Under the previous conditions the following relation holds for $\varepsilon \rightarrow 0+:$

$$\mathbb{P}\left[f(U_1,\ldots,U_m) \ge M - \varepsilon\right] = m! \cdot K_m \cdot I[V_1,\ldots,V_k] \cdot \varepsilon^{\beta m + m + \frac{m-1}{2}} (1 + O(\varepsilon)),$$

where K_m and $I[V_1, \ldots, V_k]$ are defined earlier.

Perimeter of convex hull

$$h(\beta_1, \dots, \beta_{m-1}, r_1, \dots, r_m)$$

$$= \sum_{i=1}^m \sqrt{r_{i+1}^2 + r_i^2 - 2r_i r_{i+1} \cos(\beta_{i+2} - \beta_{i+1})},$$

$$\frac{\partial h(V_i)}{\partial x_{m-1+j}} = 2\sin\left(\frac{\pi}{m}\right) \text{ for all } j = m, \dots, 2m-1,$$

$$\det(-G_i) = 2^{1-m} m\left(\sin\left(\frac{\pi}{m}\right)\right)^{m-1}.$$

25/29

Area of convex hull

$$h(\beta_1, \dots, \beta_{m-1}, r_1, \dots, r_m) = \sum_{i=1}^m \frac{r_i r_{i+1} \sin (\beta_{i+2} - \beta_{i+1})}{2},$$

$$det(-G_i) = 2^{1-m} m \left(\sin \frac{2\pi}{m} \right)^{m-1} \text{ for } j = m, \dots, 2m-1,$$

$$\frac{\partial h(V_i)}{\partial x_{m-1+j}} = \sin \frac{2\pi}{m}.$$

What are the further directions of research?

i) Non-bounded distribution of points;

i) Points on *N*-spheres, properties of inscribed and cirscumscribed polyhedra;

ii) Points on convex figures and bodies.

Thank you for your attention!