
Reinforcement learning: variance reduction via
martingale representation

Vladimir Dmitriev

HDI HSE

September 3, 2021

1 / 44

Reinforcement learning: Setup

I Agent interacts with the system in discrete time steps

I In each step agent produce some action, which influence both agent
and environment

I Each step agent receive ”reward” - custom value of current ”decision”

I Goal of the learning algorithm is to find good strategy in terms of
cumulative reward

... formal description ahead!

Figure: Scheme of agent-environment interactions [R. Sutton et al. 2000]

2 / 44

Reinforcement learning: Practice & Applications

I Robotics - optimal control tasks [Argall et al. 2009]

I HPC optimal resources allocation [Mao et al. 2016]

I City traffic control - optimization of traffic light regimes etc [Arel
et al. 2010]

I Games simulators (Chess & Go) - now achieve superhuman level
[Silver et al. 2018]

I Online advertising [Cai et al. 2017]

I Research on cognition and human decision-making [Lee and Seo 2015]

Benchmarks for algorithm development https://gym.openai.com/

3 / 44

Reinforcement learning: Benchmarks

4 / 44

Markov Decision Process

I Consider S - state space, (St)t>0 - sequence of states which agent
traverses.

I Let A - action space, (At)t>0 - sequence of random actions, which are
attributed to the agent

I Markovian transition kernel pt(s
′|s, a) = Pt(St+1 = s ′|St = s,At = a)

probability of transition to state s ′ having current state-action pair
(s, a)

I Reward for each step - could be deterministic : R : S× S× A→ R or
probabilistic Rt ∼ pr (·|st+1, st , at) ;

I At each step t agent has information about environment current state
st and about history of its interactions ht = (s1, a1, ..., st−1, at−1).
One epoch of decision making gives agent current action at .

I Having (st , at) environment change its state on st+1, which is
sampled from the transition kernel. Agent receive one step reward Rt

I We would consider common case of deterministic rewards and
time-homogeneous transition kernels

5 / 44

Markov Decision Process: Policy

I Policy - decision making procedure, could be deterministic

at = πt(ht−1, st)

or probabilistic at ∼ πt(·|ht−1, st)

I If policy depends only on st it is called Markovian. We would consider
only time-homogeneous Markovian policies.

I Note that for Markovian policy state sequence is Markovian:

p(s ′|s) =
∑
a∈As

π(a|s)p(s ′|s, a)

and arbitrary path distribution could be computed:

P(St = st ,At = at ,St+1 = st+1...,ST = sT ,AT = aT |ht−1) =

=
k=T∏
k=t

π(Ak = ak |Sk = sk)p(Sk = sk |Sk−1 = sk−1,Ak−1 = ak−1)

6 / 44

Value functions

Definitions [R. S. Sutton and Barto 2018]

Let’s fix some policy π. The time-homogeneous value function is

Vπ(s) = E[
T∑

k=0

γkRk+1|S = s]

The time-homogeneous action-value function is

Qπ(s, a) = E[
T∑

k=0

γkRk+1|S = s,A = a]

where T could stand for infinity, finite horizon or random stopping time

Policy π′ is said to be ”better” then policy π if

Vπ′(s) ≥ Vπ(s) ∀s ∈ S

It is denoted as π′ ≥ π
Policy π? is said to be optimal (in family Π) if

π? ≥ π ∀π ∈ Π
7 / 44

Bellman equation

Consider case of finite or infinite horizon T . Let policy and transition
kernel be time-homogeneous.Let Rt be reward on step t.

Vπ(st) = E[
T∑

k=t

γk−tRk |St = st] =

= E[Rt |St = st] + γE[
T∑

k=t+1

γk−(t+1)Rk |St = st] =

= E[Rt |St = st] + γE[Vπ(st+1)]

The same expansion could be written for state-action value function

Qπ(st , at) = E[
T∑

k=t

γk−tRk |St = st ,At = at] =

= E[Rt |St = st ,At = at] + γE[Qπ(st+1, at+1)]

8 / 44

Bellman equation

For important case of deterministic rewards R : S × A→ D ⊂ R and
discrete state and action spaces:

Vπ(s) =
∑
a∈As

R(s, a)π(a|s) + γ
∑

s′∈S,a∈As

Vπ(s ′)p(s ′|s, a)π(a|s)

Qπ(s) = R(s, a) + γ
∑

s′∈S,a′∈As′

Qπ(s ′, a′)p(s ′|s, a)π(a′|s ′)

I It gives set of linear equations for value function, which could be
explicitly solved in finite case

I In Reinforcement learning setup transition kernel isn’t provided.

I Problem of RL is how to compute value function and found optimal
policies or suboptimal policies with good performance.

9 / 44

Optimal policy

I Optimal policy might not exist.

I If |A| <∞ then optimal policy exists.

Bellman optimality criterion

Policy π is optimal iff ∀s ∈ S π(a|s) > 0⇔ a ∈ Argmaxa∈As [Qπ(s, a)]

For optimal value function Bellman optimality equations hold(again,
suppose that rewards are deterministic):

V ?(s) = maxa∈As [R(s, a) + γE[V ?(s ′)]]

Q?(s, a) = R(s, a) + γE[maxa∈AsQ(s ′, a′)]

Classical algorithms for policy improvement are based on optimality
equation

10 / 44

Dynamic programming

Introduce Bellman control operator B[Q] on space of Q-functions with
norm ||f (x)|| = supx∈D |f (x)|

B[Qπ(s, a)] = R(s, a) + γE[maxa∈AsQπ(s ′, a′)]

Then the following theorem holds:

Contraction theorem for Bellman control operator

For γ < 1 Bellman operator is contraction and then has one stationary
point.

B[Q(s, a)] = Q(s, a)⇔ Q = Q?

I Bound for error of this algorithm is available [Singh and Yee 1996]

I Inapplicable for RL setup since transition kernel is demanded

I Even for known kernel in case of large state space algorithm becomes
inefficient

11 / 44

Example I

Figure: R. S. Sutton and Barto 2018

12 / 44

Example II

Figure: R. S. Sutton and Barto 2018

13 / 44

Drawbacks of MDP techniques and possible alternatives

I Most classical MC and TD techniques with proven convergence
applicable only for tabular case , i.e. finite state and action spaces

I Even finite, but large state space makes tabular algorithms
inapplicable

I Instead of tabular setup, one could consider approximations for
Q-functions.

I It could be linear approximation (moderate possible to prove
convergence, Robbins-Monro procedure), or ANN (no results on
convergence, state-of-the-art performance on real world tasks) Sigaud
and Garcia 2013

14 / 44

Policy Gradient I

In what follows we describe policy gradient methods. This methods are
used extensively in applications, since they were proposed by Williams
1992, however there is no complete theoretical analysis of their
convergence.
Consider parametric family of conditional distributions on action space.
We consider distributions with densities or distributions on discrete sets.

Example I

Let S = D ∈ Rn, A = R πθ could be taken in form:

πθ(a|s) =
1√

2πσ(s)2
exp(− (a− µ(s))2

2σ2(s)
)

where µ : S → D2 ⊆ R , σ : σ : S → D2 ⊆ R+ This normal policy is
often used in continuous control. It could be easily generalized for
multidimensional actions by setting independent distribution for each
component. Lillicrap et al. 2015 for examples

15 / 44

Policy Gradient II

Example II

Let S = ΩS , A = ΩA = {ωa
1, ω

a
2, ..., ω

a
k}, then πθ could be taken in form:

πθ(ai |s) =
exp(−βi

θ(s))∑k
j=1 exp(−βj

θ(s)
) ∀i ∈ {1, ..., k}

where βi : ΩS → D ⊆ R
This policy is called Softmax policy. Set ΩS could be of arbitrary nature.
This policies are often used for Atari setups [R. Sutton et al. 2000]

16 / 44

Policy Gradient III

Here we follow open source materials of Sergey Levine course on RL
After fixing a distribution value function becomes function of parameters
θ. Distribution over finite trajectories τ = {s1, a1, s2, a2, ..., sT , aT}

pθ(τ) = p0(s1)
T∏
t=1

πθ(at |st)p(st+1|st , at)

In that terms optimal θ wrt criterion is

θ? = argmax Eτ [
T∑
t=1

γt−1Rt]

Denote

R(τ) =
T∑
t=1

γt−1Rt

In what follows we suppose that T =∞ and parameter values θ don’t
affect supp of policy distribution.

17 / 44

Policy Gradient IV

Consider target functional:

J(θ) =

∫
Ω

p(τ)R(τ)dτ

We would construct stochastic gradient procedure. Compute gradient :

∇θJ(θ) =

∫
Ω

∇θ[pθ(τ)]R(τ)dτ

For that, use log-derivative trick:

∇θpθ(τ) =
∇θpθ(τ)

pθ(τ)
pθ(τ) =

= pθ(τ)∇θlog [pθ(τ)]

18 / 44

Policy Gradient V

Combining log-derivative with previous we achieve

∇θJ(θ) =

∫
Ω

pθ(τ)∇θlog [pθ(τ)]R(τ)dτ

Look at gradient:

logpθ(τ) = log(p(s1)) +
T∑
t=1

logπθ(at |at) +
T∑
t=1

log [p(st+1|st , at)]

Then

∇θlog [pθ(τ)] = ∇θ
T∑
t=1

logπθ(at |at)

19 / 44

Policy Gradient VI

Finally

∇θJ(θ) = Eτ [(
T∑

t′=1

γt
′−1Rt′)

T∑
t=1

∇θlogπθ(at |st)]

I We just prove policy gradient theorem Williams 1992

I Theory of stochastic gradient Schulman et al. 2016 allows to use
sample estimate of the gradient.

20 / 44

Policy Gradient VII

Assume again, that we sample N trajectories:

∇θ Ĵ(θ) =
1

N

N∑
i=1

[(
T∑

t′=1

γt
′−1R i

t′)
T∑
t=1

∇θlogπθ(ait |s it)]

It also has been shown [Williams 1992] that

∇θ Ĵ(θ) =
1

N

N∑
i=1

[
T∑
t=1

(
T∑

t′=t

γt
′−tR i

t′)∇θlogπθ(ait |s it)]

Stochastic gradient ascent for policy optimization:

θq+1 ← θq + αq
ˆ∇θJ(θq)

21 / 44

Control variates
I Let X be sample of some parametric distribution.

I Assume that ŝ(X) - unbiased estimate of some distribution parameter.

E[ŝ] = s

I Let cv(X) be sample function, and

E[cv(X)] = 0

I We can consider new estimate ŝ ′ = ŝ − cv .

I Variance would be reduced if

V[ŝ − cv] < V[ŝ]

I Since
V[ŝ − cv] = V[ŝ] + V[cv] + 2Cov(cv , ŝ)

control variate will be benefitial if

−V[cv] ≥ 2Cov(cv , ŝ)

22 / 44

Control variates in Policy Gradient I

I Denote

R(τ it) =
T∑

t′=t

γt
′−tR i

t′

I First attempt to reduce variance in policy gradient estimate was to
introduce constant baseline b:

∇θ Ĵ(θ) =
1

N

N∑
i=1

T∑
t=1

(R(τ it)− b)∇θlogπθ(ait |s it)

I Optimization of variance gives the following result [Weaver and Tao
2013]:

b =
E
[
||∇θπθ(A|S)||2R(τi)

]
E
[
||∇θπθ(A|S)||2

]

23 / 44

Control variates in Policy Gradient II

I Next attempt was to use function of state since it doesn’t introduce
bias. For arbitrary b(s):∫

Ω

b(s)πθ(a|s)∇θlog(πθ(a|s))da =

=

∫
Ω

b(s)∇θπθ(a|s)da = ∇θEb(s) = 0

I It have been shown that taking estimate of V (s) [Sigaud and Garcia
2013] gives good results and decrease variance. Corresponding
algorithm is known as REINFORCE with baseline

24 / 44

Figure: Schulman et al. 2016

25 / 44

Theory and Algorithm

I Theory based on Belomestny et al. 2019

I Consider Markov process of a form

Xi+1 = Φ(Xi , ξi+1) i = 0, 1, ... X0 = x

∀i Xi ∈ X

I ξi ∈ Rm - i.i.d distributed with Pξ
I Φ Borel-measurable functions:

Φ : X× Rm → X

I This setup can be exploited for many continuous control tasks

26 / 44

Theory and Algorithm

Let (φk)k≥0 be a complete orthonormal system in L2(Rm,Pξ) with
φ0 ≡ 1. In particular,

E[φi (ξ)φj(ξ)] = δij , i , j ∈ Z+.

Observation

The random variables φk(ξ), k ≥ 1, are centered, i.e. E[φk(ξ)] = 0

Example

For r.v. ξ with normal distribution Pξ we can take multivariate Hermite
polynomials.

27 / 44

Theory and Algorithm

Theorem

Let {φk}k≥0 be complete orthonormal system in L2(Pξ). Then for any
bounded function f the following representation holds:

f (Xq) = E [f (Xq)] +
∞∑
k=1

q∑
l=1

aq−l,k(Xl−1)φk (ξl)

where for all y ∈ Rd (X),

ar ,k(y) = E [f (Xr)φk (ξ1) |X0 = y] r , k ∈ N

Observation

Eφk(ξ1) = 0⇒
K∑

k=1

ar ,k(x)φk(ξ) is a valid control variate for f (Xq).

28 / 44

Theory and Algorithm

Corollary

{ξi} are sampled from standard normal distribution, Hermite polynomials
can be taken as orthonormal system. Then the quantity

Mq
K ,r =

K∑
k=1

q−1∑
r=0

ar ,k(Xq−r−1)Hk(ξq−r)

for the fixed K > 0 has zero mean (i.e. E[f (Xq)] = E[f (Xq)−Mq
K ,r] and

Mq
K ,r can be viewed as a control variate.

29 / 44

Theory and Algorithms

Remark 1
Variance of the new estimate could be calculated:

Var [f (Xq)−Mq
K ,r] =

∞∑
k=K+1

q−1∑
r=0

E(a2
rk(Xq−r−1))

If coefficients ar ,k decays fast enough with k →∞, variance reduction
can be done with this control variate

Remark 2
Note that the coefficients ar ,k can be alternatively expressed as

ar ,k(x) = E [φk (ξ)Qr (Φ(x , ξ))] with Qr (x) = E [f (Xr)|X0 = x] , r ∈ N.

It may be more convenient to work with Qr directly.

Note that for ergodic Markov chain (Xk)k≥0, Qr (x) converges to π(f)
exponentially fast, hence ar ,k(x) goes to zero.

30 / 44

Theory and Algorithms

I One way to reconstruct coefficients Qr is regression on trajectories:

Q̂r (x) =
B∑

b=1

β
(r)
b φb(x)

where coefficients are found from solving least squares problem:

β(r) = argmin
n−r∑
s=0

|f (Xr+s)−
B∑

b=1

β
(r)
b φb(Xs)|2

I In case of regression we need to calculate integral:

ar ,k(x) =
B∑

b=1

β
(r)
b

∫
Ω

φk(ξ)φb(ξ)Pξ(dξ)

I One another powerful option - approximate ar ,k(x) directly with
ANNs.

31 / 44

Theory and Algorithms

32 / 44

Theory and Algorithms

33 / 44

Frozen Lake environment, REINFORCE

Figure: Policy evaluation during learning of the REINFORCE algorithm for
FrozenLake environment. Blue plot is REINFORCE without martingale CV,
other plots demonstrate the increase of improvements with adding more
polynomials to martingale CV

34 / 44

CartPole, A2C

Figure: Policy evaluation during learning of the A2C algorithm for CartPole-v1
environment. Blue plot is A2C without martingale CV, other plots demonstrate
the increase of improvements with adding more polynomials to martingale CV

35 / 44

Regression test

Figure: Policy evaluation during learning of the A2C algorithm for CartPole-v1
environment. Blue plot is A2C with martingale CV with Ψt = At , orange plot -
Ψt = rt

36 / 44

Martingale CV vs GAE

Figure: Comparison of Q-prop and AC-GAE with REINFORCE+CV

37 / 44

Appendix: Theory and Algorithms: Basic Idea
I Theory based on Belomestny et al. 2019

I Consider Markov process of a form

Xi+1 = Φ(Xi , ξi+1) i = 0, 1, ... X0 = x

∀i Xi ∈ X

where ξi ∈ Rm - i.i.d distributed with Pξ, Φ Borel-measurable
functions. In RL case Xi = [Si ,Ai]

I Target function f (X) has decomposition:

f (Xq) = E [f (Xq)] +
∞∑
k=1

q∑
l=1

aq−l,k(Xl−1)φk (ξl)

where φkk ≥ 0 be a complete orthonormal system in L2(Rm,Pξ) and
y ∈ Rd (X),

ar ,k(y) = E [f (Xr)φk (ξ1) |X0 = y] r , k ∈ N

I Arbitrary number of terms in right hand side sum could be taken for
control variate. ANN would be used to approximate ar ,k

38 / 44

Appendix: Policy Gradient: Example

Normal Policy

Consider normal policy with fixed covariance matrix

πθ(a|s) ∼ exp(−
||a− µθ(s)||2Σ−1

2
)

Then

log [πθ(a|s)] = const +−
||a− µθ(s)||2Σ−1

2

ˆ∇θJ(θ) =
1

2
Σ−1(a− µθ(s))

dµθ(s)

dθ

Last derivative could be computed by backpropagation in case of ANN
approximation

Stochastic gradient estimates suffer from high variance. Variance
reduction techniques are applicable to modify gradient estimate to reduce
its variance

39 / 44

Policy Gradient II

Example II

Let S = ΩS , A = ΩA = {ωa
1, ω

a
2, ..., ω

a
k}, then πθ could be taken in form:

πθ(ai |s) =
exp(−βi

θ(s))∑k
j=1 exp(−βj

θ(s)
) ∀i ∈ {1, ..., k}

where βi : ΩS → D ⊆ R
This policy is called Softmax policy. Set ΩS could be of arbitrary nature.
This policies are often used for Atari setups [R. Sutton et al. 2000]

Example III

In case when action space is essentially bounded in R, Kumaraswamy
distribution could be used: Let S = ΩS , A = (0, 1) then πθ could be
taken in as:

πθ(a|s) = αθ(s)βθ(s)aαθ(s)−1(1− aαθ(s))βθ(s)−1

where α, β : ΩS → R+

40 / 44

Appendix: Monte Carlo and Temporal Difference

I Monte Carlo estimates of Q-function and value function could be used
under mild conditions on the Markov chain

I Assume finite MDP, agent experience is saved as trajectories
Tri = {〈s it , ait , r it 〉}

Ti
t=1

I Let I = {i : s i0 = s}, then V̂ (s) = 1
|I |
∑

i∈I
∑Ti

t=1 γ
t−1r it

I Extensive studies for RL applications, see [R. Sutton et al. 2000] for
more references.

I Temporal difference provide iterative updates for estimates of
Q-function or value function.

I Convergence is proven for tabular case [R. Sutton et al. 2000]

Qn+1(st , at)← Qn(st , at)+αn[R(st , at)+γQn(st+1, at+1)−Qn(st , at)]

41 / 44

Appendix: Markov Decision Process: Horizon and
Optimality criterion

There are following options for MDP:

I Finite MDP - set maximal number of steps after which the agent stops

I Stopping time - set random variable which defines when game stops
(remember gambler’s ruin problem)

I Infinite horizon - number of steps is unbounded (most continuous
control tasks)

I The goal of the learning algorithm is to find a such a decision making
procedure, which would maximise expected reward for the game with
respect to some initial states distribution.

I Among the variety of optimality criterion (see [Puterman 1994]) the
standard choice for RL is expected total discounted reward (to be
defined)

42 / 44

Markov Decision Process

Reinforcement learning inherits Markov Decision Process formalism.
Main features of MDP:

I Consider S - state space, (St)t>0 - sequence of states which agent
traverses.

I Let A - action space, (At)t>0 - sequence of random actions, which are
attributed to the agent

Both state and action spaces could be:

I Finite sets - case of Atari games

I Infinite countable sets - queuing problems & optimal stopping

I Compact subsets of the Euclidean space - case of continuous control
tasks with periodic state space (pendulum, double pendulum etc)

I Unbounded subsets of the Euclidean space - general continuous
control tasks/

I Borel sets in general Polish spaces (see [Puterman 1994])

43 / 44

Markov Decision Process: Transition kernel

I Markovian transition kernel pt(s
′|s, a) = Pt(St+1 = s ′|St = s,At = a)

probability of transition to state s ′ having current state-action pair
(s, a)

I Reward for each step - could be deterministic : R : S× S× A→ R or
probabilistic Rt ∼ pr (·|st+1, st , at) ;

I At each step t agent has information about environment current state
st and about history of its interactions ht = (s1, a1, ..., st−1, at−1).
One epoch of decision making gives agent current action at .

I Having (st , at) environment change its state on st+1, which is
sampled from the transition kernel. Agent receive one step reward Rt

I We would consider common case of deterministic rewards and
time-homogeneous transition kernels

44 / 44

