On the notion of asymptotic independence of random variables

S. Novikov

 SPbSU

1 September 2021

S. Novikov (SPbSU)

Asymptotic independence

1 September 2021 1 / 22

In this work we consider the following question: Under which conditions can two sequences of random variables (X_n) and (Y_n) be considered as asymptotically independent? **Intuitive answer**: the joint distributions $P_{(X_n,Y_n)}$ must be close to the products of the corresponding marginal distributions $P_{X_n} \times P_{Y_n}$.

Definition (The Levy-Prokhorov metric)

 $\pi(P,Q) = \inf\{\epsilon : P(A_{\epsilon}) \le Q(A) \text{ for all closed } A\}.$

There exist at least 3 definitions of weak merging of probability measures P_n , Q_n : **D1** $\pi(P_n, Q_n) \to 0$ **D2** $\int hdP_n - \int hdQ_n \to 0$ for each bounded and continuous function h. **D3** $T(P_n) - T(Q_n) \to 0$ for each bounded continuous (in weak-star topology) functional T on the space of probability measures.

$D3 \Rightarrow D2 \Rightarrow D1$

We will use **D1**, as **D2** is too strong: e.g., $P_n = \delta_n$, $Q_n = \delta_{n+1/n}$ do not satisfy D_2 .

Various conditions of asymptotic independence

Let $X_n \in (E_1, \mathcal{E}_1)$, $Y_n \in (E_2, \mathcal{E}_2)$, where E_1 , E_2 are complete separable metric spaces, \mathcal{E}_1 and \mathcal{E}_2 are their Borel σ -algebras.

(AI-0) $\mathbb{E}f(X_n)g(Y_n) - \mathbb{E}f(X_n)\mathbb{E}g(Y_n) \to 0, n \to +\infty$ for each two uniformly continuous, bounded $f: E_1 \to \mathbb{R}^1, g: E_2 \to \mathbb{R}^1$

(AI-1) $\int h(x,y)dP_{(X_n,Y_n)}(x,y) - \int h(x,y)dP_{X_n} \times P_{Y_n}(x,y) \to 0$ for each bounded **uniformly** continuous function $h: E_1 \times E_2 \to \mathbb{R}^1$

 $\begin{aligned} &(\mathbf{AI-2}) \ \forall \ A \in \mathcal{E}_{1}, \ B \in \mathcal{E}_{2} \\ &|P_{(X_{n},Y_{n})}(A \times B) - P_{X_{n}}(A)P_{Y_{n}}(B)| \to 0, n \to +\infty \\ &(\mathbf{AI-3}) \sup_{A \in \mathcal{E}_{1}, B \in \mathcal{E}_{2}} |P_{(X_{n},Y_{n})}(A \times B) - P_{X_{n}}(A)P_{Y_{n}}(B)| \to 0, \ n \to +\infty \\ &(\mathbf{AI-4}) \ ||P_{(X_{n},Y_{n})} - P_{X_{n}} \times P_{Y_{n}}||_{var} \to 0, \ n \to +\infty \\ &\text{It is easy to see that } \mathbf{AI-4} \Rightarrow \mathbf{AI-3} \Rightarrow \mathbf{AI-2} \Rightarrow \mathbf{AI-0}. \\ &\text{Also remark that } \mathbf{AI-1} \text{ is equivalent to } \pi(P_{(X_{n},Y_{n})}, P_{X_{n}} \times P_{Y_{n}}) \to 0, \\ &\text{where } \pi \text{ is the Levy-Prokhorov metric.} \end{aligned}$

Weak dependence. Mixing.

Let $X = (\xi_n)_{n \in \mathbb{Z}}$ be a stationary sequence. Let Y_n be a shifted sequence: $(Y_n)_k = \xi_{n+k}$. Consider X and Y_n as elements of the space (E, \mathcal{E}) , where $E = \mathbb{R}^{\mathbb{Z}} \ \mbox{if} \ \mathcal{E}$ is the σ -algebra of cylidric sets. T is the Bernoulli shift, μ is the distribution of X(T-invariant).

Mixing

For each $A, B \in \mathcal{E}$ $\mu(A \cap T^{-n}B) \to \mu(A)\mu(B)$, that is:

$$P\{X \in A, Y_n \in B\} \to P\{X \in A\}P\{X \in B\}$$

By taking $X_n = X$ and using stationarity, we obtain:

$$P\{X_n \in A, Y_n \in B\} - P\{X_n \in A\} P\{Y_n \in B\} \to 0.$$

That is, **mixing** is a particular case of **AI-2**.

Strong mixing

In the setting of the previous example let $X_n : \Omega \to \mathbb{R}^{-\mathbb{N}}$ be the restriction of $X = (\xi_k)_{k \in \mathbb{Z}}$ to $\{..., -1, 0\}$ and let $Y_n : \Omega \to \mathbb{R}^{\mathbb{N}}$ be the restriction X to $\{n, n+1, ...\}$. Let $\mathcal{M}_a^b = \sigma\{\xi_a, ..., \xi_b\}$.

Strong mixing

As $n \to +\infty$:

$$\sup_{A \in \mathcal{M}^0_{-\infty}, B \in \mathcal{M}^{+\infty}_n} |P\{A \cap B\} - P\{A\}P\{B\}| \to 0$$

This is equivalent to

 $\sup_{C \in \mathbb{R}^{-\mathbb{N}}, D \in \mathbb{R}^{\mathbb{N}}} |P\{X_n \in C, Y_n \in D\} - P\{X_n \in C\}P\{Y_n \in D\}| \to 0.$

That is, strong mixing is a particular case of AI-3.

Let (X_n) , (Y_n) be two AI sequences and f, g two functions. Do the transformed sequences $(f(X_n)), (g(Y_n))$ remain AI?

Proposition 6

- a) **AI-0**, **AI-1** remains fulfilled if f, g are uniformly continuous.
- b) **AI-2** remains fulfilled if f, g are measurable.
- c) **AI-3** and **AI-4** remain fulfilled if f_n, g_n are measurable.

It is not hard to construct counterexamples, which show that AI-1 does not always imply AI-2, and AI-2 does not imply AI-3.

Natural question: are AI-0 and AI-1 always equivalent?

It turns out that if (X_n) , (Y_n) are not tight, then the answer is negative, and, moreover, the following result is true:

Prop. 1 [S.N., 2019]

Let $E_1 = \mathbb{R}$, $E_2 = \mathbb{R}$, then there exist two sequences (X_n) , (Y_n) , which satisfy **AI-0**, but not **AI-1**.

This is the distribution of (X_n, Y_n) for n = 3. (2n colums, $2^n - 1$ rows: binary codes of $0, \dots, 2^n - 1$)

Illustration

Uniform convergence in AI-0 and AI-1

For a metric space M denote by $BL_1(M)$ the class of 1-Lipschitz functions on M, which do not exceed 1 in absolute value.

Fact [Y. Davydov, V. Rotar', 2009]

If $(P_n), (Q_n)$ are two sequences of probability distributions on M, and for each **uniformly** continuous bounded $h: M \to \mathbb{R}$ we have $\int h(x)d(P_n - Q_n) \to 0$, then $\sup_{h \in BL_1(M)} |\int h(x)d(P_n - Q_n)| \to 0, \ n \to +\infty$

This, obviously, implies uniform convergence in **AI-1** with respect to $h \in BL_1(E_1 \times E_2)$. A similar fact is true for **AI-0**:

Theorem 1 [S.N., 2020]

If $(X_n), (Y_n)$ satisfy **AI-0**, then $\sup_{f \in BL_1(E_1), g \in BL_1(E_2)} |\mathbb{E}f(X_n)g(Y_n) - \mathbb{E}f(X_n)\mathbb{E}g(Y_n)| \to 0, n \to +\infty$

S. Novikov (SPbSU)

11/22

1) [S.N., 2020] If at least one of the sequences (P_{X_n}) , (P_{Y_n}) is tight, then **AI-0** and **AI-1** are equivalent.

With the help of relative compactness one can obtain: 2) [S.N., Y.Davydov, 2019] If **both** the sequences (P_{X_n}) , (P_{Y_n}) are tight, and $X_n \in \mathbb{R}^k$, $Y_n \in \mathbb{R}^m$, then **AI-0**, **AI-1** are equivalent to the following condition on characteristic functions:

$$\phi_{(X_n,Y_n)}(t,s) - \phi_{X_n}(t)\phi_{Y_n}(s) \to 0, \ n \to +\infty$$

Remark that [S.N., 2020] part 2) does not hold when only **one** of $(P_{X_n}), (P_{Y_n})$ is tight!

Consider \mathbb{R}^{∞} with the metric $d((x_1, x_2, ...), (y_1, y_2, ...)) = \sum_{k=1}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$. In this case **AI-0** and **AI-1** can be checked in terms of finite-dimensional distributions (here $\pi_k : \mathbb{R}^{\infty} \to \mathbb{R}^k$ is the projection on the first k coordinates):

Theorem 2 [S.N., 2020]

The sequences (X_n) , (Y_n) satisfy **AI-1** if and only if for each k > 0 $(\pi_k X_n)$, $(\pi_k Y_n)$ satisfy **AI-1**. Same for **AI-0**.

It is easy to see that analogous statements for AI-2,AI-3,AI-4 are false:

Prop. 2 [S.N., 2020]

There exist two sequences of random elements (X_n) , (Y_n) of \mathbb{R}^{∞} such that $(\pi_k X_n)$, $(\pi_k Y_n)$ satisfy **AI-4** for each k, but (X_n) , (Y_n) do not satisfy **AI-2**.

On the other hand, if we demand that AI-2, AI-3 or AI-4 holds "uniformly" with respect to k, then AI-2, AI-3 or AI-4 respectively will hold for (X_n) , (Y_n) .

Let
$$X_n = (X_n^{(1)}, ..., X_n^{(k)}) \in \mathbb{R}^k, \ Y_n = (Y_n^{(1)}, ..., Y_n^{(m)}) \in \mathbb{R}^m.$$

1) Remark that **AI-1** does not imply **AI-2** even in the Gaussian case: let $X \sim \mathcal{N}(0, 1)$, then $X_n = \frac{X}{n}$, $Y_n = \frac{-X}{n}$ do not satisfy **AI-2** (take $A = B = [0, \infty)$), but satisfy **AI-1**.

2) If (X_n) , (Y_n) are tight, then AI-1 is equivalent to $cov\{X_n^{(i)}, Y_n^{(j)}\} \to 0$ for $1 \le i \le k, \ 1 \le j \le m$.

Gaussian case

With the help of explicit formulas on the total variation distance between Gaussian measures one can obtain a criterion of merging of Gaussian measures in terms of characteristic functions:

Lemma 1 [S.N., 2020]

Let $P_n = \mathcal{N}(0, K_n), Q_n = \mathcal{N}(0, L_n)$ be Gaussian distributions on \mathbb{R}^d . If $\sup_{|x| \leq 1} |\phi_{P_n}(x) - \phi_{Q_n}(x)| \to 0, \quad n \to +\infty$, and there exists $\epsilon > 0$ such that the matrices $L_n - \epsilon I_d$ are positive semidefinite for all n, then

$$||P_n - Q_n||_{var} \to 0, \quad n \to +\infty.$$

Theorem 3 [S.N., 2020]

If $X_n \in \mathbb{R}^k$, $Y_n \in \mathbb{R}^m$, (X_n, Y_n) is **Gaussian** for all n; (X_n) , (Y_n) satisfy **AI-0** and there exists $\epsilon > 0$ such that $cov(X_n) - \epsilon I_k$ and $cov(Y_n) - \epsilon I_m$ are positively semidefinite for all n, then (X_n) , (Y_n) satisfy **AI-4**.

Using approximation with nondegenerate distributions, we obtain:

Lemma 2 [S.N., 2020]

Let $P_n = \mathcal{N}(0, K_n), Q_n = \mathcal{N}(0, L_n)$ be Gaussian distributions on \mathbb{R}^d . If

$$\sup_{|x|\leq 1} |\phi_{P_n}(x) - \phi_{Q_n}(x)| \to 0, \quad n \to +\infty,$$

then $\pi(P_n, Q_n) \to 0$, where π is the Levy-Prokhorov metric.

Theorem 4 [S.N., 2020]

Suppose that $X_n \in \mathbb{R}^k$, $Y_n \in \mathbb{R}^m$, (X_n, Y_n) is Gaussian for all n and (X_n) , (Y_n) satisfy **AI-0**. Then (X_n) , (Y_n) satisfy **AI-1**.

17/22

With the help of characteristic functions one can also deduce:

Theorem 5 [S.N., 2020]

Suppose that $X_n \in \mathbb{R}^k$, $Y_n \in \mathbb{R}^m$, (X_n, Y_n) is Gaussian for all n and (X_n) , (Y_n) satisfy **AI-3**. Then (X_n) , (Y_n) satisfy **AI-4**.

Theorem 6 [S.N., 2020]

Suppose that $X_n \in \mathbb{R}^k$, $Y_n \in \mathbb{R}^m$, (X_n, Y_n) is Gaussian for all n and (X_n) , (Y_n) satisfy **AI-2**. Then (X_n) , (Y_n) satisfy **AI-3**.

Hence, in the Gaussian case we have $AI-0 \Leftrightarrow AI-1$, $AI-2 \Leftrightarrow AI-3 \Leftrightarrow AI-4$.

Finally, on combining the results of the previous two sections, we obtain:

Corollary 1 [S.N., 2020]

Suppose that $X_n, Y_n \in \mathbb{R}^{\infty}$, and (X_n, Y_n) is Gaussian for all n, in addition $(X_n), (Y_n)$ satisfy **AI-0**, then they satisfy **AI-1**.

We can propose the following directions of further research: 1. Consider other conditions of the type

$$\int_{E_1} f dP_{X_n} \int_{E_2} g dP_{Y_n} - \int_{E_1 \times E_2} (f \times g) dP_{(X_n, Y_n)} \to 0$$

for all functions f, g from some classes $\mathcal{F}_1, \mathcal{F}_2$.

2. Find sufficient conditions for **AI** of the following type: "If $(f(X_n))$, $(g(Y_n))$ are asymptotically independent for all f, g from some classes \mathcal{F}_1 , \mathcal{F}_2 , then (X_n) , (Y_n) are also asymptotically independent"

3. Instead of ℝ[∞] one can consider other spaces (for example, C[0,1]).
4. Get results about equivalence of AI in some more general case than Gaussian.

Conclusion

Finally, there are two additional open questions:

5. Does **AI-0** imply **AI-1**, when (X_n, Y_n) is Gaussian, and X_n , Y_n are elements of some separable Hilbert space H?

6. Is merging of probability measures with respect to the metric

$$d'_{BL}(P,Q) = \sup_{f \in BL_1(E_1), \ g \in BL_1(E_2)} \left| \int f(x)g(y)dP - \int f(x)g(y)dQ \right|$$

equivalent to merging of probability measures with respect to the metric

$$\pi'(\mu,\nu) = \inf\{\varepsilon: \mu(A \times B) \le \nu(A^{\varepsilon} \times B^{\varepsilon}) + \varepsilon, \ \nu(A \times B) \le \mu(A^{\varepsilon} \times B^{\varepsilon}) + \varepsilon$$
for each closed $A,B\}$?

Thank you for your attention!