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A modified problem by Ya. Yu. Nikitin

The problem setting

Let Xj be independent observations of a r.v. X having a continuous d.f. F .
Consider the problem of testing the hypothesis F = F0 (with F0 a fully
specified d.f.) against the alternative F 6= F0.

One of the classical methods to construct nonparametric goodness-of-fit tests
is using various functionals J [ξn] of the (transformed) empirical process

ξn(s) :=
√
n
(
n−1

n∑
j=1

1{F0(Xj) ≤ s} − s
)
. (1)

To compare different test statistics we consider the so-called Bahadur exact
slope, that is a non-random positive function of the parameter θ which
describes the alternative hypothesis. See Nikitin, 1995, §1.2.



A modified problem by Ya. Yu. Nikitin

The problem setting

Since computing the exact slope is quite a complicated problem, it is often
restricted to the study of the local exact slope, i.e. the asymptotics of the
exact slope as F → F0. Under quite general assumptions this asymptotics has

the form bθ2 as θ → 0, the coefficient b is called local Bahadur index of the
corresponding sequence of test statistics. See Nikitin, 1995, Chapter II.

It follows from the Bahadur–Raghavachari Theorem that for any sequence of
statistics the exact Bahadur slope does not exceed twice the Kullback – Leibler
information. So, the statistics for which the ratio of these two quantities at
least tends to 1 as F → F0, are of particular interest. They are called locally
asymptotically optimal in the Bahadur sense (LAO).

In other words, the LAO statistics have the maximum possible local Bahadur
index for a given family of alternatives.
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The problem setting

For some concrete families of alternatives, such as shift, scale etc.,
the LAO property of the sequence of test statistics is determined by
the null hypothesis F0.

Ya.Yu. Nikitin posed an inverse problem:

To find the distributions for which a given sequence of statistics is LAO.

This problem was discussed in details in Nikitin, 1995, §§6.2-6.3,
and was solved in many cases. However, for some statistics the set
of such distributions turns out to be empty. Let’s explain it.
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The problem setting

Under some regularity conditions, the corresponding d.f. F0 is a solution of the
differential equation

∂

∂θ
Fθ(x)

∣∣
θ=0

= u(F0(x)), (2)

with u one of the leading functions for the sequence of statistics. This means
that the function u maximizes the functional J [u] on the unit ball in the

Sobolev space
◦
W

1
2(0, 1). See Nikitin, 1995, §§6.1 and 2.6.

However for a family with a shift parameter Fθ(x) = F (x+ θ) the equation (2)
can be rewritten as follows:

F ′0(x) = u(F0(x)),

which yields that the function u must be positive on the interval (0, 1). This
requirement holds as well for some other families such as scale families having
the support on the positive half-line.
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The problem setting

For many sequences of test statistics, including classic tests of Kolmogorov,
Watson – Darling, Cramer – von Mises, Anderson – Darling etc., the set of
leading functions contains a function positive on (0, 1), see, e.g., Nikitin, 1995,
§6.2. However it is not true for some more sophisticated statistics.

In such a situation a natural question arises: what is the maximal available
local asymptotic efficiency of such statistics (say, under the shift alternative).

To answer this question, we have to solve a modified problem: to maximize the
corresponding functional J [u] on the set of non-negative functions from the

unit ball in
◦
W

1
2(0, 1).

Notice that the maximizer necessarily vanishes in the interior points of the
interval [0, 1] and hence it corresponds to a distribution with a discontinuous
d.f., which is impossible under the original assumptions. Nevertheless, this
maximizer can be approximated by functions positive on (0, 1). Therefore,
though the found LAO still is not attained, for any ε > 0 there exist
distributions for which it is attained up to ε.



A modified problem by Ya. Yu. Nikitin

Two examples

1. The following integrated analogs of the Watson statistic were introduced in
N. Henze and Ya.Yu. Nikitin (2002):

Ũ2
n =

1∫
0

(
An(s)−

1∫
0

An(t) dt
)2
ds; Ū2

n =

1∫
0

(
An(s)− sAn(1)

)2
ds,

where An(s) =
s∫
0

ξn(t) dt (the process ξn(t) was defined in (1)).

The statistic Ũ2
n was shown to be LAO (under the shift alternative) for the

hyperbolic cosine distribution with density (π cosh(x))−1). At the same time
for the statistic Ū2

n the maximizer in the corresponding extremal problem

J1[u] :=

1∫
0

( x∫
0

u(t) dt− x
1∫

0

u(t) dt
)2
dx→ max;

I[u] :=

1∫
0

(u′(x))2 dx ≤ 1; u(0) = u(1) = 0

(3)

is sign-changing, and therefore this statistic is optimal for no distribution under
the shift alternative.
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Two examples

2. O.A. Podkorytova studied in her PhD thesis (1994), among others, the
statistics Sp,n = ‖νn‖2Lp(0,1)

based on the Deheuvels transformation of the
empirical process

νn(s) = ξn(s) +

s∫
0

ξn(r)

1− r dr − s
1∫

0

ξn(r)

1− r dr.

It was shown that in the corresponding extremal problem (if p =∞, the
integral in J2,p[u] should be replaced by the maximum)

J2,p[u] :=

[ 1∫
0

∣∣∣u(x) +

x∫
0

u(t)

1− t dt− x
1∫

0

u(t)

1− t dt
∣∣∣pdx] 2

p

→ max;

I[u] =

1∫
0

(u′(x))2 dx ≤ 1; u(0) = u(1) = 0

(4)

the maximizing function is sign-changing, and these statistics are not LAO for
the shift alternative under any distribution.
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Statistic Ū2
n

We are searching for the maximum in the extremal problem (3) under the extra
condition u ≥ 0. By standard variational argument, the maximum in this
problem is attained. Moreover, by the homogeneity of the functionals I and J1

we can consider an equivalent problem

P1[u] :=
J1[u]

I[u]
→ max; u ≥ 0; u 6≡ 0; u(0) = u(1) = 0.

The necessary condition of maximum is (here λ = P−1
1 [u] > 0)

1

2
d(λJ1 − I)[u]η ≡ 〈u′′, η〉+ λ

1∫
0

f1(x)η(x) dx ≤ 0 (5)

for all variations η ∈
◦
W

1
2(0, 1) such that u+ η ≥ 0. Here u′′ is understood in

the sense of distributions, and

f1(x) =

1∫
x

(U(t)− tU(1)) dt−
1∫

0

(tU(t)− t2U(1)) dt; U(x) =

x∫
0

u(t) dt.
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The steps to solution

We prove that u′′ + λf1 ≤ 0 in the sense of distributions. Hence u′′ is a
measure (a charge), and moreover its singular component is non-positive.

A set where u > 0 is an at most countable union of intervals. At any of
these intervals I we have in fact −u′′ = λf1. Thus, the support of the
singular component of the measure u′′ is contained in a set where u = 0.

We prove that u′′ has no singular component at all. Therefore, u′ is
continuous on [0, 1]. Therefore, at the ends of each interval I, besides the
condition u = 0, we also have u′ = 0 (except maybe the points 0 and 1).

We prove that there is only finite number of intervals I. The complement
of the closure of these intervals consists of a finite number of intervals, on
which u′′ = 0 holds, and therefore u′′ is piecewise continuous on [0, 1].
Note that this complement is non-empty. Otherwise the function u would
maximize the functional P1[u] without the restriction u ≥ 0, which is impossible
due to Henze and Nikitin.
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The steps to solution (cont.)

If there is an isolated segment [x0, x1] ⊂ (0, 1) on which the equation
−u′′ = λf1 holds then we can move it by a sufficiently small number h,
keeping the other segments in place. Direct calculation gives that
P1[uh] > P1[u], which is impossible.
Thus, only three variants remain:

1 −u′′ = λf1 on [0, x0] and u = 0 on [x0, 1];
2 −u′′ = λf1 on [x1, 1] and u = 0 on [0, x1];
3 −u′′ = λf1 on [0, x0] and on [x1, 1], and u = 0 on [x0, x1].

The variants 1 and 2 are equivalent by symmetry. Further, we show that
the variant 3 is unprofitable.

We differentiate the equation −u′′ = λf1 twice and obtain

uIV (x) = λ
(
u(x)−

1∫
0

u(t) dt
)
.
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Completion of the solution

uIV (x) = λ
(
u(x)−

1∫
0

u(t) dt
)
. (6)

A general solution of (6) for positive λ is

u(x) = c1 cosh(kx) + c2 sinh(kx) + c3 cos(kx) + c4 sin(kx) + c5, k4 = λ.

This solution should satisfy two boundary conditions at zero, two boundary
conditions at x0 and two matching conditions. This gives the nonlinear system
for parameters k and x0 ∈ (0, 1):

sin
(kx0

2

)
sinh

(kx0

2

)
·
[

tanh
(kx0

2

)
+ tan

(kx0

2

)
+ k(1− x0)

]
= 0. (7)

(6− 3k
2
x
2
0) tan

(kx0

2

)
− (6 + 3k

2
x
2
0) tanh

(kx0

2

)
+ k

3
(2− 6x0 + 3x

2
0 + x

3
0)− 6k(1− x0) tan

(kx0

2

)
tanh

(kx0

2

)
= 0.

(8)

The solution u(x) is determined up to a multiplicative constant.
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Completion of the solution

The system (7)–(8) has no solutions with k ∈ (0, π) and has a unique solution
with k ∈ (π, 2π): k̂ ≈ 5.21579 and x̂0 ≈ 0.767426. The graph of the
corresponding maximizer u is given on the figure.

Since λ = k̂4 takes the minimal possible value, the function u maximizes the functional P1

under given restrictions, and the maximal value is k̂−4 ≈ 0.0013512.

The optimal local index for Ū2
n, computed in Henze and Nikitin, equals ≈ 0.0019977. Thus

the available local asymptotic efficiency of the statistic Ū2
n under the shift alternative is more

than 67% from the optimum.
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Statistic S∞,n

We are interested in the maximum in the extremal problem

J2,∞[u] := max
[0,1]

(
u(x) +

x∫
0

u(t)

1− t dt− x
1∫

0

u(t)

1− t dt
)2
→ max;

I[u] =

1∫
0

(u′(x))2 dx ≤ 1; u ≥ 0; u(0) = u(1) = 0.

(9)

Again, the standard variational argument shows the maximum in this problem
is attained.
We proceed in two steps. First find the maximum of an auxiliary functional

J̃2,∞[u] =
(
u(x∗) +

x∗∫
0

u(t)

1− t dt− x∗
1∫

0

u(t)

1− t dt
)2
,

where x∗ ∈ (0, 1) is fixed. Then maximize the result in x∗ ∈ (0, 1).
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Statistic S∞,n

The necessary condition of maximum is (here λ = I[u]
/
J̃2,∞[u] > 0)

1

2
d(λJ̃2,∞ − I)[u]η ≡ 〈u′′ + λf2, η〉 ≤ 0 (10)

for all variations η ∈
◦
W

1
2(0, 1) such that u+ η ≥ 0. Here u′′ is understood in

the sense of distributions, and f2 a measure (a charge)

f2(x) = (v(x∗)− x∗v(1))
[
δ(x− x∗) +

1

1− x
(
χ[0,x∗](x)− x∗

)]
;

hereinafter

v(x) = u(x) +

x∫
0

u(t)

1− t dt (11)

is the Khmaladze transform of u.
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The steps to solution

As before, we obtain u′′ + λf2 ≤ 0 in the sense of distributions. Therefore
u′′ is a measure (a charge), and its singular component is non-positive.
Next, on each interval I where u > 0 we have −u′′ = λf2.

As before, we deduce that u′′ + λ(v(x∗)− x∗v(1))δ(· − x∗) has no
singular component. So, u′ is continuous on [0, 1] \ {x∗}, and, besides the
condition u = 0, the condition u′ = 0 holds on every interval I, except
maybe for 0 and 1.

We prove that there is a unique interval I. So, we have

−u′′ = λf2 on [0, x0] and u = 0 on [x0, 1].

Moreover, 0 < x∗ < x0 < 1, as otherwise the function u would maximize
the functional without the restriction u ≥ 0, which is impossible due to
Podkorytova.
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The steps to solution (cont.)

We solve the differential equations on [0, x0] subject to the boundary
conditions and matching conditions. This gives a nonlinear equation for x∗
and x0:

G(x∗, x0) ≡ x0 + ln(1− x0)− ln(1− x∗)/x∗ = 0. (12)

The solution u(x) is determined up to a multiplicative constant.

On the next step, we maximize in x∗ the quantity λ−1. After some
simplifications we arrive at the problem

F (x∗, x0) ≡ x∗ − 2x2∗ + x2∗x
2
0 → max

under the condition (12).

We show that this problem a single critical point, namely a global
maximum.
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Statistic S∞,n

Left: G = 0 (in yellow) and the Euler–Lagrange equation ∇F ‖ ∇G (in blue).

Right: the graph of the maximizer u.

Approximate computation gives x̂∗ ≈ 0.4310514, x̂0 ≈ 0.88889, and the
maximal value equals ≈ 0.20625.

The optimal local index for S∞,n, found in Podkorytova, equals 0.25. Thus,
the available local asymptotic efficiency of the test statistics S∞,n under the
shift alternative is 82% from the optimal.


