
On sup-functionals of weighted empirical processes with
applications to inferential problems in high dimensions

Natalia Stepanova, Carleton University

joint work with Tatjana Pavlenko (KTH Royal Institute of Technology),
Yibo Wang (University of Alberta) and Lee Thompson (Carleton University)

Saint Petersburg
August 31, 2021

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 1 / 48



Overview

1 Weighted Kolmogorov–Smirnov (KS) type statistics. Choice of the
class of weight functions

2 Connection to the higher criticism approach

3 Statistical properties of the properly weighted KS statistics

4 Tabulation of the limit cumulative distribution functions

5 Confidence bands

6 Detection of sparse heterogeneous mixtures

7 Attainment of the optimal detection boundary

8 Estimation of the amount of sparsity in mixture models

9 Feature selection by weighted KS fresholding in sparse classification
problems

10 Selected references

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 2 / 48



Preliminaries
Let X1,X2, . . . be a sequence of i.i.d. r.v.’s with a continuous CDF F on
R, and let

Fn(t) = n−1
∑n

i=1
I(Xi ≤ t), t ∈ R,

be the EDF based on X1, . . . ,Xn. By the Glivenko-Cantelli theorem,

sup
x∈R
|Fn(x)− F (x)| a.s.→ 0 as n→∞.

Consider testing the hypothesis of goodness-of-fit

H0 : F = F0

against either a two-tailed alternative H1 : F 6= F0 and/or an
upper-tailed alternative H ′1 : F > F0. Popular test statistics for testing
H0 are:

Dn = sup
0<F0(t)<1

√
n|Fn(t)− F0(t)|, D+

n = sup
0<F0(t)<1

√
n (Fn(t)− F0(t))
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Preliminaries (cont-d)

For specific types of alternatives, the classical goodness-of-fit test
statistics, including the Kolmogorov–Smirnov statistics Dn and D+

n , may
benefit significantly from using proper weights.

Consider the problem of testing H0 versus two-tailed or upper-tailed
alternative by using the weighted Kolmogorov–Smirnov statistics

Dn(q) = sup
0<F0(t)<1

√
n|Fn(t)− F0(t)|

q(F0(t))
,

D+
n (q) = sup

0<F0(t)<1

√
n (Fn(t)− F0(t))

q(F0(t))
,

where function q belongs to some family of weight functions on (0, 1).
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The family of EFKP upper-class functions

Definition 1: Let q be any strictly positive function defined on (0, 1) with
the property q(u) = q(1− u) for u ∈ (0, 1/2), which is nondecreasing in a
neighborhood of zero and nonincreasing in a neighborhood of one. Such a
function is called an Erdős–Feller–Kolmogorov–Petrovski (EFKP)
upper-class function of a Brownian bridge {B(u), 0 ≤ u ≤ 1}, if there
exists a constant 0 ≤ b <∞ such that

lim sup
u→0

|B(u)|/q(u)
a.s.
= b. (1)

An EFKP upper-class function q of a Brownian bridge is called a
Chibisov–O’Reilly function if b = 0 in (1).
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Examples of EFKP upper-class functions
An important example of an EFKP upper-class function with 0 < b <∞
in (1) is the function

q(u) =
√

u(1− u) log log(1/(u(1− u))), 0 < u < 1. (2)

Such a choice of q stems from Khinchine’s local law of the iterated
logarithm, which implies, via the representation of a Brownian bridge in
terms of a standard Wiener process, that

lim sup
u→0

|B(u)|√
u(1− u) log log(1/u(1− u))

a.s.
=
√

2.

As examples of Chibisov–O’Reilly weight functions, we may consider the
following functions on (0, 1):

q(u) =
√
u(1− u) log log(1/(u(1− u))),

qν(u) = (u(1− u))1/2−ν , 0 < ν < 1/2.
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The family of regularly varying functions

Definition 2: Let q be any strictly positive function defined on (0, 1) with
the property q(u) = q(1− u) for u ∈ (0, 1/2), which is nondecreasing in a
neighborhood of zero and nonincreasing in a neighborhood of one. Such a
weight function is called regularly varying with power τ ∈ (0, 1/2] if for
any b > 0

lim
u→0

q(bu)/q(u) = bτ .

The so-called standard deviation proportional (SDP) weight function

q(u) =
√

u(1− u), 0 < t < 1,

is regularly varying with power τ = 1/2, whereas the Chibisov–O’Reilly
function qν(u) = (u(1− u))1/2−ν , ν ∈ (0, 1/2), is regularly varying with
power τ = 1/2− ν.
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Weighted Kolmogorov-Smirnov statistics

The two-sided statistic Dn(q) with an EFKP upper-class function q
appeared for the first time in Csörgő et al. (1986). The following weighted
Kolmogorov–Smirnov type statistics are also of interest. For
0 ≤ a < b ≤ 1, let I = (a, b) and define

Dn(q, I ) = sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(F0(t))
,

D+
n (q, I ) = sup

a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))
,

which, for each n, have the same null distributions as the statistics

sup
u∈I

√
n|Un(u)− u|/q(u) and sup

u∈I

√
n(Un(u)− u)/q(u),

respectively, where Un(u) = n−1
∑n

i=1 I(Ui ≤ u) is the EDF based on i.i.d.
uniform U(0, 1) random variables U1, . . . ,Un.
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Connection to the higher criticism approach

The EDF-based tests standardized by the SDP function
q(u) =

√
u(1− u) have been extensively studied in the literature. If under

H0 the i.i.d. observations U1, . . . ,Un are U(0, 1), a popular statistic of this
kind is the higher criticism statistic

HCn = sup
0<u<α0

√
n(Un(u)− u)√

u(1− u)
, 0 < α0 < 1.

It was introduced by Donoho & Jin (2004) as a competitor to the adaptive
procedure of Ingster (2002) for certain multiple testing situations. The
test based on HCn rejects H0 at level αn → 0 if

HCn > h(n, αn),

where h(n, αn) =
√

2 log log n (1 + o(1)) as n→∞.

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 9 / 48



Connection to the higher criticism approach (cont-d)

The test statistic HCn was derived from the random variable

max
0<α≤α0

√
n (Mn/n − α)√
α(1− α)

,

where Mn is the number of hypotheses among n independently tested
hypotheses H0i : Xi ∼ N(0, 1), i = 1, . . . , n, that are rejected at level α.
Two modifications of HCn due to Donoho & Jin (2004) and Jager &
Wellner (2007) are:

HC+
n = sup

1/n<u<α0

√
n(Un(u)− u)√

u(1− u)
, HC∗n = sup

U(1)<u<U([α0n])

√
n(Un(u)− u)√

u(1− u)
,

where U(k) is the kth smallest element among U1, . . . ,Un.
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Convergence in distribution of the HC statistics

Proposition 1. For any 0 < α0 < 1 and any x ∈ R,

lim
n→∞

P

(
an sup

0<u<α0

√
n|Un(u)− u|√
u(1− u)

− bn ≤ x

)
= e−e

−x
,

lim
n→∞

P

(
an sup

0<u<α0

√
n(Un(u)− u)√

u(1− u)
− bn ≤ x

)
= e−

1
2
e−x

,

where

an =
√

2 log log n, bn = 2 log log n +
1

2
log log log n − 1

2
log(π).

Thus, regardless of a particular value of 0 < α0 < 1, one always has the
same extreme value distribution. Proposition 1 continues to hold for the
modifications HC+

n and HC∗n. It can be used to find the critical values of
the asymptotic level α tests based on HCn and its modifications.

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 11 / 48



Motivation of the study

In the statistical literature, HC-type statistics of the form

sup
k<u<1−k

√
n(Un(u)− u)√

u(1− u)
,

where 0 < k < 1/2 is either a fixed value of a sequence of values tending
to zero as n→∞, are of interest. See, for example, Donoho & Jin (2009),
Fan et al. (2013), Jin & Wang (2016), Ćmiel et al. (2020), etc. In the
sup-norm scenario, when normalizing

√
n(Un(u)− u) by

√
u(1− u), one

arrives at the situation where “all the action takes place on the tails
but, unfortunately, near infinity”. This and the fact that, under H0, the
statistics HCn, HC+

n , and HC∗n tend to ∞ in probability (see Prop. 1), as
well as almost surely (see Ch. 16 in Shorack & Wellner (1986)), motivated
us to search for a better weighed analogue of the HC statistic, for which
the “action is shifted somewhat to the middle, while properly
regulated on the tails” and whose limit distribution depends on α0.
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Motivation of the study (cont-d)

DasGupta (2008), page 611: “It is not clear for what n the asymptotics
(for CHn) start to give reasonably accurate description of the actual finite
sample performance and actual finite sample comparison... Simulations
would be informative and even necessary. But the range in which n has to
be in order that the procedure work well when the distance between the
null hypothesis and alternative so small would make the necessary
simulations time consuming.”
We proposed to use the weighted Kolmogorov–Smirnov test statistics

D+
n (q, I ) = sup

a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))
, I = (a, b) ⊆ (0, 1),

where q is an EFKP upper-class function of a Brownian bridge, as
competitors to HCn and its modifications. In order to perform well, the
test procedures based on D+

n (q, I ) do not require a very large sample size
of n = 106 and work well even for n = 102.
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Convergence in distribution of Dn(q, I ) and D+
n (q, I )

The following extension of Th 4.2.3 in Csörgő et al. (1986) holds true.

Proposition 2. Let q be an EFKP upper-class function of a Brownian
bridge {B(u), 0 ≤ u ≤ 1}. Then, under H0, for any numbers
0 ≤ a < b ≤ 1, as n→∞,

sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(F0(t))
D→ sup

a<u<b

|B(u)|
q(u)

,

sup
a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))
D→ sup

a<u<b

B(u)

q(u)
.

In particular, for the competitor of HCn we have

sup
0<F0(t)<α0

√
n(Fn(t)− F0(t))

q(F0(t))
D→ sup

0<u<α0

B(u)

q(u)
.
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Test procedures based on Dn(q, I ) and D+
n (q, I )

The main advantage of using the family of statistics D+
n (q, I ) over the HC

statistics is the identification of the proper limit distribution under the
null hypothesis. This limit distribution is easily tabulated. Proposition 2
suggests the following test procedures of asymptotic level α. Set

D(q) := sup
0<u<1

|B(u)|/q(u), D+(q) := sup
0<u<1

B(u)/q(u).

The CDF of D(q) is continuous on (−∞,
√

2) ∪ (
√

2,∞), and the CDF of
D+(q) is continuous on R. One would reject H0 in favor of H1 at level α if
Dn(q) > tα(q), where P(D(q) ≥ tα(q)) = α; and one would reject H0 in
favour of H ′1 whenever D+

n (q) > t+
α (q), where P(D+(q) ≥ t+

α (q)) = α.

The tests based on Dn(q) and D+
n (q) are consistent against the

alternatives H1 : F 6= F0 and H ′1 : F > F0, respectively.
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Tabulation of the distribution of supa<u<b B(u)/q(u)

1. Choose a large positive integer n. Generate n independent normal
N(0, 1) random variables.

2. Choose a large positive integer M. Repeat step 1 M times, and for

m = 1, . . . ,M, let X
(m)
1 , . . . ,X

(m)
n denote the data obtained on the

mth iteration.

3. For each m = 1, . . . ,M, calculate the partial sums S
(m)
k =

∑k
i=1 X

(m)
i ,

k = 1, . . . , n.

4. For each m = 1, . . . ,M, find the value of

D
(m)
n = max

k:k/n∈(a,b)

S
(m)
k − (k/n)S

(m)
n

q(k/n)n1/2
.

5. For x ∈ R, use Gn,M(x) = M−1
∑M

m=1 I
(
D

(m)
n ≤ x

)
to approximate

the limit CDF G (x) = P (supa<u<b B(u)/q(u) ≤ x). See Orasch &
Pouliot (2004).
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x G(x) x G(x) x G(x)

0.74 0.01 1.81 0.34 2.57 0.67
0.87 0.02 1.83 0.35 2.60 0.68
0.95 0.03 1.85 0.36 2.63 0.69
1.02 0.04 1.87 0.37 2.66 0.70
1.07 0.05 1.89 0.38 2.69 0.71
1.11 0.06 1.91 0.39 2.72 0.72
1.16 0.07 1.93 0.40 2.76 0.73
1.19 0.08 1.95 0.41 2.79 0.74
1.23 0.09 1.97 0.42 2.83 0.75
1.26 0.10 1.99 0.43 2.87 0.76
1.29 0.11 2.01 0.44 2.91 0.77
1.32 0.12 2.03 0.45 2.95 0.78
1.35 0.13 2.05 0.46 2.99 0.79
1.37 0.14 2.07 0.47 3.03 0.80
1.40 0.15 2.09 0.48 3.08 0.81
1.42 0.16 2.12 0.49 3.13 0.82
1.45 0.17 2.14 0.50 3.18 0.83
1.47 0.18 2.16 0.51 3.23 0.84
1.49 0.19 2.18 0.52 3.29 0.85
1.51 0.20 2.20 0.53 3.35 0.86
1.54 0.21 2.22 0.54 3.42 0.87
1.56 0.22 2.25 0.55 3.48 0.88
1.58 0.23 2.27 0.56 3.55 0.89
1.60 0.24 2.30 0.57 3.62 0.90
1.63 0.25 2.32 0.58 3.70 0.91
1.65 0.26 2.35 0.59 3.79 0.92
1.67 0.27 2.37 0.60 3.89 0.93
1.69 0.28 2.40 0.61 4.00 0.94
1.71 0.29 2.43 0.62 4.14 0.95
1.73 0.30 2.46 0.63 4.30 0.96
1.75 0.31 2.49 0.64 4.48 0.97
1.77 0.32 2.51 0.65 4.73 0.98
1.79 0.33 2.54 0.66 5.16 0.99
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Confidence band based on Dn(q)

Proposition 2 continues to hold for the statistics

sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(Fn(t))
, sup

a<F0(t)<b

√
n(Fn(t)− F0(t))

q(Fn(t))
,

where
√
n|Fn(t)− F0(t)|/q(Fn(t)) = 0 for Fn(t) ∈ {0, 1}, and q is a

continuous EFKP upper-class function. This result makes it possible to
construct an asymptotically correct 100(1− α)% confidence band
[Ln(t),Un(t)] for F (t) on the interval t ∈ [X(1),X(n)), where

Ln(t) = max{0,Fn(t)− cα√
n
q(Fn(t))},

Un(t) = min{1,Fn(t) +
cα√
n
q(Fn(t))},

and cα = H−1(1− α) with H(t) = P

(
sup

0<u<1
|B(u)|/q(u) ≤ t

)
.
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Numerical comparison of confidence bands

The graph below depicts confidence bands for simulated data. The solid
line is the true CDF. The solid lines above and below the middle line are a
95% confidence band [Ln(t),Un(t)]. The red dashed lines are a 95%
Kolmogorov–Smirnov confidence band. The blue dotted lines are a
95% Eicker–Jaeschke confidence band.

The Kolmogorov–Smirnov confidence band is derived from

lim
n→∞

PF

(√
n sup
−∞<t<∞

|Fn(t)− F (t)| ≤ x

)
= K (x),

where K (x) =
∑∞

k=−∞(−1)ke−2k2x2
is the Kolmogorov CDF. The

Eicker–Jaeschke confidence band is obtained from the relation

lim
n→∞

PF

(
an sup

0<F (t)<1

√
n|Fn(t)− F (t)|√
Fn(t)(1− Fn(t))

− bn ≤ x

)
= e−2e−x

.
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Numerical comparison of confidence bands (cont-d)

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=100

When compared to the Kolmogorov–Smirnov confidence band, the
confidence band [Ln(t),Un(t)] is of the same length “in the middle” and is
shorter on the tails. Also, [Ln(t),Un(t)] outperforms the Eicker–Jaeschke
confidence band “in the middle” and does a similar job on the tails.
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Detection of sparse heterogeneous mixtures

An important particular case of a goodness-of-fit testing problem in high
dimensions is that of detecting sparse heterogeneous mixtures. The latter
problem has been extensively studied after the publication of Ingster
(1997). First, consider testing the null hypothesis

H0 : X1, . . . ,Xn
i .i .d .∼ N(0, 1),

i.e., the specified CDF F0 in the hypothesis of goodness-of-fit is the
standard normal CDF, against a sequence of alternatives

H1,n : X1, . . . ,Xn
i .i .d .∼ (1− εn)N(0, 1) + εnN(µn, 1),

where εn ∼ n−β for some sparsity index β ∈ (1/2, 1) and µn =
√

2r log n
with 0 < r < 1. The parameter r may be viewed as a signal strength.
The parameters β and r are assumed unknown, and n→∞.
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Detection of sparse heterogeneous mixtures (cont-d)

The subtlety of this testing problem is seen from the following fact: if
ξ1, ξ2, . . . is a sequence of i.i.d. normal N(0, 1) random variables, then

P

(
max

1≤i≤n
|ξi | ≥

√
2 log n

)
→ 0, n→∞.

Hence, as µn <
√

2 log n, the nonzero means are, in expectation, smaller
than the largest Xi coming from the true component null hypothesis; and
the nonzero means cannot have a visible effect in the upper extremes.
This makes the problem of distinguishing between H0 and H1,n very hard
but yet solvable.

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 22 / 48



Detection of sparse heterogeneous mixtures (cont-d)

In order to apply the previously developed theory to the problem of testing
H0 versus H1,n, we transform the initial observations. Namely, for
i = 1, . . . , n, let Yi = 1− Φ(Xi ) and let G(u) denote a common CDF of
the Yi ’s taking values in [0, 1]. Then the problem of testing H0 versus H1,n

transforms to that of testing

H0 : G(u) = F0(u), the uniform U(0, 1) CDF

against a sequence of upper-tailed alternatives

H1,n : G(u) = F0(u) + εn
(
(1− u)− Φ

(
Φ−1(1− u)− µn

))
> F0(u).

The one-sided weighted Kolmogorov–Smirnov test statistic takes the form

D+
n (q) = sup0<u<1

√
n(Gn(u)− u)/q(u),

where Gn(u) = n−1
∑n

i=1 I(Yi ≤ u).
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Attainment of the detection boundary (cont-d)

Next theorem shows that if the
parameter r is above the detection
boundary r = ρ(β) obtained by Ingster
(1997), where

ρ(β) =

{
β − 1/2, 1/2 < β < 3/4,

(1−
√

1− β)2, 3/4 ≤ β < 1,

then the test procedure based on the

one-sided statistic D+
n (q) distinguishes

between H0 and H1,n. Since D+
n (q)

does not require the knowledge of β and

r , following Donoho & Jin (2004), we

will call such a test procedure optimally

adaptive.

Figure: Two regions connected to
the problem of detecting sparse
heterogeneous mixtures
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Attainment of the detection boundary (cont-d)

Theorem 1. For a weight function q as in (2), consider the test of
asymptotic level α that rejects H0 in favour of H1,n when

D+
n (q) ≥ t+

α (q),

where the critical value t+
α (q) is determined by

P

(
sup

0<u<1
B(u)/q(u) ≥ t+

α (q)

)
= α.

For every alternative H1,n with r > ρ(β), the asymptotic level α test based
on D+

n (q) has a full power, i.e.,

PH1,n(D+
n (q) ≥ t+

α (q))→ 1, n→∞.

In words, when distinguishing between H0 and H1,n, the test procedure
based on D+

n (q) performs optimally adaptively to unknown sparsity
and size of non-null effects. See Stepanova & Pavlenko (2018).
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Detection of sparse heterogeneous mixtures (cont-d)

Another model of interest, which was found to be useful in various
classification problems has the form:

H ′0 : X1, . . . ,Xn
i .i .d .∼ χ2

ν(0),

H ′1,n : X1, . . . ,Xn
i .i .d .∼ (1− εn)χ2

ν(0) + εnχ
2
ν(δn),

where χ2
ν(δ) denotes the noncentral chi-square distribution with ν degrees

of freedom and noncentrality parameter δ, εn ∼ n−β for some β ∈ (1/2, 1),
and δn = 2r log n for some 0 < r < 1. For ν = 2 this model connects to
the problem of detecting covert communications (see Donoho & Jin
(2004)). The parameters β and r are assumed unknown, and n→∞.

The result similar to Theorem 1 holds true: the test procedure based on
D+
n (q) distinguishes between the (transformed) hypotheses H ′0 and H ′1,n.
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Estimation of the sparsity index

The problem of estimating the fraction of nonzero means in sparse
mixture models was studies by several authors. Cai et al. (2007) showed
that, in the detection region, one can consistently estimate the fraction εn
of nonzero means in the model

X1, . . . ,Xn
iid∼ (1− εn)N(0, 1) + εnN(µn, 1), (3)

where εn = n−β for β ∈ (1/2, 1) and µn =
√

2r log n for 0 < r < 1, and
obtained an estimator, called the CJL estimator, with the nearly optimal
rate of convergence. In terms of a common CDF F (t) = Fn,β,r (t) of the
observations X1, . . . ,Xn, the normal mixture model (3) takes the form

F (t) = (1− εn)Φ(t) + εnΦ(t − µn), t ∈ R,

where the parameters µn and εn are as before. The CJL procedure first
estimates the mean µn, and then uses the estimated mean to estimate εn.

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 27 / 48



Estimation of the sparsity index (cont-d)

Numerically, the CJL estimator was found to be better as compared to
that of Meinshausen & Rice (2006). For a given α ∈ (0, 1), the CJL
estimator ε∗an = ε∗an(X1, . . . ,Xn) satisfies

P
(
ε∗an ≤ εn

)
≥ 1− α.

Recalling that εn = n−β, a natural estimator β∗n of the sparsity index β is
then given by

β∗n =
log(1/ε∗an)

log n
.

The quality of the CJL estimator ε∗an depends on a positive parameter an
whose choice depends on a purpose.
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Estimation of the sparsity index (cont-d)

A key step in the construction of ε∗an is the choice of an 100(1− α)%
confidence band for the CDF F (t). In Cai et al. (2007), the proposed
confidence band [F−an(t),F+

an(t)] on [0,
√

2 log n] is chosen so that

F−an(t) ≤ F (t) ≤ F+
an(t) if and only if

√
n|Fn(t)− F (t)|√
F (t)(1− F (t))

≤ an,

where an is the (1− α)th quantile of supt∈[0,
√

2 log n]

√
n|Fn(t)−F (t)|√
F (t)(1−F (t))

. The

lower and upper bounds of this confidence band are obtained by solving
(for F (t)) the equation √

n|Fn(t)− F (t)|√
F (t)(1− F (t))

= an,

and are given by

F±an(t) =
2Fn(t) + a2

n/n ± (an/
√
n)
√

a2
n/n + 4 (Fn(t)− F2

n(t))

2(1 + a2
n/n)

.
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Estimation of the sparsity index (cont-d)

The selection region for the two-point
mixture model

X1, . . . ,Xn
iid∼ (1− εn)N(0, 1) + εnN(µn, 1),

where εn = n−β for β ∈ (0, 1) and

µn =
√

2r log n for r ∈ (0, 4), is shown

on the Figure. The optimal procedure

that provides variable selection with

respect to the maximum Hamming risk

in the selection region depends on β. It

identifies Xj as being a nonzero mean

observation if Xj >
√

(2β + δ) log n for

some positive δ = δn such that δ → 0

and δ log n→∞.

0 0.5 0.75 1

0

1

2

3

4

�

r

Figure: The selection and
detection regions
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Estimation of the sparsity index (cont-d)

In the context of variable selection, dealing with the model

X1, . . . ,Xn
iid∼ (1− εn)N(0, 1) + εnN(µn, 1),

where εn = n−β for β ∈ (0, 1) and µn =
√

2r log n for r ∈ (0, 4), we
modified the CJL estimator ε∗an by using the confidence band [Ln(t),Un(t)]
in place of [F−an(t),F+

an(t)]. The resulting estimator:

1 is a consistent estimator of εn = n−β in the selection region,

2 is easier to compute,

3 has a better rate of convergence.

A faster convergence rate of the new estimator is due to the fact that, at a
given level of confidence 1− α, the confidence band [Ln(t),Un(t)] is
narrower than [F−an(t),F+

an(t)], see Wang & Stepanova (2021+).
Consistent estimation of εn (and of β) in some other (non-normal)
two-point mixture models is also possible (and of interest).
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Why [Ln(t),Un(t)] is better than [F−an(t),F+
an

(t)]?

Since B(u)/q(u) with q(u) =
√

u(1− u) log log(1/(u(1− u))) is a
centered Gaussian process whose trajectories are bounded a.s., by the
Concentration Principe, for any x > 0

P

(
sup

0<u<1

B(u)

q(u)
≥ x

)
≤ 1− Φ

(
x −m

σ

)
,

where m ≈ 2.14 is the median of sup0<t<1 B(t)/q(t) and σ2 =
sup0<u<1 E(B2(u))/q2(u) = 1/log log 4. Hence, using 1− Φ(x) ≤ ϕ(x)/x ,
x > 0, we have for all x > 0

P

(
sup

0<u<1

|B(u)|
q(u)

≥ x

)
≤
√

2 exp
(
−1

2 log log 4 (x −m)2
)

√
π log log 4 (x −m)

.

This entails that [Ln(t),Un(t)] is more accurate than [F−an(t),F+
an(t)].
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Estimation of the sparsity index (cont-d)
The effect of using [Ln(t),Un(t)] in place of [F−an(t),F+

an(t)] is seen from
the following upper bounds. Given α, let cα be such that H(cα) = 1− α,
where H(t) = P (sup0<u<1 |B(u)|/q(u) ≤ t). Assume that αn is a

sequence such that cαn =
(

4 log n
log log 4

)1/2
, n ≥ 2, and consider the estimator

ε̂n = ε̂n,αn , which is defined similar to the CJL estimator ε∗an with
[Ln(t),Un(t)] in place of [F−an(t),F+

an(t)]. Then for all large enough n,
uniformly in (β, r) such that 0 < β < 1 and β < r < 4,

E

(
ε̂n
εn
− 1

)2

≤ C (β, r) (log n)2(log log n)n−1+β,

whereas, for the “optimal” choice of an = 4
√

2π(log n)3/2,

E

(
ε∗an
εn
− 1

)2

≤ C (β, r) (log n)4n−1+β.
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Estimation of the sparsity index (cont-d)

Table: Numerical summary for the new estimator ε̂n in the selection region

α εn ε̂n Ê (ε̂n/εn − 1)2 β̂n
0.01 0.00464 0.00397 0.02082 0.34300

0.05 0.00464 0.00412 0.01254 0.34070

0.1 0.00464 0.00417 0.01024 0.33995

0.5 0.00464 0.00433 0.00436 0.33759

n = 107, M = 100, β = 1/3, and r = 3/4

Table: Numerical summary for the CJL estimator ε∗an in the selection region

α εn ε∗an Ê
(
ε∗an/εn − 1

)2
β∗an

0.01 0.00464 0.00386 0.02869 0.34485

0.05 0.00464 0.00403 0.01753 0.34215

0.1 0.00464 0.00408 0.01468 0.34135

0.5 0.00464 0.00431 0.00507 0.33792
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Classification in high dimensions

Weighted Kolmogorov–Smirnov statistics can be used to clean the data
prior to performing classification in sparse models.

Consider a high-dimensional two-class classification problem with equally

likely classes. Namely, we assume that X
(1)
1 , . . . ,X

(1)
n

iid∼ Np(0,Σ) ≡ Π1,

and X
(2)
1 , . . . ,X

(2)
n

iid∼ Np(µ,Σ) ≡ Π2, where n is much smaller than p. It
is assumed that µ = (µ>[1], . . . ,µ

>
[b])
> 6= 0 and Σ is an unknown

nonsingular covariance matrix of the form

Σ = BlkDiag
(
Σ[1], . . . ,Σ[b]

)
,

where bp0 = p for a given number p0 and each Σ[k] is a p0 × p0

(nonsingular) matrix. It is also assumed that the number of blocks b tends
to infinity, that

n = bθ for some 0 < θ < 1,

and the data are sparse in some sense.
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Classification in high dimensions (cont-d)

Assume that we observe a p-dimensional vector X0, which is independent

of the training samples X
(1)
1 , . . . ,X

(1)
n and X

(2)
1 , . . . ,X

(2)
n , and we know

that the distribution of X0 is either Π1 or Π2.

Problem: to classify the new obs. X0 as coming from either Π1 or Π2.

In an ideal setup, when µ and Σ are known and the classes are equally
likely the optimal classifier that minimizes the risk give by

(1/2)P(misclassifying a Π1 observation as Π2)

+ (1/2)P(misclassifying a Π2 observation as Π1)

has the form
ψ0(X0) = I

{
(X0 − µ/2)>Σ−1µ ≤ 0

}
.

It allocates X0 to Π1 when ψ0(X0) = 1 and to Π2 otherwise.

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 36 / 48



Classification boundary

In the high β-sparsity case when (1− θ)/2 < β < 1− θ, it is known (see
Ingster et al. (2009)) that if r falls below the classification boundary
r = ρ∗(β), where

ρ∗(β) = (1− θ) ρ

(
β

1− θ

)
, (1− θ)/2 < β < 1− θ,

and r = ρ(β) is the detection boundary, then classification is impossible
in the sense that

lim inf
b→∞

inf
ψ

sup
(µ,Σ)∈Mb

R(ψ) = 1/2,

where R(ψ) is either RB(ψ) = (1/2)EΠ2(ψ) + (1/2)EΠ1(1− ψ) or
RM(ψ) = max(EΠ2(ψ),EΠ1(1− ψ)). We say that successful
classification is possible when

lim
b→∞

inf
ψ

sup
(µ,Σ)∈Mb

R(ψ) = 0.
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Related results

Ingster, Pouet, and Tsybakov (2009): in the case of two normal
populations with Σ = σ2Ip×p, constructed classifiers that provide
successful classification for three different regimes when (A) n is fixed
and p →∞; (B) n→∞ as p →∞, log n = o(log p); (C)
log n ∼ θ log p, θ ∈ (0, 1), as p →∞.

Donoho and Jin (2009): claimed that, in the case of two normal
populations with a sparse mean vector µ and common Σ = σ2Ip×p, a
linear classifier with higher criticism thresholding performs well
when n ∼ c(log p)θ, θ ∈ (0, 1), as p →∞ (i.e., in a special case of
scenario (B) above).

Fan, Jin, and Yao (2013): in the case of two normal populations with
a sparse mean vector µ and a sparse precision matrix Σ−1, when
n ∼ pθ, θ ∈ (0, 1), as p →∞, proposed a linear classifier with
innovative higher criticism thresholding whose classification error
tends to zero.
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General form of a classification rule

In the region where (1− θ)/2 < β < 1− θ and ρ∗(β) < r < 4, we propose

to use the classifier ψ̂b = ψ̂b(X0; X
(1)
1 , . . . ,X

(1)
n ; X

(2)
1 , . . . ,X

(2)
n ) given by

ψ̂b = I


b∑

k=1 : ω̂k=1

(X0,[k] − µ̂[k]/2)>Σ̂
−1

[k] µ̂[k] ≤ 0

 ,

where µ̂[k] = 1
n

∑n
j=1 X

(2)
j ,[k] is a natural estimator of µ[k], Σ̂[k] is the

pooled estimator of Σ[k], and ω̂k is a “good” estimator of

ωk = I(kth block is useful)

for k = 1, . . . , b. The kth block is useful if µ>[k]Σ
−1
[k]µ[k] ≥ 2r log b. There

are s = [b1−β] = o(b) useful blocks (which are unknown to us) among the
b blocks in the data. If ψ̂b = 1, then X0 is deemed to be a Π1

observation; if ψ̂b = 0, then X0 is deemed to be a Π2 observation.
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General form of a classification rule (cont-d)

In the high β-sparsity case, when ρ∗(β) < r ≤ β the classification problem
at hand is much harder as compared to the case of β < r < 4, for which a
good solution is available. This is because for r < β the problem of
deciding which blocks are to be included to the classification procedure is
very hard.
The quality of the classifier (see Pavlenko et al. (2021+))

ψ̂b = I


b∑

k=1 : ω̂k=1

(X0,[k] − µ̂[k]/2)>Σ̂
−1

[k] µ̂[k] ≤ 0

 ,

depends strongly on the quality of the “selectors” ω̂k , k = 1, . . . , b, that
decide on which data blocks are useful and are to be retained for
classification purposes.
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General form of a classification rule (cont-d)

The proposed estimator ω̂k of ωk = I(kth block is useful) has the form

ω̂k = I(T̂k,b > t̂), k = 1, . . . , b,

where the statistics {T̂k,b; k = 1, . . . b; b = 2, 3, . . .} are defined as follows:

T̂k,b =
(2n − p0)n

(2n − 1)p0
µ̂>[k]Σ̂

−1

[k] µ̂[k],

and t̂ > 0 is a random threshold level that depends on the training
samples. These statistics are independent within each series and

T̂k,b ∼ Fp0,2n−p0(γk,b), k = 1, . . . , b,

where γk,b = nµ̂>[k]Σ̂
−1

[k] µ̂[k].
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General form of a classification rule (cont-d)

We convert the statistics T̂k = T̂k,b, k = 1, . . . , b, to the observations
taking values on (0, 1):

Uk = 1− Fp0,2n−p0(T̂k ; 0), k = 1, . . . , b

where Fν1,ν2(x ; γ) = P(Fν1,ν2(γ) ≤ x), and put

k̂q = argmax
1≤k≤[α0b]

√
b(k/b − U(k))

q(k/b)
,

where U(k) is the kth order statistic. Returning to the F distributed

observations T̂1, . . . , T̂b, we now define the weighted KS threshold t̂q by

t̂q = F−1
p0

(1− U(k̂q); 0) = T̂(n+1−k̂q).

If T̂k > t̂q, the kth block is deemed useful and hence contributes to ψ̂b.
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Choice of threshold

Why the threshold t̂q = T̂(n+1−k̂q) is reasonable? In terms of a common

CDF F (u) of the Uks, consider the problem of testing

H0 : F (u) = F0(u), the uniform U(0, 1) CDF

versus a sequence of upper-tailed alternatives

H1,b :F (u) = F0(u)+εb

(
(1−u)−Fp0,2n−p0(F−1

p0,2n−p0
(1−u; 0); γ)

)
>F0(u),

where εb = b−β. The choice of the threshold t̂q is based on the fact that
H0 and H1,b are separated by the weighted KS type test statistic

D+
b (q) = max

1≤k≤[α0b]

√
b(k/b − U(k))

q(k/b)

with an EFKP upper-class function q.

Natalia Stepanova, Carleton University Sup-functionals of weighted empirical processesSaint Petersburg August 31, 2021 43 / 48



Numerical summary

Estimated classification error R(ψ̂b) = 1
2EΠ2(ψ̂b) + 1

2EΠ1(1− ψ̂b)

Weight function Rest(ψ̂b)

q1(u) =
√
u(1− u) 0.2786

q2(u) =
√
u(1− u) log log(1/(u(1− u))) 0.2418

q3(u) = (u(1− u))1/4 0.1963

q4(u) =
√
u(1− u) log log(1/(u(1− u))) 0.1721

q5(u) ≡ 1 0.1844

All blocks 0.2122
Only informative blocks 0.0018

b = 104, p0 = 3, β = 0.375, r = 0.25

In the region of ρ∗(β) < r < β, where feature selection is impossible, the
classifier ψ̂b, for which the selection of useful blocks is done by means of
weighted KS thresholding with EFKP upper-class function q4,
provides better classification.
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Graphical representation

Figure: Threshold t̂q = T̂(n+1−k̂q) with four different weight functions q for the

F -distributed observations {T̂k : 1 ≤ k ≤ b} in the region ρ∗(β) < r < β with
θ = 0.5. The threshold t̂q is shown with yellow, green, blue, and red vertical lines
when q is q2, q3, q4, and q1, respectively.
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