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Introduction. Branching Random Walks

Branching random walks are extremely useful in the study of stochastic
systems with birth, death and migration of their elements.

The principal attention will be paid to the properties of branching random
walks on multidimensional lattice Zd , d ∈ N.

We will be mainly interested in the problems related to the limiting behavior of
branching random walks such as

I existence of phase transitions under change of various parameters,
I the properties of the limiting distribution of the particle population,
I existence and the shape of the propagating fronts of particles,
I etc.



Introduction. Branching Random Walks

The answer to these and other questions heavily depends on numerous factors
which affect the properties of a branching random walk.

We describe, how the properties of a branching walk depend on

I the homogeneity or non homogeneity of the branching media,
I the number and mutual disposition of the branching sources,
I the symmetry or non symmetry of the branching walk,
I the finiteness or infiniteness of the variance of jumps.

We present also some results of computer simulation of branching random
walks and discuss how they may be applied to numerical estimation of various
characteristics describing the properties of the phase transitions.



Introduction. The method of moments

It is shown how the growth of the limiting moments of the number of
particles at each point of Zd , d ∈ N, corresponds to the limiting structure of
the particle field under various assumptions on intensities of generation and
transport of particles.

The key question is in which cases the boundedness (in time) of normalized
moments of the number of particles guarantees the uniqueness of the
probability distribution and, as a consequence, convergence in distribution to a
certain limiting random variable.

Limit theorems on the behavior of branching random walks in homogeneous
and inhomogeneous media can be proved using by the method of moments.



Random walk

Let
A = ‖a(x , y)‖x,y∈Zd

be the infinitesimal transition matrix. The random walk is assumed to possess
the following properties

I symmetry: a(x , y) = a(y , x);
I homogeneity: a(x , y) = a(0, y − x) = a(y − x);
I a(x) ≥ 0 for x 6= 0, −∞ < a(0) < 0,

∑
x∈Zd

a(x) = 0;

I irreducibility: every point y ∈ Z d is reachable, i.e., for every z ∈ Zd there
exists a set of vectors z1, z2, . . . , zk ∈ Zd such that z =

∑k
i=1 zi and

a(zi ) 6= 0 for i = 1, 2, . . . , k .
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The transition probability

The random walk transition probability p(t, x , y) satisfies the system of
differential-difference equations (Kolmogorov’s backward equations)

∂p

∂t
= Ap, p(0, x , y) = δy (x),

where the (linear) operator A (the generator of the random walk) acts with
respect to variable x as follows:

Ap(t, x , y) :=
∑
x′∈Z d

a(x , x ′)p(t, x ′, y).



The Green Function

The Green function Gλ(t, x , y) for p(t, x , y) is defined as follows:

Gλ(t, x , y) :=

t∫
0

e−λup(u, x , y) du, λ ≥ 0.

Analysis of random walks depends on whether the value of

G0 = G0(0, 0) = limt→∞ G0(t, 0, 0) =
∞∫
0
p(u, 0, 0) du is finite or infinite.

Recall that a random walk is called transient if G0 <∞ and recurrent if
G0 =∞.



Assumptions on Variance of Random Walk Jumps

In what follows, we will assume that the function a(·) satisfy one of the
following two different conditions:

1. either
∑
z
|z |2a(z) <∞, where |z | is Euclidean norm of a vector z ;

2. or a(z) ∼
H( z

|z| )
|z|d+α , α ∈ (0, 2), where H(·) is continuous positive and

symmetric on the sphere Sd−1 = {z ∈ Rd : |z | = 1} function.

Under Assumption 1: G0 =∞ for d = 1, 2 and G0 <∞ for d ≥ 3.

Under Assumption 2:
∑
z
|z |2a(z) =∞ which implies infinite variance of

jumps. In this case G0 =∞ for d = 1 and α ∈ [1, 2), while
G0 <∞ for d = 1 and α ∈ (0, 1) or d ≥ 2 and α ∈ (0, 2).



Transition probabilities under Assumption 1

Theorem

For all x , y ∈ Zd , d ≥ 1 transition probabilities have the following form

p(t, x , y) ∼ γd

t
d
2

as t →∞,

where γd =
(
(2π)dDd

)−1/2, Dd = | detφ′′θθ(0)|, φ(θ) =
∑

x a(x)e i(x,θ).

Lemma

For t →∞ we get

G (t) := G0(t, 0, 0) ∼


2 γ1
√
t for d = 1,

γ2 ln t for d = 2,

Cd <∞ for d ≥ 3.



Transition probabilities under Assumption 2

Theorem

For all x , y ∈ Zd , d ∈ N, and 0 < α < 2, transition probabilities have the
following form

p(t, x , y) ∼ hα,d

t
d
α

as t →∞,

where hα,d > 0 is some constant.

Lemma

For t →∞ we get

G (t) := G0(t, 0, 0) ∼


hα,1

α
α−1 t

1− 1
α for d = 1, 1 < α < 2;

h1,1 ln t for d = 1, α = 1;

hα,d <∞ for d = 1, 0 < α < 1 and d ≥ 2.



The sojourn time of the random walk at the lattice point

Let

ξt :=

t∫
0

I{X (s)∈0} ds.

be the sojourn time of a trajectory of the random walk X (t) at the origin
during the time interval (0, t].



Random walks with a finite variance of jumps

Theorem

Let Assumption 1 be valid and x ∈ R+.

If d = 1 (the recurrent case) then

lim
t→∞

P
[

2ξt√
π G(t)

≤ x

]
=

1√
π

x∫
0

e−
t2
4 dt.

If d = 2 (the recurrent case) then

lim
t→∞

P
[
ξt

G(t)
≤ x

]
= 1− e−x .

If d ≥ 3 (transient cases) then

lim
t→∞

P
[
ξt

G(t)
≤ x

]
=

{
1 for x ≥ 1,

0 for 0 ≤ x < 1.



Random walks under Assumption 2: case of infinite variance
Theorem

Let Assumption 2 be valid and x ∈ R+.

If d = 1 and 1 < α < 2 (the recurrent case) then

lim
t→∞

P
[

ξt
Γ(2− 1/α)G(t)

≤ x

]
= P

(
ζ1− 1

α
≤ x

)
,

where r.v. ζ1− 1
α

has the Mittag-Leffler distribution where

P
(
ζ1− 1

α
≤ x

)
=

1
πθ

∫ x

0

∞∑
j=1

(−1)j−1

j!
sin (πθj) Γ(θj + 1)y j−1 ds.

If d = 1 and α = 1 (the recurrent case) then

lim
t→∞

P
[
ξt

G (t)
≤ x

]
= 1− e−x .

If d ≥ 1, 0 < α < 1, or d ≥ 2 (transient cases) then

lim
t→∞

P
[
ξt

G(t)
≤ x

]
=

{
1 for x ≥ 1,

0 for 0 ≤ x < 1.



Informal Description of BRWs on Zd with a few branching sources

I An initial distribution of particles is given (e.g., the population of
individuals is initiated at time t = 0 by a single particle at a point
x ∈ Zd).

I Being outside of the sources the particle performs a continuous time
random walk on Zd until reaching one of the sources.

I At a source it spends an exponentially distributed time and then either
jumps to a point y ∈ Zd (distinct from the source) or dies producing just
before the death a random number of offsprings.

I The newborn particles behave independently and stochastically in the
same way as the parent individual.



Example. BRW on Z2 with four sources of branching



Branching process at the source

The branching mechanism at the source is governed by the infinitesimal
generating function

f (u) :=
∞∑
n=0

bnu
n, 0 ≤ u ≤ 1,

where
b1 < 0, bn ≥ 0, n 6= 1,

∑
n

bn = 0.

Suppose that
βr := f (r)(1) <∞, r ∈ N, β := β1.



Objects of study

Let µt(y) be the number of particles at the point y ∈ Zd at the instant t, then

µt :=
∑
y

µt(y)

be the total number of particles (the population size) at the instant t and

mn(t, x , y) := Exµ
n
t (y),

mn(t, x) := Exµ
n
t , n ∈ N,

where Ex denotes the mathematical expectation under the condition
µ0(·) = δx(·).



The Main Equations

The moments mn satisfy the chain of evolution equations:

∂mn

∂t
= Hβmn + δ0(x)gn(m1, . . . ,mn−1),

with the initial conditions mn(0, x , y) = δy (x), mn(0, x) ≡ 1, respectively.
Here

gn(m1, . . . ,mn−1) :=
n∑

r=2

βr
r !

∑
(i1,...,ir )

n!

i1! . . . ir !
mi1 . . .mir ,

where the second sum is taken over the integer r -tuples with i1, . . . , ir > 0,
i1 + · · ·+ ir = n.

For n = 1, we have g1 ≡ 0, so that ∂m1/∂t = Hβm1.



The critical point

The operator A in `2(Zd) has only the essential spectrum

σ(A) = [min
θ
φ(θ), 0], φ(θ) :=

∑
x

a(x)e i(x,θ), θ ∈ [−π, π]d ,

which coincides with the essential spectrum of the operator

Hβ = A+ βδ0(x).

Furthermore, for β > βc the operator H has the unique eigenvalue λ0 > 0,
which is a unique root of the equation

βGλ(0, 0) = 1,

where Gλ(0, 0) := limt→∞ Gλ(t, 0, 0) =
t∫
0
e−λup(u, 0, 0) du for λ ≥ 0.



The critical point

Put
βc := 1/G0(0, 0).

Under Assumption 1: G0 =∞ for d = 1, 2 and G0 <∞ for d ≥ 3. Therefore

βc = 0 for d = 1, 2,

βc > 0 for d ≥ 3.

Under Assumption 2: G0 =∞ for d = 1 and α ∈ [1, 2). G0 <∞ for d = 1
and α ∈ (0, 1) or d ≥ 2 and α ∈ (0, 2). Therefore

βc = 0 for d = 1 and α ∈ [1, 2),

βc > 0 for d = 1 and α ∈ (0, 1) or d ≥ 2 and α ∈ (0, 2).



Criticality

The point βc is critical since the asymptotic behavior of the process is
essentially different for

I β > βc ,
I β = βc ,
I β < βc .
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Asymptotics of the moments under Assumption 1

For t →∞, the moments mn have the following asymptotics:

mn(t, x , y) ∼ C d
n (x , y)un(t), mn(t, x) ∼ C d

n (x)vn(t),

where C d
n (x , y),C d

n (x) are the positive constants, and

If β > βc then un(t) = vn(t) = enλ0t for all d .

If β = βc then

un(t) = t−1/2(ln t)n−1, vn(t) = t(n−1)/2 for d = 1;

un(t) = t−1, vn(t) = (ln t)n−1 for d = 2;

un(t) = t−1/2(ln t)n−1, vn = tn−1/2 for d = 3;

un(t) = tn−1(ln t)1−2n, vn = t2n−1(ln t)1−2n for d = 4;

un(t) = tn−1, vn(t) = t2n−1 for d ≥ 5.

If β < βc then

un(t) = t−3/2, vn(t) = t−1/2 for d = 1;

un(t) = (t ln2 t)−1, vn(t) = (ln t)−1 for d = 2;

un(t) = t−d/2, vn(t) ≡ 1 for d ≥ 3.



Asymptotics of the moments under Assumption 2 (Rytova & Y., 2019)

For t →∞ the moments mn have the following asymptotics:

mn(t, x , y) ∼ Cn(x , y)un(t), mn(t, x) ∼ Cn(x)vn(t),

where
un(t) = enλ0t , vn(t) = enλ0t if β > βc , d/α ∈ (1/2,∞);
un(t) = t−1/α, vn(t) = t(1−1/α)(n−1) if β = βc , d/α ∈ (1/2, 1);
un(t) = t−1, vn(t) = (ln t)n−1 if β = βc , d/α = 1;
un(t) = td/α−2, vn(t) = t(d/α−1)(2n−1) if β = βc , d/α ∈ (1, 3/2);
un(t) = t−1/2(ln t)n−1, vn(t) = tn−1/2 if β = βc , d/α = 3/2;
un(t) = t(d/α−2)(2n−1)+n−1, vn(t) = t(d/α−1)(2n−1) if β = βc , d/α ∈ (3/2, 2);
un(t) = tn−1(ln t)1−2n, vn(t) = t2n−1(ln t)1−2n if β = βc , d/α = 2;
un(t) = tn−1, vn(t) = t2n−1 if β = βc , d/α ∈ (2,∞);
un(t) = t 1/α−2, vn(t) = t 1/α−1 if β < βc , d/α ∈ (1/2, 1);
un(t) = t−1 ln−2 t, vn(t) = ln−1 t if β < βc , d/α = 1;
un(t) = t−d/α, vn(t) = 1 if β < βc , d/α ∈ (1,∞),

and λ0, Cn(x , y), Cn(x) are some positive constants.



The limit theorem (without any restrictions on the variance of the walk
jumps)

If β > βc then, in the sense of convergence of all moments,

lim
t→∞

µt(y)e−λ0t = ξψ0(y),

lim
t→∞

µte
−λ0t = ξ,

where ξ is a non-degenerate random variable such that Exξ
n = C d

n (x) and

ψ0(x) = λ0Gλ0(x , 0).

Moreover, under the condition βn ≤ const · n!nn−1 the moments Cn(x)

uniquely determine the distribution of ξ, so that the results are also valid in
the sense of convergence in distribution.



Carleman’s condition

Let {mn} be the moment sequence of a random variable X ≥ 0, and

∞∑
n=1

m−1/(2n)n =∞

Then both the distribution function F and the random variable X are uniquely
determined by the moments {mn}, or, as commonly stated, the random
variable X is M-determinate.

One more significant example of the use is a limit theorem for the random
branching walks theory: a random variable arises as a limit of other random
variables and its moment asymptotic behaviour is known. In this case, some
tool is needed to check whether the distribution of this limiting variable is
unique or not.



Fréchet–Shohat Theorem

It is worth noting that to know if a distribution is M-determinate or
M-indeterminate is of interest by itself. Moreover, the M-determinacy property
is essential in the proof of limit theorems. It is appropriate to recall the
following theorem.

Theorem (Fréchet–Shohat)

Let FN , N = 1, 2, . . ., be a sequence of distribution functions such that for
each of them all moments are finite and the following limits exist:

lim
N→∞

mn,N = lim
N→∞

∫
xn dFN(x) = mn, n = 1, 2, . . . .

Then the following two statements are true:

(i) {mn} is a moments sequence of some distribution function, say F∗;

(ii) if {mn} uniquely determines F∗, the weak convergence FN
d→ F∗,

N →∞, holds.



Irregular growth of the moments

In the case β ≤ βc, the growth of the moments for µt and µt(y) appears to be
irregular with respect to the number n of the moment.

This means that the behavior of the random variables µt and µt(y) as t →∞
substantially differs from the behavior of the moments.

Let νt(0) be the number of particles, which visited the origin during the time t.

For β = βc = 0 (a case of recurrent critical BRWs) we obtain

νt(0) =

t∫
0

I{X (s)∈0} ds.



Recurrent critical BRWs with a finite variance of jumps

Let Assumption 1 be valid, βc = 0, and x ∈ [0,∞). If d = 1 then

lim
t→∞

P

[
2νt(0)

√
π
∫ t

0 m1(s, 0, 0) ds
≤ x

]
=

1√
π

x∫
0

e−
t2
4 dt.

If d = 2 then

lim
t→∞

P

[
νt(0)∫ t

0 m1(s, 0, 0) ds
≤ x

]
= 1− e−x .



Recurrent critical BRWs. The case of infinite variance of jumps

Let Assumption 2 be valid, βc = 0, and x ∈ [0,∞).

If d = 1 and 1 < α < 2 then

lim
t→∞

P

[
νt(0)

Γ(2− 1/α)
∫ t

0 m1(s, 0, 0) ds
≤ x

]
= P

(
ζ1− 1

α
< x

)
,

where r.v. ζ1− 1
α
has for ψ = 1− 1

α the density of the Mittag-Leffler
distribution:

gψ(y) =
1
πψ

∞∑
j=1

(−1)j−1

j!
sin (πψj) Γ(ψj + 1)y j−1.

If d = 1 and α = 1 then

lim
t→∞

P

[
νt(0)∫ t

0 m1(s, 0, 0) ds
≤ x

]
= 1− e−x .



One of the contemporary trends

is to investigate the limit behavior of µ(t, x , y) when both coordinates, t and
y , may vary, that is to undertake the spatio-temporal analysis of the
evolution of the system.



Zones of various types of asymptotics of the first moments in a critical
branching environment

For n = 1 and βc = 0 we have the equation ∂m1/∂t = H0m1 with the initial
conditions mn(0, x , y) = δy (x).

Consider a special case of a simple symmetric random walk H0 = κ∆, κ > 0,
where (∆u)(z) :=

∑
|z′−z|=1(u(z ′)− u(z)), u ∈ lp(Zd).

The moment m1(t, z) := m1(t, x , y) = m1(t, 0, y − x) can be represented as
follows:

m1(t, z) =
e
∑d

j=1

(
−

z2j
4κt +

z4j
192κ3t3−

z6j
2560κ5t5 +O

( z8j
t7

))
(4πκt)

d
2

4
√∏d

j=1

(
1 +

z2
j

4κ2t2

) (1 + νd(2κt, z)) (1)

here νd(2κt, z)→ 0 as t2 + z2j →∞. To study the different zones of the
asymptotic behavior of the m1(t, z), we will need to know the scale of
variation of m1(t, z) as t →∞ and z →∞, where z takes values of order tα

with various α ≥ 0.



Zone c1t
1/2 ≤ |z | ≤ c2t

1/2

From (1), for a fixed z , we have the asymptotic equality

m1(t, z) ∼ (4πκt)−
d
2 , t →∞. (2)

In view of (1), representation (2) holds not only for a fixed z , but also for all z
satisfying |z | t−1/2 → 0. In particular, representation (2) holds for all z such
that |z | ≤ c tα, where 0 ≤ α < 1

2 . From (1) it follows, in particular, that

m1(t, z) ∼ e−
|z|2
4κt (4πκt)−

d
2 , t →∞ (3)

if |z | has the same growth order as t1/2, i.e., for some c1, c2 > 0 satisfying
condition c1t

1/2 ≤ |z | ≤ c2t
1/2.



Zone of moderate deviations of the random walk

In view of (1), representation (3) holds not only for z satisfying the condition
c1t

1/2 ≤ |z | ≤ c2t
1/2 for some c1, c2 > 0, but also for all z satisfying

c1t
1/2 ≤ |z | and

∑d
j=1 z

4
j t
−3 → 0, where the second relation is equivalent to

the condition |z | t−3/4 → 0 as t →∞. In particular, representation (3) holds
for all z such that c1t1/2 ≤ |z | and |z | ≤ c tα, where 1

2 ≤ α <
3
4 . So,

relation (3) already includes the case of moderate deviations of the random
walk.

In the case where the variable |z | has the same growth order as t3/4, from (1)
under the condition c1t

3/4 ≤ |z | ≤ c2t
3/4 with arbitrary c1, c2 > 0 we have the

asymptotic representation

m1(t, z) ∼ e−
|z|2
4κt +

∑d
j=1

(zj )
4

192κ3t3 (4πκt)−
d
2 , t →∞. (4)

Note that there exists a constant B such that, for |z | ≤ B t3/4,

m1(t, z) ≥ Cde
−Bd

√
tt−

d
2 , Cd > 0, Bd > 0, t →∞, (5)

where Cd and Bd are some constants depending on the dimension of the
lattice.



Zone of moderate deviations of the random walk

Another appeal to (1) shows that representation (4) holds not only for z
satisfying the condition c1t

3/4 ≤ |z | ≤ c2t
3/4 for some c1, c2 > 0 and as

t →∞, but also for z satisfying the relations c1t3/4 ≤ |z | and∑d
j=1 z

6
j t
−5 → 0 as t →∞, of which the second one is equivalent to the

condition |z | t−5/6 → 0 as t →∞. In particular, representation (4) holds for
all x and y satisfying the relations c1t3/4 ≤ |z | and |z | ≤ c tα, where
3
4 ≤ α <

5
6 . It should be noted that (5) ceases to hold in the case where

c1t
α ≤ |z | ≤ c2t

α, but 3
4 < α < 5

6 .



Zones of various types of the asymptotics of m1(t, z)



Zone |z | = |y − x |

Finally, to analyze the setting when |z | has the same growth order as t, we will
use not representation (1), but rather a more precise formula, which implies
the asymptotic representation

m1(t, z) ∼ e
−

∑d
j=1 yj arcsinh(

zj
2κt )+2κt

∑d
j=1

(√
1+

z2
j

4κ2t2−1
)

(4πκt)d/2
4
√∏d

j=1

(
1 +

z2
j

4κ2t2

) , t →∞

for some c1, c2 > 0 under the condition c1t ≤ |z | ≤ c2t. By (1) for α = 1 we
have the inequality m1(t, z) ≥ Fde

−Kd tt−
d
2 for some Fd ,Kd > 0.



Structure of the particle population in a critical branching environment
with a given initial number of particles

Consider a lattice population model, that is a random field n(t, ·) of particles
on Zd , d ≥ 1, where n(t, y) is the number of particles at the point y ∈ Zd at
the time moment t ≥ 0. Let n(0, y) ≡ 1 for every y ∈ Zd . The
spatio-temporal evolution of the field includes the migration and birth-death
processes. As usual, we exclude interaction between particles.

The total population n(t, y) at a point y ∈ Zd is the sum of independent
subpopulations:

n(t, y) =
∑
x∈Zd

n(t, x , y),

where n(0, x , y) = δ(y − x), and n(0, y) ≡ 1.

For the moment analysis of the field n(t, y) one can use the forward
Kolmogorov equations for the correlation functions

Kt(x1, . . . , xm) = En(t, x1) · · · n(t, xm),



Homogeneous environment. Generalization for f (u) :=
∑∞

n=0 bnu
n

Zd, d≥1,                                                  t=0 

κΔ0+V(∙)                                                               A+V(∙) 
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``birth'' 



Model and Results. Shortly
Each particle of the population dies in the interval (t, t + dt) with probability
b0dt, where b0 is the mortality intensity, or generate n 6= 1 offsprings with
probability bn dt + o(dt). We suggest that the underlying random walks has a
finite variance. We call β = f ′(1) =

∑∞
n=0 nbn in this model the birth rate.

Further we consider only the critical branching process: β = b0 at every lattice
point.

The total population n(t, y) at a point y ∈ Zd is the sum of independent
subpopulations:

n(t, y) =
∑
x∈Zd

nx(t, y), nx(t) =
∑
y∈Zd

nx(t, y),

where nx(0, y) = δ(y − x), and n(0, y) ≡ 1. If t →∞ and s > 0 then

P

{
nx(t)

βt + 1
> s

∣∣∣∣nx(t) > 0
}
→ e−s .

For t →∞ we have

E[n(t, x , y)|nx(t) > 0] ∼ βtp(t, x , y).



Clusters on Z
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The total population demonstrates the high level of intermittency: large
clusters (that is clusters of the diameter O(

√
t)) are separated by the empty

intervals of the length O(t). Each of such clusters contains about t particles.



Clusters on Z2

75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

80

Here the typical size of the subpopulation and the typical distance between
points xi,t both have order

√
t. However, the population still has fairly large

gaps.



Branching Random Walks in Random
Environments



The Anderson Hamiltonian. Random Environment

Much attention in the theory of random environment, in particular in the
context of localization problem (see, e.g., Carmona and Lacroix (1990)), has
been devoted to the study of spectral properties of the operator

κ∆ + V, κ > 0,

where ∆ (as above, is the discrete Laplacian on Zd) and the operator V are
acting as follows

(∆ψ)(x) =
1
2d

∑
|x′−x|=1

(ψ(x ′)− ψ(x)) , (Vψ)(x) := V (x)ψ(x),

and where the potential V (x) = V (x , ω), x ∈ Zd, d ≥ 1, is a random function
determined by the random branching medium.



The Parabolic Anderson Problem. Random Environment

Random perturbations play an important role in the intermittency theory for
the so-called parabolic Anderson localization problem (Gärtner et al., Gärtner
and Molchanov 2009), where the Anderson localization is a general wave
phenomenon that applies to the transport of electromagnetic waves, acoustic
waves, quantum waves, spin waves, etc.



The Parabolic Anderson Problem. Random Environment

If in BRW

I the transport of particles is governed by the law of a simple SRW,
I the random branching environment is defined by random birth and death

intensities at every lattice point,

then the expected total number of particles (the first order moment)
satisfies the Cauchy problem with a random potential:

∂tm1(t, x) = κ(∆m1(t, ·))(x) + (Vm1(t, ·))(x), m1(0, x) ≡ 1.

Here ∂t := ∂/∂t stands for the partial derivative with respect to the time t.



Intermittency Phenomenon

Mathematical theory of intermittency in random environments was
developed by Zeldovich, Molchanov, Gärtner, Carmona et al.

It has been discovered that the evolution of the field m1(t, x) leads to the
formation of highly irregular spatio-temporal structures, characterized by the
generation of rare high peaks on a low-profile background.



The Study of Intermittency

The study of intermittency in the works of J. Gärtner, S. Molchanov are based
on asymptotic analysis of the moments 〈m1〉 obtained by averaging the
random moment m1 over medium’s realizations, where the angular brackets 〈·〉
denote expectation with respect to the random environment.

For instance, the second moments grow much faster than the squared first
moments, the fourth moments behave in the same way with respect to the
squared second moments, and so on:

〈m2
1〉 � 〈m1〉2, 〈m4

1〉 � 〈m2
1〉2, . . . .



Main Objectives. Preliminary Remarks

The evolution of the mean number of particles m1 in a nonhomogeneous
random environment is determined by the operator

A+ V (0)V0,

where the RW generator A is a bounded self-adjoint operator in l2(Zd) and

(V0u)(x) := δ0(x)u(x), x ∈ Zd ,

while V (0) is a random variable characterizing the source intensity.



Objectives

1 to extend the results obtained earlier for the discrete Laplacian
κ∆ in the model of BRW in a spatially homogeneous branching
random environment to a wider class of symmetric RW with the
RW generator A, in particular, to solve the Cauchy problem for
the operator A+ V,



Objective 1. Random Homogeneous Environment. Generalization for
SBRW

Zd, d≥1,                                                  t=0 

κΔ0+V(∙)                                                               A+V(∙) 
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  nothing 
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Objectives

2 to study the long-time behavior of the moments 〈mp
n〉 (p ≥ 1,

n ≥ 1) for the local and total particle populations for BRW in a
nonhomogeneous branching random environment, in particular
to solve the Cauchy problem for the operator A+ V (0)V0,

3 to determine conditions enabling the long-time behavior of the
moments ln 〈mp

n〉 for the numbers of particles at an arbitrary
site of the lattice and on the entire lattice to coincide for both
models of BRW in spatially homogeneous and
nonhomogeneous random environments,

4 to construct examples where the distributions of the random
potential V satisfy these conditions.



Objectives 2-3. Random Nonhomogeneous and Homogeneous
Environments.

Zd, d≥1,                                          t=0 

SBRW:         A+V(0)Δ0                                                                           A+V(∙) 

         
         
         
         
         
         
 

             
             
             
             
             
             



BRW in Homogeneous Random Environments

Suppose now that a branching random environment is formed by pairs of
non-negative random variables, ξ(x) := (ξ−(x), ξ+(x)), x ∈ Zd , defined on a
probability space (Ω,F ,P).

The sample point ω ∈ Ω represents sample realizations of the field ξ(·). In
particular, we can assume that Ω = (R2

+)Z
d
.

The expectation with respect to the probability measure P will be denoted by
angular brackets, 〈·〉.

We assume that the random field ξ is spatially homogeneous, that is, the
distribution P of the field is invariant with respect to translations x 7→ x + y ,
x , y ∈ Zd (see, e.g., S. Albeverio, L. Bogachev, S. Molchanov and E. Yarovaya
(2000)).



BRW in a Random Homogeneous Environment
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Homogeneous Environment. The Moments Equations

Let
V (x) := ξ+(x)− ξ−(x), x ∈ Zd.

Then the moment functions mn(t, x , y), mn(t, x) satisfy the chain of linear
differential equations

dm1

dt
= Am1 + Vm1,

dmn

dt
= Amn + Vmn +K+gn[m1, . . . ,mn−1], n = 1, 2, . . .

with the initial conditions mn(0, ·, y) = δy (·), mn(0, ·) ≡ 1, where

gn[m1, . . . ,mn−1] :=
n−1∑
i=1

(
n

i

)
mimn−i , n ≥ 2,

(K+u)(x) := ξ+(x)u(x), x ∈ Zd .



BRW in Nonhomogeneous Random Environments

Suppose now that a branching random environment is formed by only the one
pair of non-negative random variables, ξ(0) := (ξ−(0), ξ+(0)) defined on a
probability space (Ω,F ,P). It is assumed that Ω = R2

+.

In this case, the random environment is spatially non-homogeneous, since the
branching medium formed of birth-and-death process only at the origin of the
lattice.



BRW in a Random Nonhomogeneous Environment

Zd, d≥1,  t=0 

A+V(0)Δ0                                                            At the origin:                            
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Nonhomogeneous Environment

Let
V (0) := ξ+(0)− ξ−(0).

Here, the first-order moments satisfy the following homogeneous equation in
operator form

dm1

dt
= Am1 + V (0)V0m1.



Evolutionary Operators of BRW in Random Environments

Simple SBRW in a Homogeneous Random Environment: κ∆ + V

⇓
SBRW in a Homogeneous Random Environment:

A+ V

⇓
SBRW in a Nonhomogeneous Random Environment: A+ V (0)V0



Kolmogorov’s backward equation

Suppose that xt is a continuous-time “jumping” trajectory of a
continuous-time symmetric random walk on Zd with the generator A, and Ex

is the expectation under the condition that the random walk starts from x .



Kolmogorov’s backward equation

Theorem (Kolmogorov’s backward equation)

Define p(t, x , y) = Exδy (xt). Then p(t, ·, y) ∈ l2(Zd) for each t > 0 and

dp

dt
= Ap, p(0, x , y) = δy (x), (6)

where the right-hand side is interpreted as a linear operator A applied to the
function x 7→ p(t, x , y) by the formula:
(Ap(t, ·, y))(x) =

∑
x′ a(x , x ′)p(t, x ′, y).

Moreover, if p∗(t, x , y) satisfies the Cauchy problem (6), then
p∗(t, x , y) = p(t, x , y) with p(t, x , y) = Exδy (xt).



Theorem (J. Gärtner and S. Molchanov, 1990)

Assume that V (x) i.i.d. Then the Cauchy problem has a unique non-negative
solution if 〈(

V (0)

ln+ V (0)

)d 〉
<∞, (7)

where ln+ V (0) := ln max(V (0), e).



Theorem (Homogeneous Random Environment)

Assume that (7) holds and

m1(t, x , y) = Ex

[
exp

(∫ t

0
V (xs) ds

)
δy (xt)

]
,

m1(t, x) = Ex

[
exp

(∫ t

0
V (xs) ds

)]
.

Then m1(t, x , y) and m1(t, x) P-a.s. satisfy the Cauchy problem:

dm1

dt
= Am1 + Vm1,

with the initial conditions mn(0, ·, y) = δy (·) and m1(0, ·) ≡ 1, respectively.



Theorem (Nonhomogeneous Random Environment)

Assume that (7) holds for V (0) and

m1(t, x , y) = Ex

[
exp

(
V (0)

∫ t

0
δ0(xs) ds

)
δy (xt)

]
,

m1(t, x) = m1(t, x) = Ex

[
exp

(
V (0)

∫ t

0
δ0(xs) ds

)]
.

Then m1(t, x , y) and m1(t, x) P-a.s. satisfy the Cauchy problem:

dm1

dt
= Am1 + V (0)V0m1,

with the initial conditions mn(0, ·, y) = δy (·) and m1(0, ·) ≡ 1, respectively.



Remark
Now we are able to give our main result on the long-time behavior of the
moments 〈mp

n〉 where n ∈ N, p ≥ 1. Under the assumption that the analyzed
Cauchy problems P-a.s. have a unique non-negative solutions, the following
theorem holds.



Theorem (Homogeneous and Nonhomogeneous Random Environments
(2010))

Let V := V (0). Assume that

lim
t→∞

t

ln 〈eVt〉
= 0.

Then for all integer moments 〈mp
n〉, where mn is the solution of the Cauchy

problems for BRW in homogeneous or nonhomogeneous random
environments) with the initial conditions mn(0, ·, y) = δy (·) and mn(0, ·) ≡ 1,
respectively, we obtain

lim
t→∞

ln 〈mp
n〉

ln 〈epnVt〉
= 1.



Conclusion

In this way, condition

lim
t→∞

t

ln 〈eVt〉
= 0 (8)

appears ensuring that the long-time behavior of the moments 〈mp
n〉, n ≥ 1, for

the numbers of particles at arbitrary site of the lattice and on the entire lattice
coincide for both models of BRW in spatially homogeneous and
nonhomogeneous random environments.



Nonhomogeneous non-random environments

If the spectrum of the operator A+ β∆0 contains a maximum eigenvalue
λ > 0, then both the local numbers of particles and their total number grow
exponentially as t →∞:

lim
t→∞

µt(y) e−λt = ξψ(y), lim
t→∞

µt e
−λt = ξ. (9)

Here, ψ(y) is a function and ξ is a non-degenerate random variable. This case
is referred to as supercritical. Relations (9) hold in the sense of convergence in
distribution. In particular, for the first moment if β > G−10 (0, 0), then for
n ∈ N, as t →∞,

m1(t, x , y) ∼ C1(x , y)eλt , m1(t, x) ∼ C1(x)eλt .



Nonhomogeneous non-random environments

Hence for supercritical BRW in an nonhomogeneous non-random
environment the analog of (8) has the form

lim
t→∞

t

lnm1
= lim

t→∞

t

ln eλt
=

1
λ

and (8) is not valid. The validity of the condition (8) means that the
distribution of the potential V has the tail heavier than exponential.



Nonhomogeneous non‐random environment:  A+βΔ0 
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“Heavy Tails” of Distributions of the Potential V

Here we construct examples of distributions of the random potential V
satisfying the condition

lim
t→∞

t

ln 〈eVt〉
= 0.

Remark
Distributions with “heavy tails” have numerous applications in the catastrophe
theory. It can partially be explained by the fact that catastrophes are rare
events and their tails decay more slowly than any exponential tail. Therefore
these distributions are often used to model disasters and other rare events.

Examples



Simulation on Z. One Source of Branching



Simulation on Z. Sources of branching at every lattice point
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Example: Weibull-type upper tail

We begin with a theorem where the tail of the distribution of the branching
potential V has a Weibull type upper tail:

lnP{V > r} ∼ −crγ , γ > 1, c > 0. r →∞, (10)

Theorem

Under assumption (10), we have for every p ≥ 1

ln
〈
epVt

〉
∼ (γ − 1)

(
pt

γc1/γ

)γ/(γ−1)
, t →∞.

Condition (8) also holds in this case.

If γ = 2, we have an immediate corollary for the case where the upper tail is of
Gaussian type.



Example: Gumbel-type upper tail

The upper tail of the distribution of the branching potential V has the
following form:

lnP{V > r} ∼ − exp(r/c), c > 0. r →∞, (11)

Theorem

Under assumption (11), we have for every p ≥ 1

ln
〈
epVt

〉
∼ cpt ln t, t →∞.

Condition (8) also holds in this case.

Return
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