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U-statistics

The functional © on a certain class of distributions {P} on a
measurable space (X,2l) is called regular if it can be written in the

form
/‘ t/ (X1, - xm) P(dx1) . . . P(dtm). J

Symmetric function h is called a kernel, and the natural number m
is the degree of the functional ©.
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U-statistics

U-statistics are unbiased estimates of ©(P) which are defined as
follows. Let &1,&, ..., &, be i.i.d random variables with common
distribution P and let h(x1,...,xm) be the kernel of ©. Then the
U-statistic of degree m is defined as

n
U,,:(m> Zhg,l,...,g,m J

Here n>mand J={(i1,...,im): 1 <ih <...<in<n}isaset
of increasing permutations of |nd|ces iy ooy im.

U-statistics were first introduced and studied in 1946 -1948 by
Halmos and Hoeffding.
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U — max statistics

We are interested in the following "extremal"counterpart of
U-statistics, which was first studied by Lao and Mayer in 2008.

Definition of U — max statistics

Hn = mJaX h(5117 e 7§im)'
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Definition of U — max statistics
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SENES

@ Largest interpoint distance maxi<j<j<n [& — &j|, where
£1,8,...,&, are i.i.d. points in the d-dimensional unit ball
B4, d>2.

@® Largest perimeter maxi<j<j<j<nperi(U;, U;, U) and largest
area maxi<j<j<i<narea(U;, U;, Uj) among all inscribed
triangles whose vertices are formed by triplets of points taken
from the sample Uy, ..., U, of independent and uniformly
distributed points on the unit circle S.




Applications

Limiting behavior of the perimeter of inscribed triangle

Let Uy, Us, ..., U, be independent and uniformly distributed points
on the unit circle S and set

H, = max peri(U;, U;, U)).

1<i<j<I<n

Then for each t > 0

Tim P(n*(3V3 — Hy) <t} =1 - exp (—;’;)
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Parametrization

Parametrization

Denote by B; = £LUq OU,'+1.

Consider a function h such that

f(Ui,...,Un)=h(B1,...,Bm-1)-
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Conditions on kernel f

® Function f is symmetrical;
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Conditions on kernel f

Function f is symmetrical;

Function h is continuous and can be continuously extended to
a function h : [0,27]™" ! — R.
Function h attains its maximal value M and this maximum is
realized only at a finite number of points
Vi,..., Vi €[0,27]™ L. It is assumed that all
Vi,..., Vi €(0,2r)m L,
There exists 0 > 0 such that function h is three times
continuously differentiable in the d-neighborhood of any
maximum point V;, i€ {1,... k}.
Denote by G; the Hessian matrix of function h at the point V;
Then

det(G;) #0 forall i € {1,..., k}.
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Conditions on the distribution

® The random points Ui, ..., U, are independently distributed
on the unit circle S with the same probability density function
p(x).

® The density function p is continuous (therefore, we may think
of it as of non-negative continuous 2m-periodic function

2w
p: R — Ry such that [ p(x)dx =1).
0

® There exists at least one maximal point of the kernel (which
we denote by V.) such that

2r m—1
/ [p(x) [T px+ V| dx#0.
0 1=1
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New results

The general form of limit distribution on a circle

Under previous conditions on f and p the following equality holds
for every t > 0:

lim P{nm-1(M — H)) <t} =1—et 2 K

n—o00

where




Special cases

Let g : [0,27] — R be smooth enough and g’ (ﬁ) # 0. Define
symmetric functions f and h as follows:

f(Uty..., Un) = h(B1, ..., Bm-1) E:g' — Bi_1),

Where0:50§51§--~§ﬂm—1§ﬂm:2ﬂ'-

Theorem

Consider the U-max statistics H, with kernel f. Suppose that this
kernel attains its maximum only at the vertices of a regular m-gon.
Then the previous theorem holds and constant K looks as follows:

(2m)"7 | Jo TI" plx + 221 dx]
m(~g” (2))7 T (22) vm
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Determinant

Determinant
Recall the definition h(B1, ..., Bm-1) = Y=, &(Bi — Bi—1).

The Hessian matrix at the point V* = (22,42 2(’"7”:1)) is

2 -1 0 0 ...0

1 2 -1 0 ..0

G(V*) = g (27T> 0 -1 2 -1 ..0
m . . . . . :

0 0 0 0 2

Therefore,
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Examples

Generalised perimeter

e Strictly concave functions g :

F(U,.... Un) = Zg(ﬂi —Bi1) < mg <ﬂ’"_ﬂ0>
i=1

m
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® Perimeter of an inscribed convex m-gon: g(x) = 2sin ().
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® Perimeter of an inscribed convex m-gon: g(x) = 2sin ().

® Area of an inscribed convex m-gon: g(x) = sin x.
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Examples

Generalised perimeter
* Generalized perimeter f(Uy,..., Uyn) = > 0 r(|UiUit1])
when r is strictly concave, increasing function:
g(x) = r(2sin 3).
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Examples

Generalised perimeter

* Generalized perimeter f(Uy,..., Uyn) = > 0 r(|UiUit1])
when r is strictly concave, increasing function:
g(x) = r(2sin 3).

* Function r(x) = e=*x"(In (%)).Denote by 7(a, b, c) the
function which is equal to 1 if function r is strictly concave
and increasing, and is equal to —1 if function r is strictly
convex and decreasing:

(-1)¢, ifa>0,b<0,ceN,
7(a,b,c) =< —1, ifa>0,b<0,c=0,a>+b>#0,
1, ifa=00<b<1c=0.
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The ideas of the proof

Lao—Mayer theorem

For any real number z define the following functions
° Pn,z:P{h(fl,...,fm) >Z}.
O AI'l,Z =S (r:")pn7z.

® Th.(r)= P{h(€1,..,Em)>2, h(£1+pr:;r:£2+m—r,...,£2m7,)>z}-

Then the following inequality holds:

|P{Hn, < z} — g Az

one((2) - (NS ()
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The ideas of the proof

Corollary

Suppose that for some sequence of transformations
z,: T — R, T CR, the following conditions hold:

® limp—co )‘n,z,,(t) =X > 0.
® |imp_oo n2m”p,,7z7',,7z(r) =0forall re{l,...,m—1}.
Then forany t € T
lim P(H, < zq(t)) = e .

n—oo

The limiting relation lim,—00 Ap 7,(¢t) = At > 0 implies that
Pnz = O(n™™). Therefore the right-hand side is equal to

m—1
0] (nl + Z n2m'pnjzrn,z(r)> .

r=1
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The ideas of the proof

Proposition 1

Under previous conditions when € — 0+ the following relation
holds true :

P{f(Ur,...,Un) > M—ct ="z -ml-K(1+ O(e)),

where

e & Fom
Kmlr(mZ(mo/”(X) p(x+v,-)dx).




The ideas of the proof

Checking conditions

Consider the sequence of transformations

zp(t) =M — thml = M — e.

Then
nmgmgl _ tm;l
n||—>nclo )\n,Zn(t) = n||_)n<1>o m|(n _ m)|P{f(U17 Tt Um) > Zn(t)} =
1 . n!

— lim 7nmsm7_15_mT_IP{Hm >M—e} =
m! n—oo n™(n — m)!

m—1

1 m—1
=—t2mK=t2z K=\
m!
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The ideas of the proof

We obtain that

lim P(H, < z,(t)) = e

n—o0

for any t > 0. Hence,

2m
lim P (H,, < M- tn—ﬁ) — e N,

n—o0

Therefore, for any t > 0 the following relation is valid:

lim P{nm1(M — Hy) < t)} =1 — e .

n—o0
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The ideas of the proof

Proposition 2

For each r € {1,..., m — 1} we have the following relation:
M PLF(Us, ...y Up) > zo(t), F(Uiim—rs - - -, Usm—r) > za(t)} =10,

when n — +o0.
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Modernization of the conditions on the plane

Conditions on the kernel f
® Denote by ; = ZU;0U; 1, ri = ||OU;||. Consider a function h
such that

f(Ur,...,Un) =h(B1,-- -, Bm=1,M,-- s Im);

N
—_
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® h is continuous and can be continuously extended to a
function h: [0,27]""t x [0,1]" — R;

® h attains its maximal value M only at a finite number of

points V4, ..., V) and also we assume that these points satisfy

Vi,..., Ve € (0,2m)™ L x {1}3m

forany i € {1,..., k}, the sub-hessian of h at V;

corresponding to the first m — 1 arguments is non-degenerate:

det G; # 0;

e forany i€ {1,... k} %}X’) #0 for j=m,....2m—1.
21./29




Modernization of the conditions on the plane

Conditions on the density

We consider beta distribution with density

_ B+l
o7

p(x) (1= [IxI?)? - 1g2(x).
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Distributions in the ball

Limit distribution in the ball

Under the previous conditions on f and p for every t > 0 as n — oo,

IP[WW(M Hp) < ] (1+o( 25+3m1)>

X <1 —exp [~ K- I[Va,..., W] - t'"(/3+3/2>—1/2]),

where

k
1
VA, Vi =) 3hv)>5+1’

i=1 \/det H (8xm "

2B+1/2mHLI2T (8 + ;)m D TB+2)"
T ()T ((B+Hm+5+3)

K =

N
[€N)

29
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Distributions in the ball

Proposition 1

Under the previous conditions the following relation holds for
€ — 0+:

ml - K- 1[4, ..., Vi - PmEmH227 (1 4 O(e)),

where Kp, and I[V4, ..., V)] are defined earlier.
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Examples

Perimeter of convex hull

h(,@l,. 50 ,ﬂm_l, Algoooy rm)

m
= Z \/f,-2+1 + r? = 2ririy1 cos (Biy2 — Bita),
i=1

h(V; . .
M:2s|n(z) for all J:m,...,2m—1,
aXm—l—l—j

det(—G;) =2'""m (sin (1))m71 .

m
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Examples

Area of convex hull

m

rirj sin i — Oj
h(ﬁlu"'aﬁm—l)rlv"‘arm):Z 1 (ﬁ2+2 ﬁ+1)7
i=1
2 m—1
det(—Gj) = 21=mm <sin m> for j=m,...,2m—1,
oh(V)  _ 2r
8Xm_1+j m
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What are the further directions of research?

i) Non-bounded distribution of points;

i) Points on N-spheres, properties of inscribed and cirscumscribed
polyhedra;

ii) Points on convex figures and bodies.
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Thank you for your attention!
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