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U-statistics

The functional Θ on a certain class of distributions {P} on a
measurable space (X ,A) is called regular if it can be written in the
form

Θ(P) =

∫
X
· · ·
∫
X
h(x1, . . . , xm)P(dx1) . . .P(dxm).

Symmetric function h is called a kernel, and the natural number m
is the degree of the functional Θ.
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U-statistics

U-statistics are unbiased estimates of Θ(P) which are defined as
follows. Let ξ1, ξ2, . . . , ξn be i.i.d random variables with common
distribution P and let h(x1, . . . , xm) be the kernel of Θ. Then the
U-statistic of degree m is defined as

Un =

(
n

m

)−1∑
J

h(ξi1 , . . . , ξim).

Here n ≥ m and J = {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ n} is a set
of increasing permutations of indices i1, . . . , im.
U-statistics were first introduced and studied in 1946 -1948 by
Halmos and Hoeffding.
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U −max statistics

We are interested in the following "extremal"counterpart of
U-statistics, which was first studied by Lao and Mayer in 2008.

Definition of U −max statistics

Hn = max
J

h(ξi1 , . . . , ξim).

Examples

1 Largest interpoint distance max1≤i<j≤n |ξi − ξj |, where
ξ1, ξ2, . . . , ξn are i.i.d. points in the d-dimensional unit ball
Bd , d ≥ 2.

2 Largest perimeter max1≤i<j<l≤n peri(Ui ,Uj ,Ul) and largest
area max1≤i<j<l≤n area(Ui ,Uj ,Ul) among all inscribed
triangles whose vertices are formed by triplets of points taken
from the sample U1, . . . ,Un of independent and uniformly
distributed points on the unit circle S .
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Applications

Limiting behavior of the perimeter of inscribed triangle
Let U1,U2, . . . ,Un be independent and uniformly distributed points
on the unit circle S and set

Hn = max
1≤i<j<l≤n

peri(Ui ,Uj ,Ul).

Then for each t > 0

lim
n→∞

P{n3(3
√

3− Hn) ≤ t} = 1− exp

(
− 2t

9π

)
.
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Parametrization

Parametrization
Denote by βi = ∠U1OUi+1.

Consider a function h such that

f (U1, . . . ,Um) = h(β1, . . . , βm−1).
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Conditions on kernel f

• Function f is symmetrical;

• Function h is continuous and can be continuously extended to
a function h : [0, 2π]m−1 → R.
• Function h attains its maximal value M and this maximum is

realized only at a finite number of points
V1, . . . ,Vk ∈ [0, 2π]m−1. It is assumed that all
V1, . . . ,Vk ∈ (0, 2π)m−1.

• There exists δ > 0 such that function h is three times
continuously differentiable in the δ-neighborhood of any
maximum point Vi , i ∈ {1, . . . , k}.
• Denote by Gi the Hessian matrix of function h at the point Vi

Then
det(Gi ) 6= 0 for all i ∈ {1, . . . , k}.
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Conditions on the distribution

• The random points U1, . . . ,Un are independently distributed
on the unit circle S1 with the same probability density function
p(x).

• The density function p is continuous (therefore, we may think
of it as of non-negative continuous 2π-periodic function

p : R→ R+ such that
2π∫
0

p(x) dx = 1).

• There exists at least one maximal point of the kernel (which
we denote by V∗) such that

2π∫
0

[
p(x)

m−1∏
l=1

p(x + V l
∗)

]
dx 6= 0.
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New results

The general form of limit distribution on a circle
Under previous conditions on f and p the following equality holds
for every t > 0:

lim
n→∞

P{n
2m
m−1 (M − Hn) ≤ t} = 1− e−t

m−1
2 ·K ,

where

K =
(2π)

m−1
2

m!Γ
(
m+1
2

) k∑
i=1

 1√
det(−Gi )

2π∫
0

p(x)
m−1∏
l=1

p(x + V l
i ) dx

 .
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Special cases

Let g : [0, 2π]→ R be smooth enough and g ′′(2πm ) 6= 0. Define
symmetric functions f and h as follows:

f (U1, . . . ,Um) = h(β1, . . . , βm−1) =
m∑
i=1

g(βi − βi−1),

where 0 = β0 ≤ β1 ≤ . . . ≤ βm−1 ≤ βm = 2π.

Theorem
Consider the U-max statistics Hn with kernel f . Suppose that this
kernel attains its maximum only at the vertices of a regular m-gon.
Then the previous theorem holds and constant K looks as follows:

K =
(2π)

m−1
2

[∫ 2π
0

∏m−1
l=0 p(x + 2πl

m ) dx
]

m
(
−g ′′

(
2π
m

))m−1
2 Γ

(
m+1
2

)√
m

.

11 / 29



Determinant

Determinant
Recall the definition h(β1, . . . , βm−1) =

∑m
i=1 g(βi − βi−1).

The Hessian matrix at the point V ∗ = (2πm ,
4π
m , . . . ,

2(m−1)
m ) is

G (V ∗) = g ′′
(

2π

m

)


2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 2


Therefore,

det(−G (V ∗)) =

(
−g ′′

(
2π

m

))m−1
·m.
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Examples

Generalised perimeter
• Strictly concave functions g :

f (U1, . . . ,Um) =
m∑
i=1

g (βi − βi−1) ≤ mg

(
βm − β0

m

)
= mg

(
2π

m

)

• Perimeter of an inscribed convex m-gon: g(x) = 2 sin
(
x
2

)
.

• Area of an inscribed convex m-gon: g(x) = 1
2 sin x .
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Examples

Generalised perimeter
• Generalized perimeter f (U1, . . . ,Um) =

∑m
i=1 r(|UiUi+1|)

when r is strictly concave, increasing function:
g(x) = r(2 sin x

2 ).

• Function r(x) = e−axxb(ln
(
x
2

)
)c .Denote by τ(a, b, c) the

function which is equal to 1 if function r is strictly concave
and increasing, and is equal to −1 if function r is strictly
convex and decreasing:

τ(a, b, c) =


(−1)c , if a ≥ 0, b ≤ 0, c ∈ N,
−1, if a ≥ 0, b ≤ 0, c = 0, a2 + b2 6= 0,

1, if a = 0, 0 < b ≤ 1, c = 0.
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The ideas of the proof

Lao–Mayer theorem
For any real number z define the following functions
• pn,z = P{h(ξ1, . . . , ξm) > z}.
• λn,z =

(n
m

)
pn,z .

• τn,z(r) = P{h(ξ1,...,ξm)>z, h(ξ1+m−r ,ξ2+m−r ,...,ξ2m−r )>z}
pn,z

.

Then the following inequality holds:

|P{Hn ≤ z} − e−λn,z | ≤ (1− e−λn,z )×

×
[
pn,z

((n

m

)
−
(
n −m

m

))
+

m−1∑
r=1

(
m

r

)(
n −m

m − r

)
τn,z(r)

]
.
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The ideas of the proof

Corollary
Suppose that for some sequence of transformations
zn : T → R,T ⊂ R, the following conditions hold:
• limn→∞ λn,zn(t) = λt > 0.
• limn→∞ n2m−rpn,zτn,z(r) = 0 for all r ∈ {1, . . . ,m − 1}.

Then for any t ∈ T

lim
n→∞

P(Hn ≤ zn(t)) = e−λt .

The limiting relation limn→∞ λn,zn(t) = λt > 0 implies that
pn,z = O(n−m). Therefore the right-hand side is equal to

O

(
n−1 +

m−1∑
r=1

n2m−rpn,zτn,z(r)

)
.
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The ideas of the proof

Proposition 1
Under previous conditions when ε→ 0+ the following relation
holds true :

P{f (U1, . . . ,Um) ≥ M − ε} = ε
m−1
2 ·m! · K (1 + O(ε)),

where

K =
(2π)

m−1
2

m!Γ
(
m+1
2

) k∑
i=1

 1√
det(Gi )

2π∫
0

p(x)
m−1∏
l=1

p(x + V l
i ) dx

 .
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The ideas of the proof

Checking conditions
Consider the sequence of transformations

zn(t) = M − tn−
2m
m−1 = M − ε.

Then
nmε

m−1
2 = t

m−1
2 .

lim
n→∞

λn,zn(t) = lim
n→∞

n!

m!(n −m)!
P{f (U1, . . . ,Um) > zn(t)} =

=
1

m!
lim
n→∞

n!

nm(n −m)!
nmε

m−1
2 ε−

m−1
2 P{Hm > M − ε} =

=
1

m!
t
m−1
2 m!K = t

m−1
2 K =: λt
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The ideas of the proof

We obtain that

lim
n→∞

P (Hn ≤ zn(t)) = e−λt

for any t > 0. Hence,

lim
n→∞

P
(
Hn ≤ M − tn−

2m
m−1

)
= e−λt .

Therefore, for any t > 0 the following relation is valid:

lim
n→∞

P{n
2m
m−1 (M − Hn) ≤ t)} = 1− e−λt .
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The ideas of the proof

Proposition 2

For each r ∈ {1, . . . ,m − 1} we have the following relation:

n2m−rP{f (U1, . . . ,Um) > zn(t), f (U1+m−r , . . . ,U2m−r ) > zn(t)} → 0,

when n→ +∞.
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Modernization of the conditions on the plane

Conditions on the kernel f
• Denote by βi = ∠U1OUi+1, ri = ‖OUi‖. Consider a function h

such that

f (U1, . . . ,Um) = h(β1, . . . , βm−1, r1, . . . , rm);

• h is continuous and can be continuously extended to a
function h : [0, 2π]n−1 × [0, 1]n → R;
• h attains its maximal value M only at a finite number of

points V1, . . . ,Vk and also we assume that these points satisfy
V1, . . . ,Vk ∈ (0, 2π)m−1 × {1}m

• for any i ∈ {1, . . . , k}, the sub-hessian of h at Vi

corresponding to the first m − 1 arguments is non-degenerate:
detGi 6= 0;
• for any i ∈ {1, . . . , k} ∂h(Vi )

∂xj
6= 0 for j = m, . . . , 2m − 1.
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Modernization of the conditions on the plane

Conditions on the density
We consider beta distribution with density

p(x) =
β + 1

π
· (1− ‖x‖2)β · 1B2(x).
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Distributions in the ball

Limit distribution in the ball
Under the previous conditions on f and p for every t > 0 as n→∞,

P
[
n

m
m(β+3/2)−1/2 (M − Hn) ≤ t

]
=

(
1 + O(n

− 1
(2β+3)m−1 )

)
×
(

1− exp
[
−Km · I [V1, . . . ,Vk ] · tm(β+3/2)−1/2]),

where

I [V1, . . . ,Vk ] :=
k∑

i=1

1√
det(−Gi )

m∏
j=1

(
∂h(Vi )
∂xm−1+j

)β+1
,

Km =
2(β+1/2)m+1/2Γ

(
(β + 3

2)m + 1
2

)
(Γ(β + 2))m

π
m−1
2 m! Γ

(
m+1
2

)
Γ
(
(β + 3

2)m + β + 3
2

) .
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Distributions in the ball

Proposition 1
Under the previous conditions the following relation holds for
ε→ 0+:

P [f (U1, . . . ,Um) ≥ M − ε] =

m! · Km · I [V1, . . . ,Vk ] · εβm+m+m−1
2 (1 + O(ε)),

where Km and I [V1, . . . ,Vk ] are defined earlier.
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Examples

Perimeter of convex hull

h(β1, . . . , βm−1, r1, . . . , rm)

=
m∑
i=1

√
r2i+1 + r2i − 2ri ri+1 cos (βi+2 − βi+1),

∂h(Vi )

∂xm−1+j
= 2 sin

( π
m

)
for all j = m, . . . , 2m − 1,

det(−Gi ) = 21−mm
(

sin
( π
m

))m−1
.
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Examples

Area of convex hull

h(β1, . . . , βm−1, r1, . . . , rm) =
m∑
i=1

ri ri+1 sin (βi+2 − βi+1)

2
,

det(−Gi ) = 21−mm

(
sin

2π

m

)m−1
for j = m, . . . , 2m − 1,

∂h(Vi )

∂xm−1+j
= sin

2π

m
.
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What are the further directions of research?

i) Non-bounded distribution of points;

i) Points on N-spheres, properties of inscribed and cirscumscribed
polyhedra;

ii) Points on convex figures and bodies.
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The end

Thank you for your attention!
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